K.S. Rangasamy College of Technology

(Autonomous Institution)

Curriculum & Syllabus

of

B.E. Electronics and Communication Engineering

(For the batch admitted in 2014 – 18)

R 2014

Courses Accredited by NBA, Accredited by NAAC with 'A' Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

> KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

Vision

To become recognized as a leader in Electronics and Communication Engineering education and research

Mission

To craft professionals and technology leaders adherent to the professional ethical code in the areas of Electronics and communication Engineering

To address the needs of the society while advancing boundaries of disciplinary and multidisciplinary research and cultivate universal moral values

Programme Educational Objective(s)(PEOs)

- I. Graduates of the programme will be motivated to successful technical and professional career growth
- II. Graduates of the programme will be able to apply the scientific, mathematical and engineering fundamentals to provide solutions to the problems in Electronics and Communication Engineering and related fields
- III. Graduates of the programme will exhibit and demonstrate professional and ethical behaviour and engage in lifelong learning

Programme Outcomes (POs)

- a) Apply the knowledge of mathematics, science, engineering fundamentals to the solution of complex problems in Electronics and Communication Engineering
- b) Identify, formulate, research literature, and analyse complex Electronics and Communication engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- c) Design solutions for complex Electronics and Communication engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- d) Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions related to Electronics and Communication Engineering
- e) Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex Electronics and Communication engineering activities with an understanding of the limitations
- f) Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- g) Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
- i) Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- j) Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- k) Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- I) Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change

K.S.Rangasamy College of Technology, Tiruchengode – 637 215								
Curriculum for the Programmes under Autonomous Scheme								
R 2014								
Electronics and Communication Engineering								
EC : B.E. Electronics and Communication Engineering								

Semester I									
Course Code	Course Name	Hc W	/	Cre dit					
Code		L	Т	Ρ	С				
	THEORY								
40 EN 001	English	3	0	0	3				
40 MA 001	Ordinary and Partial Differential Equations	3	1	0	4				
40 PH 001	Solid State Physics	3	0	0	3				
41 CH 007	Environmental Science and Engineering	3	0	0	3				
40 CS 001	Fundamentals of Programming	3	0	0	3				
40 EC 002	Electronic Devices	3	0	0	3				
	PRACTICAL								
40 PH 0P1	Physics Laboratory	0	0	3	2				
40 CS 0P1	Fundamentals of Programming Laboratory	0	0	3	2				
40 ME0P1	40 ME0P1 Engineering Graphics Laboratory				2				
	Total	18	1	9	25				

Semester II										
Course	Course Name		our: Vee	Cre dit						
Code		L	Т	Ρ	С					
	THEORY									
40 EN 002	Communication Skills	3	0	0	3					
40 MA 003	Fourier Series and Transform Methods	3	1	0	4					
40 CH 001	Engineering Chemistry	3	0	0	3					
40 ME 001	Basics of Mechanical Engineering	3	0	0	3					
40 CE 002	Fundamentals of Civil Engineering and Mechanics	3	1	0	4					
40 EE 004	Electric Circuit Theory	3	1	0	4					
	PRACTICAL									
40 CH 0P1	Chemistry Laboratory	0	0	3	2					
40 ME 0P2	Engineering Practices									
	Total	18	3	6	25					

	Semester III	1						Semester IV				•		
Course Code	Course Name	Hours / Week			Cre dit					ours Vee		Cre dit		
Code		L	Т	Ρ	С				L	Т	Ρ	С		
	THEORY							THEORY						
40 MA 005	Linear Algebra and Numerical Methods	3	1	0	4		40 MA 009	Statistics and Random Processes	3	1	0	4		
40 CS 003	Data Structures	3	0	0	3		40 EC 401	Electronic Circuits II	3	0	0	3		
40 EE 006	Electrical Technology	3	0	0	3		40 EC 402	Transmission Lines and Wave Guides	3	1	0	4		
40 EC 003	Digital Principles and System Design	3	1	0	4		40 EC 403	Signals and Systems	3	1	0	4		
40 EC 301	Electronic Circuits I	3	0	0	3		40 EC 404	Linear Integrated Circuits	3	0	0	3		
40 EC 302	Electromagnetic Fields	3	1	0	4		40 CS 004	Object Oriented Programming	3	0	0	3		
	PRACTICAL							PRACTICAL						
40 CS 0P3	Data Structures Laboratory	0	0	3	2		40 EC 4P1	Electronic Circuits laboratory	0	0	3	2		
40 EE 0P2	Electrical Technology Laboratory	0	0	3	2		40 EC 4P2	Linear Integrated Circuits Laboratory	0	0	3	2		
40 EC 3P1	Analog and Digital Electronics Laboratory	0	0	3	2		40 CS 0P4	Object Oriented Programming Laboratory	0	0	3	2		
40 TP 0P1	Career Competency Development I	0	0	2	0		40 TP 0P2	Career Competency Development II	0	0	2	0		
	Total	18	3	11	27			Total	18	3	11	27		

K.S.Rangasamy College of Technology, Tiruchengode – 637 215

Curriculum for the Programmes under Autonomous Scheme

Regulation

Department

Programme Code & Name

R 2014 Department of Electronics and Communication Engineering EC : B.E. Electronics and Communication Engineering

	Semester V				
Course Code	Course Name	Hour	s/ W	eek	Cre dit
		L	Т	Р	С
	THEORY			_	
40 EE 007	Control Systems Engineering	3	1	0	4
40 EC 501	VLSI Design	3	0	0	3
40 EC 502	Analog Communication	3	1	0	4
40 EC 503	Digital Signal Processing	3	1	0	4
40 EC 504	Microprocessors and Microcontrollers	3	0	0	3
40 HS 003	Total Quality Management PRACTICAL	2	0	0	2
40 EC 5P1	VLSI Laboratory	0	0	3	2
40 EC 5P2	Digital Signal Processing Laboratory	0	0	3	2
40 EC 5P3	Microprocessors and Microcontrollers Laboratory	0	0	3	2
40 TP 0P3	Career Competency Development III	0	0	2	0
	Total	17	3	11	26
	Semester VII	1			1
Course Code	Course Name	Hour	s/ W	eek	Cre dit
	THEORY	L	т	Р	С
40 HS 002	Engineering Economics and Financial Accounting	2	0	0	2
40 EC 701	Optical Communication and Networks	3	0	0	3
40 EC 702	Microwave Engineering	3	0	0	3
40 EC 703	Wireless Communication	3	0	0	3
40 EC 7E*	Elective II	3	0	0	3
40 EC 7E*	Elective III	3	0	0	3
	PRACTICAL				
40 EC 7P1	Optical and Microwave Laboratory	0	0	3	2
40 EC 7P2	System Design Laboratory	0	0	3	2
40 EC 7P3	Project Work – Phase I	0	0	3	2
40 TP 0P5	0	0	2	0	
	Development V Total	17	0	11	23

	Semester VI									
Course Code	Course Name		lours Veel		Cre dit					
		L	Т	Р	С					
	THEORY									
40 EC 601	Digital Communication	3	1	0	4					
40 PH 008	Applied Physics	3	0	0	3					
40 EC 602	Embedded Systems	3	0	0	3					
40 EC 603	Antennas and Wave Propagation	3	1	0	4					
40 EC 604	Computer Networks	3	0	0	3					
40 EC 6E*	Elective I	3	0	0	3					
	PRACTICAL									
40 EC 6P1	Analog and Digital Communication Laboratory	0	0	3	2					
40 EC 6P2	Computer Networks Laboratory	0	0	3	2					
40 EC 6P3	Embedded Systems Laboratory	0	0	3	2					
40 TP 0P4	Career Competency Development IV	0	0	2	0					
	Total	18	2	11	26					
			_							
	Semester VIII				_					
Course	urse Course Name				Cre					

Semester VIII										
Course Code	Course Name	Hour	s/ W	eek	Cre Dit					
	THEORY	L	Т	Ρ	С					
40 EC 801	Ad Hoc and Sensor Networks	3	0	0	3					
40 EC 8E*	Elective IV	3	0	0	3					
40 EC 8E*	Elective V	3	0	0	3					
	PRACTICAL									
40 EC 8P1	Project Work - Phase II	0	0	16	8					
	Total	09	0	16	17					

			S.Rangasamy College of Technolog		-		637215			
		Cur	riculum for the Programmes under A	utonomou	s Sch	eme				
Regulation			R 2014							
Department			Department of Electronics and C			-	-			
Programme Co	ode & N	ame	EC : B.E. Electronics and Comm	unication	Engine	ering	9			
			Elective I							
Course	Code		Course Name	Hou	Hours/ Week		Credit	Ma	ximum l	Marks
Course	0000			L	Т	Р	С	CA	ES	Total
		THEORY								
40 EC E11		Medical Ele	3	0	0	3	50	50	100	
40 EC E12		VLSI Signal	Processing	3	0	0	3	50	50	100
40 EC E13		Consumer I	Electronics	3	0	0	3	50	50	100
40 EC E14		High Perfor	mance RISC Processor	3	0	0	3	50	50	100
40 EC E15		Digital Imag	e Processing	3	0	0	3	50	50	100
40 EC E16		Foundation	s for Nano electronics	3	0	0	3	50	50	100
40 EC E17			omechanical Systems	3	0	0	3	50	50	100
40 IT E17		Programmir	-	3	0	0	3	50	50	100
			Elective II							
40 HS 001		Professiona	l Ethics	2	0	0	2	50	50	100
40 EC E21		Advanced E	Digital Signal Processing	3	0	0	3	50	50	100
40 EC E22		Robotics		3	0	0	3	50	50	100
40 EC E23) EC E23		Navigational Aids	3	0	0	3	50	50	100
40 EC E24		Advanced E	Digital Communication	3	0	0	3	50	50	100
40 EC E25		Cryptograpl	ny and Network Security	3	0	0	3	50	50	100
40 EC E26		Electromag	netic Interference and Compatibility	3	0	0	3	50	50	100
			Elective III							
40 EC E31		Testing and	Fault Diagnosis of VLSI circuits	3	0	0	3	50	50	100
40 EC E32		High Speed	Networks	3	0	0	3	50	50	100
40 EC E33		Measureme	nts and Instrumentation	3	0	0	3	50	50	100
40 EC E34		Satellite Co	mmunication	3	0	0	3	50	50	100
40 EC E35		Advanced N	licrocontrollers	3	0	0	3	50	50	100
40 EC E36		RFID and B	iometrics	3	0	0	3	50	50	100
40 EC E37		CMOS RF S	System Design	3	0	0	3	50	50	100
			Elective IV							
40 EC E41		Software fo	r Embedded Systems	3	0	0	3	50	50	100
40 EC E42		Electronic F	roduct Design	3	0	0	3	50	50	100
40 EC E43		Virtual Instr	umentation	3	0	0	3	50	50	100
40 EC E44		Optoelectro	nic Devices	3	0	0	3	50	50	100
40 EC E45		Avionics		3	0	0	3	50	50	100
40 EC E46		Autotronics	and Vehicle Intelligence	3	0	0	3	50	50	100
40 EC E47		Principles o	f Medical Imaging	3	0	0	3	50	50	100
		-	Elective V	•			•			•
40 EC E51		Real Time I	Digital Signal Processing Design	3	0	0	3	50	50	100
40 EC E52			nd Its applications	3	0	0	3	50	50	100
40 EC E53			Compression and Communication	3	0	0	3	50	50	100
40 EC E54		Speech Pro		3	0	0	3	50	50	100
40 EC E55		Telecommu	nication Switching Techniques	3	0	0	3	50	50	100
40 EC E56		Green Com	munication	3	0	0	3	50	50	100
40 EC E57		Neural and	Fuzzy Systems	3	0	0	3	50	50	100

	K.S.Rangasa	imy College of		- Autonom	ous						
			01 English								
Common to all Branches											
Semester	Hours / We		Total hrs	Credit		ximum Ma	1				
	L T	Р		С	CA	ES	Total				
<u> </u>	3 0	0	45	3	50	50	100				
Objective(s)	 To help learners improve their vocabulary and to enable them to use words appropriately in different academic and professional contexts. To help learners develop strategies that could be adopted while reading texts. To help learners acquire the ability to speak effectively in English in real life and career related situations. To train learners in organized academic and professional writing. 										
Course Outcomes	 At the end of the big paradigm. Explain and apply the main comprehension. Identify the main comprehension. Infer, compare and passages. Recognize the basis Recognize and intee Find and classify expression Categorize words in Retrieve information writing. 	asic grammation ne enriched voo idea and int summarize lex c phonetic units rpret standard different react	cal structures cabulary in aca egrate it with kical & context s of language a English Pronu ling strategies ts of speech a	and general ademic and p supporting ual meaning and execute nciation & us s and dem nd use them	professiona g data to g of various it for bette se it in dive ionstrate to n in differer	al contexts facilitate s technical r oral comp erse situation petter artic nt contexts	effective / genera petency. ons. culation				

Grammar and Vocabulary

Word formation with Prefixes and Suffixes Level -1 (50 words), Level -2 (100 words) – Synonyms and Antonyms (100 each)– Verbal Analogy- Finding the Odd man out- Alphabet Test- One word substitute-Sentence Patterns- Subject-Verb Agreement – Tenses – Active and Passive voice – Use of conditionals – Comparative Adjectives– Expanding Nominal Compounds (100) – Articles – Use of Prepositions (basic level – 25) Identifying Phrasal Verbs - Error Detection – Abbreviations and Acronyms (100 each).

Suggested Activities

Prefixes and suffixes- identifying the lexical and contextual meanings of words - correction of errors in the given sentences -providing a context for the use of tenses, sentence structures - using comparative forms of adjectives - Identifying phrasal verbs - 'if' clauses - the three main types, probable condition, improbable condition and impossible conditions.

Note: All examples should preferably be related to science and technology.

Listening skill

Extensive listening – Listening for General Content – Listening to fill up Gapped Texts – Intensive Listening – Listening for Specific Information: Retrieval of Factual Information – Listening to Identify Topic, Context, Function, Speaker's Opinion, Attitude, etc. – Global Understanding Skills and Ability to infer, extract gist and understand main ideas – Note-Taking: Guided and Unguided

Suggested Activities

Taking a quick glance at the text to predict the content – reading to identify main content and giving feedback in response to the teacher's questions – making a thesis statement about the text – scanning for specific information – sequencing of jumbled sentences using linguistic clues (e.g. reference words and repetition) and semantic clues following propositional development –fast reading drills – comprehending a passage and answering questions of varied kinds relating to information, inference and prediction.

Speaking skill

Verbal and Non-Verbal communication - Speech Sounds - Syllables - Word Stress (structural and content

words) – Sentence Stress – Intonation – Pronunciation Drills, Tongue Twisters – Formal and Informal English – Oral Practice – Developing Confidence – Introducing Oneself – Asking for or Eliciting Information – Describing Objects – Expressing Opinions (agreement / disagreement) – Giving Instructions – (Road Maps)

Suggested Activities

Role play activities based on real life situations – discussing travel plan / industrial visits- giving oral instructions for performing tasks at home and at work (use of imperatives) -using appropriate expressions-defining / describing an object /device / instrument / machine – participating in a short discussion on a controversial topic – oral presentation

Reading skill

Exposure to different reading techniques – Reading for gist and global meaning – Predicting the content – Skimming the text – Identifying the topic sentence and its role in each paragraph – Scanning – Inferring / Identifying lexical and contextual meanings – Reading for structure and detail – Transfer of information / Guided Note-Making – Understanding Discourse Coherence.

Suggested Activities

Gap filling activity while listening to a text – listening intently to identify the missing words in a given text – listening to a brief conversation and answering questions – listening to a discourse and filling up gaps in a worksheet – taking notes during lecture – inferential comprehension and literal comprehension tasks based on listening to quizzes.

Note: The listening activities can be done using a worksheet in the Language Laboratory or in the class room using a tape recorder.

Writing skill

Introduction to the characteristics of technical style – Writing Definitions and Descriptions – Paragraph Writing (topic sentence and its role, unity, coherence and use of cohesive expressions) – Process Description (use of sequencing connectives) – Comparison and Contrast – Classifying the Data – Analyzing / Interpreting the data – Formal letter Writing (letter to the editor, letter for seeking practical training, and letter for undertaking project works in industries) – Editing (punctuation, spelling and grammar)

Suggested Activities

Writing a paragraph based on information provided in a tree diagram / flow chart / bar chart / pie chart / tables – formal letters – writing to officials (leave letter, seeking permission for practical training, asking for certificates, testimonials) – letter to the editor – informal letters (persuading / dissuading, thanking and congratulating friends / relatives) – sending e- mail – editing a passage (correcting the mistakes in punctuation, spelling and grammar)

Text	book(S) :								
1	Ashraf M Rizvi, 'Effective Technical Communication', Tata McGraw-Hill Publishing Company								
	Ltd., 1 st Edition, New Delhi, 2005.								
Refe	Reference(s) :								
1.	M.Balasubramanian and G.Anbalagan, 'Performance in English', Anuradha Publications, Kumbakonam,								
	2007.								
2.	Sharon J. Gerson, Steven M. Gerson, 'Technical Writing – Process & Product', Pearson								
	Education (Singapore) (p) Ltd., 3 rd Edition, New Delhi, 2004.								
3.	Mitra K. Barun, 'Effective Technical Communication – A Guide for Scientists and Engineers', Oxford								
	University Press, New Delhi, 2006.								
4.	R.S. Aggarwal, 'A Modern Approach to Verbal & Non – Verbal Reasoning', S.Chand& Company Ltd.,								
	New Delhi, Revised Edition, 2012.								
5.	NPTEL Video Courses on Spoken English.								

K.S.Rangasamy College of Technology – Autonomous											
40 MA 001 Ordinary and Partial Differential Equations											
Common to all Branches											
Semester	Hours / Week		k	Total	Credit	Ма	aximum Ma	rks			
Semester	L	Т	Р	hrs	С	CA	ES	Total			
_	3	1	0	60	4	50	50	100			
Objective(s)	 To present methods of solving system of linear equations. To develop the mathematical skills for solving ordinary and partial differential equations. To acquire knowledge about the concept of vectors in two-dimensional and three dimensional spaces. 										
Course Outcomes	 (i) U ma Apply Solve (i) F (ii) So Unde (ii) Ar (ii) E: Cons equa Apply differ Know 	e end of the c nderstand the atrix. (ii) Solve / transformatio e linear differer ind the solut olve simultaneous rstand the con- alyze the maxi- kpand the func- truct partial of tions of first or / the appropri- ential equation / about gradier / the notions of	types of m the system of n techniques itial equations ion of differ ous differential cepts of curva ima and minimition of two var differential eq der. iate method s with constant t, directional	atrix and find of linear equation to reduce quaries with constant rential equations. ature and evolon a of a function riables as Tay juations and to solve Lag nt coefficients. derivative, solo	d eigen value ons. dratic form into and variable o ons by the utes. n lor's series and find the solu grange's linea enoidal and irr	o canonical fo coefficients. method of d find the Jac tions of nor ar equations otational of a	orm. variation of cobians. n-linear partia and solve vector functio	parameters. al differential linear partial on.			

Matrices

Basic concepts – Addition and multiplication of matrices – Orthogonal matrices – Conjugate of a matrix – Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values and Eigen vectors – Cayley-Hamilton theorem (without proof) – Orthogonal transformation of a symmetric matrix to diagonal form – Reduction of quadratic form to canonical form by orthogonal transformation – System of linear equations.

Ordinary Differential Equations

Introduction – Differential equations of first-order and first degree – Exact differential equations – Linear differential equations of second and higher order with constant co-efficient when the R.H.S is $e^{\alpha x}$, sin $_{\alpha}$ x or $\cos_{\alpha} x$, x^n n>0, $e^{\alpha x} x^n$, $e^{\alpha x} \sin x$, and $e^{\alpha x} \cos x$ – Differential equations with variable co-efficients reducible to differential equations with constant co-efficients (Cauchy's form and Legendre's linear equation) – Method of variation of parameters – Simultaneous first-order linear equations with constant co-efficients.

Differential Calculus and Functions of Several Variables

Curvature – Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Involutes and evolutes – Taylor's series for a function of two variables – Maxima and minima of function of two variables – Constrained maxima and minima (Lagrange's method of undetermined multipliers) – Jacobians(Problems only).

Partial Differential Equations

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Nonlinear partial differential equations of first order (Type I – IV) – Solution of partial differential equations of first order – Lagrange's linear equations – Linear partial differential equations with constant coefficients.

Vector Calculus

Introduction – Gradient of a scalar point function – Directional derivative – Angle of intersection of two surfaces – Divergence and curl(excluding identities) – Solenoidal and irrotational vectors – Green's theorem in the plane –Gauss divergence theorem – Stoke's theorem(without proof) – Verification of the above theorems and evaluation of integrals using them.

Text book(s): 1 Kreyszig E, 'Advanced Engineering Mathematics', John Wiley and Sons (Asia) Limited, 9th Edition ,New Delhi, Reprint 2012. Reference(s): 1 Grewal B.S, 'Higher Engineering Mathematics', Khanna Publishers, 43rd Edition, Delhi, 2013. 2 Bali N.P and Manish Goyal, 'A Text book of Engineering Mathematics', Lakshmi Publications Pvt Ltd, 9th Edition, New Delhi, 2014.

K.S. Rangasamy College of Technology – Autonomous											
40 PH 001 Solid State Physics											
Common to EC, EE & EI											
Semester		Hours / We		Total hrs	Credit		Maximu	m Marks			
Jemester	L	Т	Р	Total III S	C	CA	ES	Total			
<u> </u>	3	0	0	45	3	50	50	100			
Objective(s)	 To impart fundamental knowledge about conducting, superconducting, semiconducting, magnetic, dielectric and advanced materials. To correlate the theoretical principles with application oriented studies. 										
Course outcomes	1. R m2. R al 3. R 4. R 5. C 6. E 7. C 5. 8. A 9. U in 10. U	etals. ecall supercompositions of supercompositions of supercompositions of supercompositions of supercompositions of superstand and a dustrial application of superstand applications of superstand and a superstand applications of superst	ectrical and the ductivity to berconducting nental concept duce the semi- fect and emplo- materials base materials to a erent types of cy, temperature ezo electric mapply the pro- ons. roperties and	ermal condu- understand devices. t of semicon iconductor pa oy Hall exper sed on their p act as memor f polarization re and breake aterial for res poerties of me	ctivity to an the prope ductors and arameters iment to dis roperties by storage d in dielect down voltage search and etallic glass	alyze the rties, the d classify scriminate levices ric and a ge. industrial ses, SMA	e classif them ba the sem analyze c applicatio , MEMS	es of electrons in ication and the sed on structural iconductor types. lielectric material on. for research and t in research and			

Conducting, Superconducting Materials and Devices

Introduction-Classical Free electron theory-verification of Ohm's law –Electrical Conductivity- Expression for electrical Conductivity-Thermal Conductivity-Expression for thermal Conductivity-Widemann Franz Law-Lorentz number –Advantages and drawbacks of classical free electron theory- superconductivity-Properties of Superconductors-Factors affecting superconducting phenomena – DC and AC Josephson effect –BCS theory-Type-I and Type-II superconductors-High TC Superconductors-Applications: SQUID, Cryotron, Magnetic Levitation.

Semiconducting Materials and Devices

Introduction-properties-Elemental and Compound Semiconductors-Intrinsic and Extrinsic Semiconductors-Properties-Carrier Concentration in intrinsic and Extrinsic semiconductors- electrical conductivity of a semiconductor- determination of band gap-Relation between electrical conductivity and mobility- Variation of Fermi level with Temperature and impurities-Hall effect-Hall Coefficient-Experimental Determination of Hall Coefficient- Applications-Semiconductor devices :LDR, Solar Cells

Magnetic Materials and Devices

Introduction-Classification of Magnetic materials-properties-Domain theory of ferromagnetism-Hystersis-Hard and Soft magnetic materials-Ferrites: Structure, preparation and applications-Applications: Charge coupled devices (CCD)-. Optical and magnetic data storage.

Dielectric Materials and Devices

Introduction-Polarization: Electronic, ionic, orientation and space charge-Frequency and Temperature dependence of polarization- Ferroelectric materials – classification- Piezoelectric materials- Applications of ferroelectric and piezoelectric materials-Breakdown mechanisms-Classification of insulating materials **Advanced Materials**

Metallic glasses: preparation, properties and applications – Shape memory alloys (SMA):Characteristics, properties of NiTi alloy, application: MEMS – Nanomaterials: Properties- Top-down process: Ball Milling method – Bottom-up process: Vapour Phase Deposition method- Carbon Nano Tube(CNT): Properties, preparation by Electric arc method, Applications.

Text Book(s):

DOOK(3).
Rajendran V, 'Engineering Physics', TataMcGraw Hill, New Delhi, 2011
William D.Callister, 'Material Science and Engineering,' Wiley India, 2006
rence (s) :
Charles Kittel, 'Introduction to solid state physics', Wiley Publications, 2006
Neil W.Ashcroft, N.David Mermin, 'Solid State Physics', Cengage Publications, 2011
S.O.Pillai, 'Solid State Physics', New Age International, New Delhi, 2005
ſ

K.S. Rangasamy College of Technology - Autonomous									
	41 CH 007 Environmental Science and Engineering								
			Commo	on to all Branc	hes	1			
Semester	Hours	s / Week		Total hrs	Credit	N	Maximum r	narks	
Semester	L	Т	Р	Total III's	С	CA	ES	Total	
	3	0	0	45	3	50	50	100	
Objective(s)	 To help the learners to analyze the importance of ecosystem and biodiversity. To familiarize the learners with the impacts of pollution, control and legislation. To enlighten the learners about waste and disaster management. To endow with an overview of food resources and human health. To enlighten awareness and recognize the social responsibility in environmental issues. 								
Course Outcomes	At the end of the course, the students will be able to1. Recognize the concepts and issues related to environment and ecosystem.2. Assess the importance of biodiversity3. Analyze the source, effects, and control measures of pollution.4. Imbibe the applications of Laws of environmental protection.								

Environmental Studies, Ecosystem and Biodiversity

Environment- Segment - Environmental studies - Scope and multidisciplinary nature - Need for public awareness - Environmental ethics- Ecosystem - Structure and function - Ecological succession. Biodiversity - Values of biodiversity - Endangered and endemic species - Hot spots - India a mega biodiversity nation - Threats - Impact of biodiversity loss - Conservation - In-situ and ex-situ - Case studies.

Environmental Pollution and Legislation

Pollution - Sources, effects and control measures - Air, water, soil, noise, thermal, nuclear and marine - Major polluting industries of India - Land degradation - Impacts of mining. Environmental legislation in India-Environment protection act - Air pollution, water pollution, wildlife protection and forest conservation - Case studies.

Waste and Disaster Management

Waste - Solid waste - Sources, effects and control measures - Management techniques - e-waste - Effluent water treatment - Radioactive waste and disposal methods. Disaster management - Earth quakes - Landslides - Floods - Cyclones - Tsunami - Disaster preparedness - Response and recovery from a disaster - Disaster management in India - Case studies.

Food Resources, Human Population and Health

World food problems - Over grazing and desertification - Effects of modern agriculture - Fertilizer – Pesticide - Problems, water logging and salinity. Population - Population growth and explosion - Population variation among nations. Human rights - Value education - Women and child welfare - HIV/AIDS - Role of IT in environment and human health - Case studies.

Social Issues and the Environment

Unsustainable to sustainable development - Use of alternate energy sources - Energy Conversion processes -Biogas - Anaerobic digestion - Production and uses - Water conservation - Rain water harvesting - Water shed management - Resettlement and rehabilitation of people - Deforestation - Green house effect - Global warming - Climate change - Acid rain - Ozone layer depletion - Waste land reclamation. Consumerism and waste products - Role of an individual in conservation of natural resources - Case studies.

Text book(s):

1	Tyler miller. G, 'Environmental Science', Cengage Publications, 13th Edition, Delhi, 2013.						
Refe	Reference(s):						
1.	Gilbert M.Masters and Wendell P. Ela, 'Environmental Engineering and Science', Phi learning private limited, New Delhi, 3 rd Edition, 2013. Learning private limited, New Delhi, 3 rd Edition, 2013.						
2.	Rajagopalan. R, 'Environmental Studies' Oxford University Press, New Delhi, 2 nd Edition, 2012.						
3.	Deeksha Dave and Katewa. S.S, 'Environmental Studies', Cengage Publications, 2 nd Edition, Delhi, 2013.						

K.S.Rangasamy College of Technology - Autonomous									
40 CS 001 Fundamentals of Programming									
Common to BT, CE, EC, EE, EI, TT, ME, MC &NST									
Semester	Н	ours / Weel	ĸ	Total hrs	Credit	Ма	aximum m	narks	
Semester	L	Т	Р	Total III's	С	CA	ES	Total	
Ι	3	0	0	45	3	50	50	100	
Objective(s)	 To enable the students to provide comprehensive knowledge about the fundamental principles, concepts and constructs of modern computer programming To enhance the competencies for the design, coding and debugging of computer programs. 								
Course Outcomes	 To provide ample way to identify, formulate, and solve engineering problems. At the end of the course, the students will be able to Recognize the generation and application of computers Analyze various problem solving techniques with categories of software Recognize the concepts of tokens branching and looping statements Affirm the concepts of arrays and strings Identity the purpose of pointers with its associated features Recognize the concepts of functions, recursion with its features Recognize the concepts of structures and unions Relate the concept of user defined data types and preprocessor Annotate the concepts of console input and output features 								

Computer Fundamentals

Evolution of computers - Generations of computers - Applications of computers - Computer Memory and Storage – Algorithm – Flowchart - Pseudo code – Program control structures -Programming languages - Computer Software – Definition - Categories of Software.

Introduction to C

An Overview of C – Data types – Identifiers - Variables- – Type Qualifiers - Constants – Operators - Expressions – Selection statements – iteration statements – jump statements, Arrays: Introduction - Types – Initialization, Strings: Strings: Introduction - Arrays of Strings – String and Character functions.

Pointers and Functions

Pointers: Introduction - Pointer Variables - The Pointer Operators - Pointer Expressions - Pointers and Arrays - Generating a Pointer to an Array - Indexing Pointers Functions: Scope of a Function – Library Functions and User defined functions - Function Prototypes – Function Categorization - Function Arguments - Arguments to main function - The return Statement - Recursion - Passing Arrays to Functions – Dynamic memory allocation – Storage class Specifiers.

Structures, Unions, Enumerations, Typedef and Preprocessors

Structures - Arrays of Structures - Passing Structures to Functions - Structure Pointers - Arrays and Structures within Structures - Unions - BitFields - Enumerations - typedef - The preprocessor and comments.

Console I/O and File I/O

Console I/O: Reading and Writing Characters - Reading and Writing Strings - Formatted Console I/O, File I/O: Streams and Files - File System Basics - fread() and fwrite() - Random Access I/O - fprintf() and fscanf() - The standard streams.

Text book(s) :

1	Herbert Schildt, 'The Complete Reference C', 4 th Edition, TMH.
---	--

Reference(s) :

1	Brian W. Kernighan and Dennis M. Ritchie, 'C Programming Language', Prentice-Hall.
	Dhan Wirkenighan and Dennie Wirkenie, erregrammig zanguage, riendee han

2 E.Balagurusamy, 'Programming in ANSI C', TMH, New Delhi, 2002.

K.S.Rangasamy College of Technology - Autonomous								
40 EC 002 Electronic Devices								
		Coi	mmon to E	EC & EI				
Semester	Hours/We	ek		Total	Credit		Maximu	m Marks
Jemester	L	Т	Р	hrs	С	CA	ES	Total
I	3	0	0	45	3	50	50	100
Objective(s)	 This course provides a comprehensive introduction to the basic concepts and characteristics of the electronic devices like diodes and transistors. This course is a prerequisite for the courses Electronic circuits, Digital electronics, Linear Integrated Circuits and Communication theory to be learnt in higher semesters. 							
Course Outcomes	 At the end of the cours 1. Discuss the operation 2. Explain the character 3. Describe the construct 4. Discuss the character 5. Explain the construct 6. Describe the construct FET. 7. Paraphrase the construct 9. Discuss the function 10. Describe the workin 	nal basi ristics o lection ar eristics o tion, ope lection ar struction s. eristics ing of in	cs of semi f PN junction of BJT in va- erating prim of operation , working a of thyristor ternal circu	conductor de on diodes. of bipolar ju arious config nciple and va g principle c and characte s and know uits of power	evices. nction transi jurations. arious config of MOSFET a eristics of spo their applica	juratior and kn ecial se	ow the a	pplications of

Semiconductor Diodes

Review of semiconductor Physics: Insulators, Conductors and Semiconductors–Semiconductor types – Law of Mass Action – Drift and Diffusion carriers- Semiconductor diode: Mcharacteristics - Switching characteristics – Temperature effects– Diode current equation – Ideal Versus Practical diode-Resistance levels– Diode equivalent circuits – Transition and diffusion capacitances– Diode specifications – Zener diodes.

Bipolar Junction Transistor

Transistor Construction–Operation– Common-Base configuration – Transistor amplifying action –Common-Emitter configuration – Common-Collector configuration – Limits of Operation-Specifications- Transistor as a switch.

Field Effect Transistors

Construction and characteristics of JFET- Transfer characteristics - FET Parameters and specifications-Depletion type MOSFET - Enhancement type MOSFET - MOSFET handling FET in CS, CD and CG Configurations - FET applications

Special Semiconductor Devices

Varactor Diode – Tunnel Diode–PIN Diode – Photodiodes–Photoconductive cell–photovoltaic cell–Solar cell– Photo transistors –Opto-isolators – Unijunction Transistor – SCR: Basic SCR operation-characteristics and ratings– SCR Applications–LASCR– TRIAC and DIAC– LED,LCD and CCD

Power Supplies

Half wave Rectification – Full wave Rectification – Filters – Zener diode voltage regulator – Discrete Transistor Voltage Regulation - IC Voltage Regulator - SMPS.

Tex	Text book (s) :						
1	Anil K. Maini, Varsha Agrawal, 'Electronics Devices and Circuits', Wiley India Pvt.Ltd, 2012.						
2	Robert L. Boylestad, Louis Nashelsky, 'Electronic Devices and circuit theory', Pearson Education, 11 th Edition, 2013.						
Re	ference(s) :						
1	Jacob Millman, Christos C.Halkias, 'Electronic Devices and Circuits', Tata McGraw Hill Publishing Limited, 2012.						
2	Sedra Smith, 'Micro Electronic Circuits', Oxford University Press, 6th Edition, 2011.						
3	Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', Pearson Education, 6 th Edition, 2011.						

	K.S.Ranga	isamy Coll	lege of Tec	hnology – Au	tonomous						
			-	Laboratory							
			n to CS,IT,	EE, EC &EI	0	1					
Semester	Hours	/ Week	1	Total hrs	Credit		-	n Marks			
•••••••	L	Т	Р		С	CA	ES	Total			
I	0	0	3	45	2	50	50	100			
	To give expos		-		physical pl	nenome	ena in	mechanics,			
Objective(s)	optics, material		• •								
To correlate the theoretical principles with application oriented studies. At the end of the course, the students will be able to											
	1. Know the cond	-			o otroin on	d oloci	tia limit	noodod to			
	achieve a given					u elasi		needed to			
	2. Understand the			•		article)	that is o	comparable			
	in size to its w	•		-	••			•			
	find the wavele	-			, .	, ,					
	3. Understand the		•		al fiber com	munica	ation by	finding the			
	light launching	parameters	s, acceptand	e angle and n	umerical ap	erture					
	4. Understand the							• •			
	energy in deter	-		y of a semico	nductor for	semico	nducting	g and opto-			
	electronic devic	••									
		5. Understand the lagging of magnetisation behind the applied magnetic field (hysteresis									
	behaviour) of a ferromagnetic material, the application being the ON/OFF switch in										
Course	memory devices										
Outcomes	6. Understand the phenomenon of interference of light between the two reflected lights from a flat (glass plate) and spherical surfaces (Plano-convex lens) that produces puddles of										
	a flat (glass plate) and spherical surfaces (Plano-convex lens) that produces puddles of Newton's rings, the application of which is an accurate measure of the size of any										
	hollows and heights on a surface by counting the rings and knowing the wavelength of										
	the illumination										
	7. Understand the concept of refractive index that varies with the wavelength of the light										
	and to know the dispersion of light due to refraction by a glass prism in optical device										
	applications.										
	8. Know the concept of interference of light between two reflected lights from a thin air										
	Ũ	wedge.									
	9. Comprehend the diffraction property of light through a spectrometer grating element										
	which yields the wavelength of mercury spectral lines 10. Apply the knowledge of semiconductor thin films in conversion of optical energy into										
	electrical energy, the application being the photovoltaic solar cells employed as one of										
	the potential and perennial renewable energy source										
S.No.		List of Experiments									
1.	Determination of You	ng's modul		•		method	l).				
2.	Determination of wav	-			*						
3.	Determination of acce	eptance an	gle and nun	nerical apertur	e of an optio	cal fibe	r.				
4.	Determination of ban	-	-	-							
5.	Study of characteristi	cs of hyste	resis curve	(B-H curve) of	a ferromag	netic m	aterial.				
6.	Determination of radi	us of curva	ture of a pla	ano convex ler	is using Nev	wton's r	ings.				
7.	Determination of disp	-			ometer.						
8.	Determination of thick		-	-							
9.	Determination of wav	-	mercury spe	ectral lines usi	ng spectrom	neter gr	ating el	ement.			
10.	V-I characteristics of	Solar cell.									
Lab Manual :		. <u> </u>									
	1.'Physics Lab Manual	i', Departm	ent of Physi	cs, KSRCT.							

	40 CS 0P1 Fundamentals of Programming Laboratory									
	Comm	on to BT,	CE, EC, E	E, EI, TT, ME	, MC,&NST	-				
Semester	Hours	/Week		Total hrs	Credit	Max	kimum Ma	arks		
Semester	L	Т	Р	Total hrs	С	CA	ES	Tota		
I	0	0	3	45	2	50	50	100		
	To enable the state	tudents to	apply the o	concepts of C	to solve bas	ic problem	IS			
Objective(s)	To apply the know	owledge o	f library fur	ictions in C pr	ogramming					
Objective(S)	To implement th	e concept	ts of function	ons, structures	and enume	rator in C				
	To implement the second s		• •	•						
	At the end of t		-		able to					
	1. Perform basic of		•							
	2. Write a simple C program to read and display basic information.									
	3. Develop a C program using selection and iterative statements.									
Course	4. Demonstrate a C program to manage collection related data.									
Outcomes	5. Interpret a C program to perform string manipulation functions.									
	6. Perform dynamic memory allocation using C.									
	7. Design and Implement different ways of passing arguments to functions.									
	 Implement a C program to manage collection of different data using Structure or Enum. Apply a C program to manage data using preprocessor directives. 									
	9. Apply a C prog 10. Demonstrate a		•	• • •						
	TO. Demonstrate a			ERIMENTS	ata using nie	concepts.				
		LIS								
1. Implem	ent basic calculation	s using MS	S EXCEL.							
	ent a simple C progra	-		ay basic inform	nation.					
3. Implem	ent a C program usir	ng selectio	n and itera	tive statement	ts.					
4. Implem	ent a C program to n	nanage co	llection rela	ated data.						
5. Implem	ent a C program to p	erform stri	ing manipu	lation function	IS.					
6. Implem	ent a C program to p	erform dy	namic merr	nory allocation	ı.					

- 7. Implement different ways of passing arguments to functions.
- 8. Implement a C program to manage collection of different data using Structure or Enum.
- 9. Implement a C program to manage data using preprocessor directives.
- 10. Implement a C program to store and retrieve data using file concepts.

Note: Programs specific to branches are to be taught and examined.

K.S.Rangasamy College of Technology – Autonomous									
40 ME 0P1 Engineering Graphics Laboratory									
		C	ommon t	o CS, EE,E	C,IT,NST &	&EIE			
Semester	1	Hours / Wee	k	Total	Credit		Maximum Ma	rks	
Cemester	L	Т	Р	hrs	С	CA	ES	Total	
I	0	0	3	45	2	50	50	100	
Objective(s)	stan • To	dards related	l to workir graphic	ng drawings	in order to	become pro	ensioning, cor ofessionally eff ots, ideas an	icient	
Course outcomes	2. Drow the projection of simple solids								
Introduction to Introduction to Pentagon, Hex tangent and no Projection of P Projection of p	Drafting S agon, Co rmal. Intro Points, Li pints, stra	Software, Dra onic Sections oduction to cy nes and Pla light lines an	wing She . Constru vcloid Invo nes	ction of Ellip plutes of squ	ose and P are and cir	Parabola (Ec rcle.	ccentricity meth	nod only) wit	
other), true lenger Projection of S Projection of so to one plane).	Solids		ids, Cylind	der and Con	e using ch	ange of pos	sition method (axis is paralle	
Section of Solids Section of solids of Prisms, Pyramids, Cylinder and Cone by cutting plane inclined to one reference plane (base is on HP and axis perpendicular to HP), true shape of section.									
Development of Surfaces Development of lateral surfaces of simple and truncated solids: Prisms, Pyramids and Cones with square hole perpendicular to the axis.									
Orthographic Theory of proj	•				_				

Isometric Projection

Principles of isometric projection, Isometric scale - isometric projections of simple solids - Prisms, Pyramids and Cones.

Tex	tt book (s) :
1	Bhatt N.D., 'Engineering Drawing', Charotar Publishing House Pvt. Ltd., 49 th Edition, Anand, Gujarat, 2006.
2	Venugopal K., 'Engineering Graphics', New Age International (P) Limited, 2002.
Ref	erence(s) :
1	Kulkani D.M, Rastogi A.P, Sarkar A.K, 'Engineering Graphics with AutoCAD', PHI Learning Private Limited, New Delhi, 2009.
2	Natarajan K.V., 'A textbook of Engineering Graphics', Dhanalakshmi Publishers, Chennai, 2006
3	Shah M.B. and Rana B.C., 'Engineering Drawing', Pearson Education, 2005.

	K.S.F	angasamy Co 40 EN 00	llege of Tech 2 Communie		onomous					
		Com	mon to all B	ranches						
Semester	H	ours / Week	Total hrs	Credit	Ма	ximum	Marks			
Semester	L	Т	Р	Total III's	С	CA	ES	Total		
II	3	0	0	45	3	50	50	100		
Objective(s)	 To equip students with effective speaking and listening skills in English. To help them develop soft skills and people skills which will make them excel in their jobs To enhance students' performance in placement interviews. At the end of the course the students will be able to									
Course Outcomes	 Pick key po Understand Know about contexts. Fine tune la Learn telepl Understand Use discour Comprehend 	ecific details and ints by listening different forms formal speech nguage for diffe none etiquette b grammatical st se markers, en d content, gene ell-knit docume	and improve of communic and descripti erent conversa by using langu ructures, its to hance punctu erate different	casual conver ation with diffe ve techniques ational context lage for assen echnical aspec ation and lear forms of temp	sational sk rences am , and use s s and purp t and dissects and usa n discourse late and en	nong the specific v poses. ent. age e cohere nhance i	words in ence			

The Listening Process

Barriers in Listening - Listening to academic lectures - Listening to announcements at railway stations, airports, etc - Listening to news on the radio / TV - Listening to casual conversation - Listening to live speech

Suggested activities

Listening to casual conversations, talks, interviews, lectures, specific information relating to technical content, statistical information, retrieving information, gapped texts-listening comprehension through video clippings and lectures.

Nature of Communication

Stages of communication Channels of communication- Barriers to effective communication - Differences between spoken and written communication - Giving directions - Art of small talk-presentation skills - Taking part in casual conversation - Making a short formal speech-Describing people, place, and events.

Suggested activities

Motivating and conducting prepared speech – debate on topics of interest - conversation (dialogue based on particular situation by using pleasantries) – extempore - picture description (people, place, things and events)

Telephonic Conversational Skill

Using the telephone - Greeting and introduction - Making requests - Asking for permission, Giving / Denying permission - Giving information on the phone – Leaving messages on Answer Machines - Making / changing appointments - Making complaints – Reminding - Listening and Taking messages - Giving instructions & Responding to instructions

Suggested activities

Familiarizing the telephone etiquette and telephone jargon – use of role play cards – conversational practices – games for spelling out proper nouns, long words, numbers, etc., -- useful phrases for complaints or making appointments – providing the needed vocabulary and expressions for agreeing and disagreeing – video clippings of speeches to drill note taking – providing context for framing yes or no questions for making requests.

Remedial Grammar

Tenses - 'Do' forms – Impersonal Passive voice - Imperatives – using should form – Direct, Indirect speech – Discourse markers – SI Units - Numerical adjectives – Prepositions (intermediate level) - Phrasal verbs (usage)- Correct use of words - Use of formal words in informal situations - Commonly confused words – Editing.

Suggested activities

Providing various contexts to fill tense gaps (stories , demos, future plans etc.,) Technical context for impersonal passive structures – transformation drills for imperatives – elucidating suggestion and recommendation formats – contextual frames for preposition and phrasal verbs – editing exercises – standard paradigm for negative structures – use of SI units (25 common units to be taught) numerical adjectives in various contexts – providing examples and drill units for commonly confused words-exemplifying the structures for direct and indirect speech – monitoring the drill units for conversion of direct to indirect, imperatives to recommendations and vice versa – reinforcing skills for discourse markers.

Written Communication & Career Skills

Writing e-mails - Writing Reports – Lab Reports - Preparing Curriculum Vitae and cover letters - Facing an Interview - Flow Charts, Interpreting the data from Tables– Recommendations – Check List – Slide Preparation – Theme Detection – Deriving Conclusions from the passages – Situation Reaction Test – Statements - Conclusions-Statement and Courses of Action

Suggested activities

Deliberating the content, format and diction for drafting e-mails -- elucidating the structure and content for writing reports especially Accident and Lab Reports -- mentoring strategy to construe the difference between Résumé and CV, and preparing the wards for the recruitment -- building self confidence in facing an interview with flawless presentation and persuasion skills -- reinforcing the interpretative skills of transcoding flow charts and Tables by employing appropriate discourse markers -- inculcating the language and format of writing Recommendations and Checklists -- enforcing innovatively the Reasoning and Logical Detection in Verbal Ability for the effective equipment of grooming for the primary leg of the recruitment process.

Text book :

1.	Ashraf M Rizvi, 'Effective Technical Communication', Tata McGraw-Hill Publishing Company Ltd., 1 st Edition, New Delhi, 2005.
Refe	rence(s) :
1.	P.Kiranmai Dutt, Geetha Rajeevan and CLN.Prakash, 'A Course in Communication Skills', by Ebek – Cambridge University Press India Pvt. Ltd., 2008.
2.	B. Jean Naterop, 'Telephoning in English' – Cambridge University Press India Pvt.Ltd., 2007.
3.	Jack. C. Richards, 'New Interchange Services (Student's Book)' – Introduction, Level – 1, Level – 2, Level – 3, Cambridge University Press India Pvt.Ltd., 2007.
4.	R.S. Aggarwal, 'A Modern Approach to Verbal & Non – Verbal Reasoning', S.Chand & Company Ltd., New Delhi, Revised Edition, 2012.
5.	NPTEL Video Courses on Communication Skills.

			-	ge of Techno				
				Series and Tr				
					-	-	·	
Semester		Hours / Wee		Total	Credit		aximum Ma	
	L	Т	P	Hrs	С	CA	ES	Total
	3	1	0	60	4	50	50	100
Objective(s)	 comp To gi To aj To ao value 	blex problems ve an ability oply Fourier s cquire analyt problems.	s to apply Lap series and F ical skills in	unctions of c place transfor ourier transfo the areas of	m technique orm for engir one dimens	e for solving oneering disci	engineering pline.	problems
Course Outcomes	 Know proput Employer Employer Employer Trans Underspace Apply equation Obtation Obtation<!--</td--><td>v about the erties. loy conform formation. erstand the o ial functions, y the technic tion and simu in the Fourie erstand the new v about the p on-zero veloc erstand the p dy state or un y Fourier tran</td><th>constructio al maps of periodic fur ques of inv ultaneous di r series exp potions of ha rocedure to ity. procedure to isteady state</th><td>nique and Pa</td><td>c and conju e images nsforms for atives and in e transform lations. e periodic fun urier series a tion of one-c olution of o</td><td>of curves some elem itegrals. to solve line inction. and harmonic dimensional v ine-dimensio</td><td>and find t entary funct ear ordinary c analysis. wave equation nal heat eco pontinuous fu</td><td>he bilinear tions, some differential on with zero quation with nction.</td>	v about the erties. loy conform formation. erstand the o ial functions, y the technic tion and simu in the Fourie erstand the new v about the p on-zero veloc erstand the p dy state or un y Fourier tran	constructio al maps of periodic fur ques of inv ultaneous di r series exp potions of ha rocedure to ity. procedure to isteady state	nique and Pa	c and conju e images nsforms for atives and in e transform lations. e periodic fun urier series a tion of one-c olution of o	of curves some elem itegrals. to solve line inction. and harmonic dimensional v ine-dimensio	and find t entary funct ear ordinary c analysis. wave equation nal heat eco pontinuous fu	he bilinear tions, some differential on with zero quation with nction.
		uss the Fouri	er sine and	cosine transf	orms and pr	operties of F	ourier transl	orms.
Complex Vari Functions of a Sufficient con harmonic func transformation Laplace Trans Laplace trans	a complex v ditions (exc ttion – Cons sform form – Cor	luding proof struction of a nditions for) – Propert inalytic func existence –	ties of analy ction – Confo - Transform	tic function ormal mapping of elementa	- Harmonic ng: w = z + ary functions	e function – a, az, 1/z a a – Basic p	Conjugate and bilinear
Derivatives ar Dirac's delta f Solution of li differential equ Fourier Serie	unction – T near ordina uations with	ransform of iry differentia	periodic fur al equation	nctions. Inver	se Laplace	transform -	Convolution	theorem -
Dirichlet's con square value of Applications	ditions – Fo	– Parseval's	identity – H			range Fouri	er series –	Root mean
Classification equation – So Fourier Trans	lution of one f orm	-dimensiona	heat equat	ion – Probler	ns.			
Fourier transfo – Convolution Text book(s):	theorem – F				- Fourier sind	e and cosine	e transform -	- Properties
1 Kreyszig		ed Engineer	ing Mathen	natics', John	Wiley & So	ons (Asia) L	imited, 9 th	Edition,New
Reference(s)								
.,		Engineering I	Mathematics	s', Khanna Pu	ublishers, 43	Brd Edition, D	elhi, 2013.	
2 Bali N.P		Goyal, "A T		Engineering				Pvt Ltd, 9 th

		K.S. Rangas	samy Coll	ege of Technolo	ogy - Autonom	ous				
		4	0 CH 001	Engineering Ch	emistry					
			Common	to EE, EC, CS,	EI& IT					
Semester		Hours / Week		Total hrs	Credit		Maximum n	narks		
Semester	L	Т	Р	45	С	CA	ES	Total		
II	3	0	0	0	3	50	50	100		
Objective(s)	 To fa control To en To im 	 To endow with an overview of batteries and fuel cells. To impart the knowledge of photochemistry and its applications. 								
Course Outcomes	 Recog Analy Relate variou Identifi Analy Analy Apply Recal Analy Explain 	gnize sources of ze and appraise the basic tenets applications. Ty the types, med ze the principle a the knowledge of the laws of pho- ze the principle a in the basic cond	water, qua methods to s of electro chanism, and applica of electro cl tochemistry and applica epts, chara	udents will be a lity parameter and overcome hard chemistry to arrive and factors influent tions of batteries hemistry in fuel of y and infer their a tions of colorime acteristics of poly es and uses of so	Id hardness of ness. ve at mathema cing corrosion a ells and workir applications. ter and UV-VIS mer and mech	tical expres and descring principle S spectropl anisms of	ibe its contro of solar bat	l measures. tery.		

Water Treatment

Sources of water and its properties - Water quality parameter (EPA) - Hard and soft water - Hardness of water - Types - Units of hardness - ppm and mg/L - Estimation of hardness - EDTA method - Boiler feed water - Boiler problems - Internal treatment - Carbonate, Phosphate and Calgon conditioning. External treatment - Zeolite and deionization process - Desalination - Reverse osmosis and Electro dialysis.

Electrochemistry and Corrosion

Basics of electrochemistry - Reversible and irreversible cells - Nernst equation (problems) - EMF - measurement - EMF series - Applications - Types of electrodes - Reference electrodes - Conductometric titration. Corrosion - Types - Galvanic and differential aeration corrosion - Mechanism (Dry and wet) - Factors influencing corrosion - Corrosion control - Cathodic protection - Corrosion inhibitors. Electroplating of nickel and chromium.

Batteries and Fuel Cells

Batteries - Characteristics - Primary and secondary batteries - Principle - Working - Charging and discharging - Applications of Laclanche cell - Alkaline battery - NICAD battery - Lithium battery - Lead acid battery - Nickel-metal hydride battery. Fuel cells - Types - Hydrogen - Oxygen fuel cell, PEFC and SOFC - Principle, operation and uses - Construction and applications of solar battery.

Photochemistry and Instrumental Methods of Analysis

Photochemistry - Lambert's law - Beer's Law - Quantum efficiency - Applications of photo chemistry - Photo electric effect - Definition - Jablonski diagram - Fluorescence - Phosphorescence - Chemiluminescence. Colorimeter and UV-Visible spectrophotometer - Principle, instrumentation and applications (Block diagram only).

Polymers

Introduction - Types of polymerization - Mechanism of polymerization - Free radical polymerization - Co-ordination polymerization - Properties of polymers - Tg, tacticity and degradation of polymers - Plastics - Thermo and thermosetting - Preparation, properties and uses of PE, PVC, PTFE, PMMA, epoxy resin, nylon 6,6 and bakelite. Basic materials and properties of LCD and LED.

Text book(s):

1	Vairam S 'Engineering Chemistry', Wiley India, Delhi, 2 nd Edition, 2013.
Refe	erence(s) :
1.	Dara.S.S. 'A Text Book of Engineering Chemistry', S Chand & Co.Ltd., 2003
2.	Bill Mayer F. W., 'Text Book of Polymer Science', Wiley - New York, 3rd Edition, 1991.
3.	Jain and Jain, Engineering Chemistry, Dhanpat Rai Publishing Company Pvt. Ltd., 15th Edition, 2008, Delhi.

		K.S.Rangas	samy College	e of Technolog	gy – Autonomo	ous					
		40 ME	001 Basics	of Mechanical	Engineering						
			Common to	EC, CS, IT 8	NST						
Compositor		Hours / Week Total Hrs Credit Maximum Marks									
Semester	L	Т	Р	I otal Hrs	С	CA	ES	Total			
11	3	0	0	45	3	50	50	100			
Objective(s)	To impart I conditioning	knowledge on po	ower plants, t	hermodynamic	s, heat transfe	r, IC engines,	refrigeration	and air-			
Course Outcomes	 Discu Discu Discu State Apply Expla Apply Expla Apply Expla Desc Expla 	of the course, t iss on types of Fo iss on renewable the laws of therm the second law in the modes of h the principles of in the operation of ribe fuel supply a in the componen onstrate the principles	ossil fuels and sources of el nodynamics a of thermodyn heat transfer. conduction ir of Internal Co nd injection s tts of refrigera	d their use for p nergy and their and applied to c amics to heat e n solving heat to mbustion engir ystem in an intr tion systems a	application for open thermodyn engines and hea ransfer problem ne. ernal combustic nd its operation	power generat amic system. It pumps. s n engine.	iion.				

Sources of Energy and Power Plants

Introduction – Energy- Classification of Energy Sources - Conventional Energy Sources: Working principle of Thermal, Gas, Diesel, Hydro-electric and Nuclear power plants. Non - Conventional Energy Sources: working principle of Solar, Wind, Tidal and Geothermal power plants.

Thermodynamics – Laws and Entropy

Basic concepts – Thermodynamic systems – Laws of Thermodynamics: Zeroth law of Thermodynamics, First law of thermodynamics - Steady Flow Energy Equation – Application of SFEE to nozzle, boiler, turbine and compressor (simple problems). Second law of Thermodynamics – cyclic heat engine, heat pump, Carnot cycle (simple problems), Entropy.

Heat Transfer

Introduction – Modes of Heat Transfer: Conduction, Convection and Radiation – Laws of Conduction - Types of Convection – Laws of Radiation – Radiation Shields - Fourier law of heat conduction in simple and composite wall geometrics, types of boundary and initial conditions – Fins: types – fin efficiency (simple problems).

Internal Combustion Engines

Introduction - working principle of petrol and diesel engines - two and four stroke cycle engines - Comparison of two and four stroke engine - Fuel supply system - Ignition system - Calculation of Mechanical and Brake thermal efficiency - Layout of Automobile Vehicle.

Refrigeration

Introduction – Terminology of Refrigeration and Air conditioning systems – working principle of vapour compression and absorption system – Layout of typical domestic refrigerator,

Air-Conditioning

Introduction - Types of Air conditioner: Window, Split and Central air conditioners - Calculation of CoP (simple problems).

Text	t Book(s):
1	Pravin Kumar, 'Basic Mechanical Engineering', Pearson India Education Services Pvt. Ltd, 1stEdition, Chennai, 2014.
Refe	erence(s):
1	Arora, S. C., Domkundwar.S., 'A Course in Power Plant Engineering', Dhanpat rai & Co., New Delhi, 2014.
2	Cengel, YA and Boles, M.A, 'Thermodynamics: An Engineering Approach', Mc Graw-Hill; 4th edition, 2002.
3	Yunus A.Cengel, 'Heat Transfer: A Practical Approach', Mc graw-Hill, 2 nd edition, 2002.
4	V.Ganesan ,'Internal Combustion Engines', Tata Mc Graw-Hill Education, 2002.
5	Arora.C.P., 'Refrigeration and Airconditioning', Tata McGraw Hill Education Pvt. Ltd., 3rd Edition, New Delhi, 2008.

	K.S.Rangasamy College of Technology - Autonomous Regulation									
	40 CE	002 Funda	mentals of	Civil Engine	ering and Med	chanics				
	E	B.E. Electro	onics and (Communicati	ion Engineerin	g				
Semester	Hours / Week			Total	Credit	Max	kimum M	arks		
Semester	L	Т	Р	hrs	С	CA	ES	Total		
II	3	1	0	60	4	50	50	100		
	 To implication 	art the f	undamenta	al knowledge	about buildi	ng mater	ials and	building		
Objective(c)	compor	ents.								
Objective(s)	To stud	• To study the basics of engineering mechanics which includes statics, dynamics,								
	mechanics of solids and fluids									
	At the e	nd of the	course, the	e students wi	ill be able to					
	1. Identify the construction materials required and describe its uses.									
	2. Discuss	the Object	ive(s) and t	ypes of surve	ying.					
	3. Identify	and explair	n the substi	ucture of build	ding.					
				structure of bu	uilding.					
Course	Apply th	e laws of n	nechanics.							
Outcomes				n of a system	and calculate of	lisplaceme	ent veloci	ty and		
euteeniee		ation of par								
					rea of various s					
		•	and perpen	dicular axis th	eorem to find o	ut the mon	nent of in	ertia of		
		sections.								
		• •		lication of fluid						
Introduction a				properties ar	nd losses in pipe	es.				

Introduction and Civil Engineering Materials

Introduction – Construction Materials – Classification – Uses –Requirements:- – Bricks-stone – Cement – Sand – Concrete – Steel Sections, Surveying – Objective(s) and Types.

Building Components and Structures

Components: - Selection of site for building- Substructure- Bearing capacity of soil - Requirement of good foundation- Types of foundation- Superstructure- Technical terms: - Types - Brick masonry - Stone masonry.

Statics and Dynamics of Particles

Introduction to Mechanics - Laws of Mechanics – Lame's theorem - Parallelogram law of forces - System of forces - Free body diagram – Displacement – Velocity - Acceleration and their relationships.

Mechanics of Solids

Determination of areas – First moment of area and the centroid of section - Second moment of area - Rectangle, circle, triangle by integration – T section, I section and angle section by using standard formula - Parallel axis theorem and Perpendicular axis theorem.

Mechanics of Fluids

Introduction – Application of Fluid Mechanics – Fluid Properties – Pascal's Law – Law of Hydrostatics – Euler's Equations – Bernoulli's Equation – Losses in Pipes.

Тех	xt book (s) :
1	M.S. Palanichamy, 'Basic of Civil Engineering' Tata Mc Graw Hill Education Pvt. Ltd, 2008.
2	Kottiswaran.N, 'Engineering Mechanics – Statics and Dynamics', Sri Balaji Publications, Coimbatore,
2	2006.
3	Bansal R.K, 'Fluid Mechanics and Hydraulic Machines', Laxmi Publications, New Delhi, 2010.
Ref	erence(s) :
1	Dr. B.C. Punmia, Ashok K. Jain, Arun K. Jain ' Basic Civil Engineering', Laxmi Publication, New Delhi,
	2010.
2	Bansal, R.K., 'Engineering Mechanics', Laxmi Publications Private Ltd, New Delhi, 2008.
3	Rajput. R.K, 'A text Book of Fluid Mechanics', S. Chand and Company Ltd, New Delhi, 2008.

		K.S.Ra	angasamy Coll	-			us		
				Electric Circ		у			
		Hours/ V		mon to EE,EC	Credit		Maximum	Marks	
Semester	L	T	P	Total hrs	C	CA	ES Total		
11	3	1	0	60	4	50	50	100	
Objective(s)	comb To d facto To ca ident To d cond To d apply	bination of raw the pl r of single alculate the ify their ap etermine t ition. etermine t <i>i</i> ng the pri	DC & AC circuit hasor diagram a phase AC series e z,y,h and ABC plications. the frequency r he variation of nciple of magne	s by applying and determine s RL, RC and CD parameters response of A output voltag etic coupling.	circuit law e the Imp RLC circu s of electr AC Series e with re	vs and the edance, A uits, and th ical netwo and para spect to f	orems. Admittance, F aree phase A orks by using allel circuits requency of	nd series- parallel Power and Power C circuits. I circuits laws and under resonance tuned circuits by nd RLC circuits.	
Course Outcomes	At the second se	he end of htify the ele ly ohm's la lyze the st lyze the th ly network uits. ve and exp rrelate the lyze the fre lyze the co lyze the tra	the course the ements of electri aw and Kirchoff's eady state response ree phase AC c theorems to reconse ress the given e	students wil ic circuits and s law to solve onse of AC cir ircuits in star duce more cor electrical circuits se of electric of d circuits and ady state beha	I be able illustrate to electric ci cuits with and delta mplicated it in terms circuits un identify the woor of so	to their proper rcuits phasor di connection circuits ar of Z, Y, h der reson- eir applica urce free l	erties agram n. Ind find the re and ABCD p ance ations. RL, RC and I	sponse of electric barameters and RLC circuits.	
and capacitar transformation A.C Circuits Impedance – A.C circuits: A	nces- Ener n. Mesh ar admittance dvantages	gy Source nd Nodal a e-steady st s of 3 phas		current divisio	n - source C circuits -	e transforr · Phasor d	nation – star iagram – Hai	delta rmonics.3 phase	
Network The	orems dNorton'stl			orem-Maximu	mpowertr	ansfer the	orem-Recip	rocity Theorem.	
Two port netw Resonance	vorks: Z, Y	, ABCD, h	parameters and	d their inter re	lationship	DS.			
Coupled Circ Self and Mutu Transients	uits al Inductai	nce-coeffic	eir frequency rest ient of coupling and source dr	, Tuned circui	ts, single	tuned circ			
Text book (s)		00							
		E., 'Netwo	rk Analysis', Pre	entice Hall of I	ndia Ltd, 3	B rd Edition,	New Delhi, 1	995,	
	layt, Jack I		Steven Durbin,						
Reference(s)									
• •	r A, Shya	ım Mohan	SP, 'Circuits	and Network	s: Analys	sis and S	Synthesis', T	ata McGraw-Hill	
		uit Theory	(Analysis and Syr	nthesis)', Dhai	npath Rai	& Sons, N	ewDelhi,201	0.	
			it Analysis', New		-				
	,0								

	K.S.	-	-	ge of Technol		omous		
		40		Chemistry La	-			
	Hours	/ Week	Commo	on to all Branc			lovimum n	norko
Semester	L	T	Р	Total hrs	Credit C	CA	laximum n ES	Total
	0	0	3	45	2	50	50	100
Objective(s)	To developTo facilitate	the expo e data int	erimental erpretatio	tical concepts. skills of the lea n rious industrial		nental app	lications.	
Course Outcomes	 Estimate th Estimate th Estimate th Estimate th Determine Determine Estimate th Estimate th Estimate th for health of Estimatefe 	ne hardno ne alkalin ne chloric the disso the mole ne mixtur ne ferrous ne streng drinks, be rrous ion	ess of wa ity of wat de conten olved oxyge cular wei e of acids s ion by p th of acid everages, by spect	ter sample. er sample. ti n water samp gen in water. ght of polymer. by conductom otentiometry. by pH metry an soil, effluent ar rophotometry. veight loss metl	le. etry nd apply the I nd other biolo	-	-	ermination
				ist of Experim	ents			
 Estimation Estimation Determinat Determinat Estimation Estimation Estimation Estimation 	of hardness of w of alkalinity of wa of chloride conte- tion of dissolved of tion of molecular of mixture of acid of ferrous ion by of HCI beverage of iron content b tion of corrosion I	ater samp ent in wat oxygen ir weight o ds by cor potention s and oth y spectro	ole. er sample n boiler fe nductome metric titra ner biolog	e (Argentometrie ed water (Wink er by viscometry tric titration. ation. ical samples by try method.	ler's method) y method.			
Lab Manual:		- ,						
	S 'Engineering C	hemistrv	', Wilev Ir	ndia, Delhi. 2 nd	Edition. 2013			
Reference(s):	g •		, , i	· ···, _ ····, _ ·				
Mendha	am. J, Denney. R s', 6 th Edition, Pea				.K, 'Vogel's te	ext book c	of quantitati	ve chemical

		40	ME 0P2 E	Engineering F	Practices Lab	oratory						
			Comm	on to ME,EE,	CS,IT,EI &NS	т						
Semester	Hours / Week		Total Hrs	Credit	Μ	aximum Mark	S					
Semester	L	Т	Р		С	CA	ES	Total				
II	0	0	3	45	2	50	50	100				
Objective(s)		To provide exposure to the students with hands on experience on various basic engineering practices in Mechanical Engineering										
	At the	e end of	the cours	e, the studer	nt will be able	to						
	1. Make	a model	of fitting li	ke Square an	d V fitting using	g fitting tools						
Course	2. Make	a model	of carpent	try like Doveta	ail joint, and cro	oss lap joint u	sing carpentry	tools				
Outcomes	3. Fabri	cate the r	nodels of	sheet metal in	sheet metal s	hop.						
	4. Prepa	are joints	by arc we	ding								
	5. Cons	truct elec	trical wirin	g circuit and c	lemonstrate in	electrical wiri	ng section					
	6. Cons	truct the v	water pipe	line in plumbi	ing shop							
Fitting												
Safety aspects	in Fitting, S	Study of to	ools and e	quipments, Pi	reparation of m	nodels- Filing,	Square, Vee.					
Carpentry												
Safety aspects	in Carpent	try, Study	of tools a	and equipmen	ts, Preparation	n of models- I	Planning, Dove	e tail, Cros				
Lap.												
Sheet Metal												
Safety aspects	in Sheet m	etal, Stud	ly of tools	and equipme	nts, Preparatio	n of models-	Scoope, Cone,	Tray.				
Welding												
Safety aspects	of welding	, Study of	arc weldi	ng equipment	s, Preparation	of models -L	ap, butt, T-join	ts. Study				
Gas Welding a	nd Equipme	ents.										
Electrical Wiri	ng and Plu	umbing										
0-4-4		al contration of	O4	la atula al Mata	والترابية المعتم المالي							

Safety aspects of Electrical wiring, Study of Electrical Materials and wiring components, Wiring circuit for a lamp using single and stair case switches. Wiring circuit for fluorescent lamps, wiring circuit for 3 phase motor.

Study of plumbing tools, assembly of G.I. pipes/ PVC and pipe fittings, Cutting of threads in G.I.Pipes/PVC by thread cutting dies.

Lab Manual :

1. 'Engineering Practices Lab Manual', Department of Mechanical Engineering, KSRCT.

	•	-		-	ogy - Autonom merical Method					
				on to EC, EE 8		43				
•	Hours / Week				Credit	N	laximum	Marks		
Semester	L	Т	Р	Total hrs	С	CA	ES Tot			
	3	1	0	60	4	50	50	100		
Objective(s)	 To introduce the concepts of linear algebra in the fields of communication systems an signal processing. To describe the concepts of solving system of equations. To explain the method of finding Eigen values and Eigen vectors. To discuss the concepts of solving first order linear differential equations. To handle large datasets using interpolation. 									
Course Outcomes	 (i)Prov dim (ii) Dev Know equati Under Find m Emplo equati (i) Solv (ii) Fin Comp of a fu Apply Comp metho 	ve algebraid ension and termine the about the o ons and M stand some natrix form by different on of highe ve the syste d the large ute interme nction by u different in ute point w ds. ute point w	c statement rank. bases, dim concepts of arkov chain e application of the linear techniques er degrees. em of linear st Eigen val ediate value sing interpo tegration te- ise solution	nension and ran inner product s s. n problems of s r transformation to approximate equations usin lue of a matrix o s from a set of t plation technique chniques to eva s for first order i	spaces, linear in k of vector space baces and appli ystem of linear of and its geomet roots of an algo g direct and ind of order 2x2 and abular values of	ces. ications to equations rric repres ebraic and irect meth I 3x3. f equal and d double c blems usir	difference entation. transcene ods. d unequa lefinite inte ng single s	e dental I intervals egrals. step		

Vector Spaces

Vector spaces and subspaces – Null spaces – Row and column spaces – Linear independent sets, basis and dimension of vector spaces – Rank, Inner product spaces, Length and Angle in inner product spaces, Change of basis – Applications to difference equations and Markov chains.

Linear Equations

Row reduction and Echelon forms – Solution of linear systems – Existence and uniqueness theorem – Vector equations – Linear combinations of vectors – Linear independence. Introduction to linear transformation – Matrix of a linear transformation – Geometric linear transformations of R^2 –Transformation from R^n to R^m – Linear models in network flow.

Solution Of Equations And Eigen Value Problems

Linear interpolation methods (method of false position) – Newton-Raphson method – Horner's method – Graeffe's root squaring method – Solution of linear system by Gaussian elimination and Gauss-Jordan methods – Iterative methods: Gauss-Jacobi and Gauss-Seidel methods – Review of Eigen values, Eigen vectors and orthogonalisation of symmetric matrix – Eigen value of a matrix by power method.

Interpolation And Integration

Lagrangian polynomials – Divided differences – Newton's forward and backward difference formulae – Numerical integration by Trapezoidal and Simpson's 1/3 and 3/8 rules – Romberg's method – Two and three point Gaussian quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

Initial Value Problems For Ordinary Differential Equations

Single step methods: Taylor series method – Euler and modified Euler methods – Fourth order Runge – Kutta method for solving first order equations – Multistep methods: Milne's and Adam's predictor and corrector methods.

Tex	t book(s):
1	David C. Lay, 'Linear Algebra and its Applications', Pearson Education, 4th Edition, 2011.
2	Gerald C.F and Wheatley, P.O, 'Applied Numerical Analysis', Pearson Education (Asia), 7th Edition, New
2	Delhi, 2007.
Ref	erence(s):
1	Howard Anton and Chris Rorres, 'Elementary Linear Algebra', 10th Edition, John Wiley & Sons, 7th Edition,
'	2010.
2	Gilbert Strang, 'Linear Algebra and Its Applications', Brooks/Cole/Cengage, 4th Edition 2006.
3	Kandasamy P, Thilagavathy K and Gunavathi K, 'Numerical Methods', S.Chand & Company Ltd, New
3	Delhi, 3 rd Edition, 2003.
4	Subramaniam N, 'Numerical Methods', SCM Publisher, Erode, 2010.
5	Vittal Rao, 'NPTEL Video Courses'.

		K.S. Ran	gasamy Co	ollege of Te	chnoloav -	Autonomo	ous			
				S 003 Data S						
				mon to CS,I						
Semester	ŀ	lours / We			Credit		Maximum I	Varks		
	L T		Р	Total hrs C		CA	CA ES Total			
	3	0	0	45	3	50	50	100		
Objective(s)	Des Dem At tl	ign and imp nonstrate va h e end of t l	lement abs arious sortir he course,	data structu stract data typ ng , searching the student t ADT and its	bes such as g and graph s will be ab	linked list, algorithms ble to	stack , queue	e and trees		
Course Outcomes	 Des Com Gair App Rev Rec Emp App App 	cribe the op pare the co n the knowle rise the vari iew various ognize the o oloy various ly Shortest	erations of bacept of B edge of Spl ous Hashir implement concept of S Internal an Path and M	Stack and C	vueue ADT a v Search and and B+ Trees perations of ching and it prting techni nning Tree a	and its app d AVL Tree es Priority Qu s types iques algorithms	es with its ope	erations		
Splay Trees – Hashing And Hashing – Has	– Binary T B – Trees Priority C sh Functio	rees – The –B+Trees. Queues (He n – Separa	Search Tre aps) te chaining	ee ADT – Bir – Open add	nary Search ressing – Ro	Trees – A ehashing –	- Extendible ł	ree Traversals - nashing – Priority ty Queues – d		
Sorting and	 Insertior 	Sort – Sh		eapsort – Me ed list search	-	Quicksort –	External So	rting –Searching		
	inning Tre	e – Prim's	algorithm	-	-		-	stra's Algorithm - n-First Search -		
Text book:										
		a Structures	and Algori	thm Analysis	in C', Pears	son Educat	tion Asia, 2 nd	Edition, 2008.		
Reference(s)										
1. Y. Lang Asia, 20		Augensteir	n and A. M.	Tenenbaum	, 'Data Strue	ctures usin	g C', Pearsor	n Education		

		N.S.Nali	gasamy cone	ge of Techno	logy–Autono	omous			
			40 EE 006 E	Electrical Tec	hnology				
		B.E. Ele	ectronics and	Communicati	on Engineer	ing			
Semester		Hours/Week		Total	Credit	Max	Maximum Marks		
	L	Т	Р	hrs	С	CA	ES	Total	
III	3	0	0	45	3	50	50	100	
Course Objectives	 To tra To To To 	illustrate the ope deduce the equi ansformer. explain the work determine the vor describe the cor aracteristics	valent circuit ar ing principle of ltage regulatio	nd determine t single phase n of synchrono	he regulation and three pha ous machines	and efficience ase induction as from its wor	cy of a sin motor. king princ	gle phase iple.	
Course Outcomes	1. Illu 2. Ex 3. Elu 4. Di: 5. Ur 6. De co 7. Ar 8. Ide the 9. Ex	the end of the co strate the operation plain the working ucidate the working scuss the operation derstand the work termine the performance adjust the speed on the various of the various of the various of the various of the construc- plain the construc- partice the Structure	ng principle of principle of DC ng principle and ng principle of with king principle of wing principle of the principle of the principle of the control technique parts of synchron ction and operation	DC generator C motor and cl. d performance various specia of three phase induce ues of three phase onous machin ation of special	and their per assify the toro characteristic I purpose trar and single ph tion motor un hase inductior es and explai	que productions of single p hasformers. hase Induction ider various l h motor. in its operatir achines.	on in dc m hase trans n Motors. oads and ng principl	otor. sformer. unload	
	10. De	scribe the Struct	ure of power sy	stem and ider	ntify the powe	r Quality issu	ies.		

D.C Generator- Principle of operation- EMF equation –Types –series, shunt & compound-Characteristics of series, shunt and compound generators.

D.C Motor – Principle of operation of D.C. motor – Back EMF-Torque Equation- Characteristics of shunt series and compound motors- Starting of D.C. motors- Speed control of D.C. motors.

Transformers

Constructional details–Principle of operation–EMF equation–Voltage Transformation ratio– Transformer on no load – Transformer on load – Equivalent circuit – Regulation – CT, PT, Pulse transformers.

Induction Motors

3 phase Induction motors-Construction –Principle of operation–Equivalent circuit–Torque speed characteristics– speed control-starting-star delta starter, singlephase Induction motors – Double field revolving theory –capacitor start and run motor, shaded pole motor.

Synchronous Machines

Synchronous machines-Construction-principle of operation-types-cylindrical-salient pole-Induced EMF- Voltage regulation: EMF method.

Special Machines

Stepper motor-types-permanent magnet stepping motor – permanent magnet DC motor –switched reluctance motor-.linear Induction motor (construction and working principle only)

Power Systems and Power Quality

Powe prote Cons	er System: Structure of power system – Generation system – Transmission System – Distribution system – Power system ection- House wiring – Wiring material and Accessories – layout – Earthing – Lightning Arrestor – UPS – Energy servation – Power quality-definition-Transients-Voltage sag-Voltage swell -Harmonics.
Textl	book(s):
1	B.L.Theraja and A.K.Theraja, 'A text book of Electrical Technology-Volume II (AC&DC Machines)',S.Chand & Company Ltd., New Delhi, 2005.
2	Roger C.Dugan and Mark.F.McGranaghan, 'Electrical Power systems Quality' Tata McGraw Hill, Second edition, 2008.
Refe	rence(s):
1	D.P.Kothari and I.J.Nagrath, 'Basic Electrical Engineering', Tata McGraw Hill publishing company ltd, Second edition, 2002.
2	C.L. Wadhwa, 'Electrical Power Systems', Wiley eastern Itd India, 1985.
3	V.K Mehta and Rohit Mehta, ' Principle of Electrical Engineering', S.Chand & Company,2008

		ł	-		ege of Techn					
			40 EC 0	-	Principles a		Design			
					n to CS, EC, I	I, EE& EI				
Semeste	r	Hours / Week		Total hrs	Credit		Maximum Marks			
		L	Т	Р		С		ES	Total	
111		3	1	0	60	4	50	50	100	
Objective(s)	cor • To	 To introduce number systems and codes, basic postulates of Boolean algebra and show the correlation between Boolean expressions. To design and analyse combinational circuits and sequential circuits. To introduce the concept of memories and programmable logic devices. 								
Course Outcomes	 Exp App Imp Imp Des Dis Des Des Des Des Des Des Des Des 	blain the f bly the Bc blement the sign the c cuss the sign the c alyse the sign the f cuss the escribe the	undamenta polean laws ne Boolean combination basics of fli clocked seq asynchrono undamenta operation c	Is of numb and reduc functions al logic cir p flops and uential circo bus seque I mode circo f various r	d realize one f cuits ntial circuits. cuits. nemory device	, Binary arit n functions tes. Tip flop from es and their	using K-map. n other flip flop applications.	0	using	
	ry, Octal s Binar	y codes:	Weighted	and non V	Veighted code	s - ASCII -	- Error detect	ements – signed an ting code –Boolean	postulates	

and laws - De-Morgan's Theorem - Boolean function - Minimization of Boolean expressions - Sum of Products (SOP) -Product of Sums (POS)- Canonical forms — Karnaugh map Minimization – Don't care conditions.

Logic Gates & Combinational Circuits

LOGIC GATES: AND, OR, NOT, NAND, NOR, Exclusive - OR and Exclusive - NOR - Implementations of Logic Functions using gates, NAND - NOR implementations - TTL and CMOS Logic families and their characteristics - Tristate gates.

COMBINATIONAL CIRCUITS: Design procedure - Adders - Subtractors - Serial adder/ Subtractor - Parallel adder/ Subtractor - BCD adder - Magnitude Comparator - Multiplexer / Demultiplexer - encoder / decoder - parity checker - code converters: binary to gray, gray to binary, BCD to excess 3 code. Implementation of combinational logic using MUX. **Sequential Circuits**

Flip flops SR, JK, T, D and Master slave - Characteristic table and equation - Application table - Edge triggering - Level Triggering - Realization of one flip flop using other flip flops - Asynchronous / Ripple counters - Synchronous counters -Modulo - n counter - Classification of sequential circuits - Moore and Mealy machines - Analysis of clocked sequential circuits: state equation - State table - State diagram - State reduction & assignment - Register : shift registers - Universal shift register- Shift counters.

Asynchronous Sequential Circuits

Analysis procedure - Transition table - Flow table - Race conditions -Design of fundamental mode circuits - Primitive flow table - Reduction of state and flow table - Race free state assignment - Hazards: Static - Dynamic - Essential - Hazards elimination.

Memory Devices

Classification of memories : ROM - PROM - EPROM - EAPROM - EAPROM, RAM - Write operation - Read operation -Memory cycle - Timing wave forms - Memory decoding - memory expansion - Static RAM Cell- Bipolar RAM cell -MOSFET RAM cell – Dynamic RAM cell – Programmable Logic Devices : Programmable Logic Array (PLA) - Programmable Array Logic (PAL) - Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using ROM, PLA, PAL.

Text book(s):

1	M. Morris Mano, Michael D. Ciletti, 'Digital Design', 5th Edition, Pearson Education, New Delhi, 2012.
Refer	ence(s) :
1	Anand Kumar, 'Fundamentals of Digital Circuits', 3rd Edition, Prentice Hall, 2014.
2	Donald P.Leach and Albert Paul Malvino, Goutam Saha, 'Digital Principles and Applications', 7th Edition, Tata McGraw-Hill, New Delhi, 2010.
3	S. Salivahanan and S. Arivazhagan, 'Digital Circuits and Design'3 rd Edition, Vikas Publishing House Pvt. Ltd, New Delhi, 2009.
4	John F.Wakerly, 'Digital Design: principles and practices', 4th Edition, Pearson Education, 2008.
5	Charles H.Roth, 'Fundamentals of Logic Design', 5th Edition, Brooks/cole, 2004.
6	John .M Yarbrough, 'Digital Logic Applications and Design', 1 st Edition, Nelson Engineering, 2006.

		K.S	.Rangasa	my Colle	ege of Tech	nology - A	utonomous	3	
			2	10 EC 30 ⁻	1 Electronic	Circuits I			
		E	B.E. Electr	onics an	d Communi	ication Eng	gineering		
Semeste	r	н	ours / We	ek	Total hrs	Credit	Π	Maximum Mark	s
		L	Т	Р		С	CA	ES	Total
II		3	0	0	45	3	50	50	100
	• To c	design a	nd analyze	e various	types of filte	rs			
Objective(s)	• To c	design a	nd analyze	e small sig	gnal single s	tage amplif	iers		
	• To a	analyze t	he perforr	nance of	multistage a	mplifiers			
	At the end of the course, the students will be able to								
	1. Des	sign and	analyze c	onstant k	filters				
	2. Design and analyze m- derived filters								
	3. Des	sign and	analyze tr	ansistor b	biasing circui	its			
Course	4. Des	sign and	analyze th	ne approp	oriate biasing	circuits for	FET		
Outcomes	5. Des	sign and	analyze B	JT single	stage ampli	fier			
	6. Des	sign and	analyze F	ET single	e stage ampli	fiers			
	7. Out	line the	concept of	multistag	ge amplifiers	and the pa	arameters in	volved	
	8. Ana	alyse the	performa	nce of diff	ferential amp	olifier			
	9. Dist	tinguish	high frequ	ency and	low frequen	cy analysis	of BJT		
	10.Dis	stinguish	high frequ	iency and	d low frequer	ncy analysis	s of FET		
Filters	•								

Filters

Parameters-Classification of filters- Basic filter networks -Constant k filters - m-Derived filters.

Transistor Biasing

Transistor Biasing: Need for biasing – Operating Point – Different types of BJT biasing: Fixed bias, Emitter bias, Voltage divider bias, Collector feedback bias – BJT as constant current source – Stabilization of Q-point and stability factor – Bias compensation: Diode, Thermistor & sensistor compensation – Thermal runaway – FET biasing: Fixed bias, Self-bias, Voltage divider bias – FET as a Voltage Variable Resistor–MOSFET biasing.

Small Signal Analysis Of Amplifiers

CE,CB and CC amplifiers – General frequency considerations– Transistor hybrid model – Miller's theorem – Analysis of a transistor amplifier using complete h - parameter model – Analysis of transistor amplifier configurations using simplified h- parameter model – Comparison of CE,CB and CC amplifiers-Low frequency model of a FET – CS, CG and CD amplifiers.

Multistage Amplifiers

Cascading amplifiers - Darlington Pair –Bootstrapped Darlington amplifier– Cascode amplifier- BJT Differential amplifier - Small signal operation-Non ideal characteristics - Differential amplifiers with active load.

Frequency Response of Amplifiers

Frequency Response Of Amplifiers: Low frequency analysis of amplifiers to obtain lower cut off frequency -Hybrid – equivalent circuit of BJT – Miller effect capacitance – High frequency analysis of BJT amplifiers to obtain upper cut off frequency – Gain-bandwidth product – High frequency equivalent circuit of FET – High frequency analysis of FET amplifiers– Multistage frequency Effects – Amplifier rise time and sag and their relation to cut off frequencies.

Text I	book(s):
1	Robert L. Boylestad , Louis Nashelsky, 'Electronic Devices and Circuit Theory', 11th Edition, Pearson,
2	Anil K. Maini, Varsha Agrawal, 'Electronics Devices and Circuits', Wiley India Pvt.Ltd, 2012.
Refer	rence(s) :
1	David A. Bell, 'Electronic Devices and Circuits ',5 th Edition, Oxford University press, 2008.
2	Sudhakar A, Shyam Mohan SP, 'Circuits and Networks: Analysis and Synthesis', Tata McGraw- Hill, New Delhi, 2007.
3	S.Salivahanan, N.Sureshkumar, 'Electronic Devices and circuits', 3 rd Edition, McGraw-Hill, 2013.

						ology - Au			
					Electromagn				
			B.E. Elec	tronics a	nd Communi	cation Engi	neering		
Semeste	r	ŀ	lours / We	ek	Total hrs	Credit		Maximum Marks	
Comeste		L	Т	Р	rotar mo	С	CA	ES	Total
111		3	1	0	60	4	50	50	100
	• T	o introduc	e the basic	concepts	of electromag	netic theory			
Objective(s)	• T	o illustrate	e the behav	iors of stat	tic and dynam	ic electroma	gnetic fields	s by vector different	al and
00)001100(3)		ntegral tec	•						
	• T	o explore	the behavior	or of electr	omagnetic wa	ive using Ma	axwell's equ	ations.	
					udents will b				
					ctor quantities				
			-		erentiation in d				
			or calculus	to compu	ite electrostat	ic field proc	luced by sta	atic charge distribu	tions in free
Course		pace	4h a					- 1 -1	
Outcomes					nich materials				
Outcomes		-	-		to different cu erent material		utions in free	e space	
					electromotive f				
			•				time varvinc	magnetic field	
					escribe EM wa				
								wave in bounded m	edia
Vector Analys						-			
	lume Int	egrals – C	Del Operato	r – Gradie	nt of a Scalar	– Divergend	ce of a Vecto	ngth, Area and Vol or – Divergence The	
Surface and Vo of a Vector – St Electrostatic fie Electrostatic fie Electric Flux De Electric Dipole a Electric Fields Dielectrics – Di Relaxation Time Magnetostatic Magnetostatic Magnetostatic Fiel Magnetization Inductances – Maxwell's Equ	lume Introduces The okes The ensity - Co and Flux n Materic electric of e – Boun s Fields: E tions for ds in Materic Magnetic ations	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Propo constant a idary Con Biot-Savar Static EM aterials: F rials – C Energy –	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dens erties of M and Strengt ditions – Po t Law – An 4 Fields – M Forces due lassificatior - Magnetic (r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cirl lagnetic So to Magn of Magr Circuits.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an nd Laplace's E rcuit Law – Ap calar and Vect etic Fields – netic Materials	 Divergender Divergender of vector fields Electric Fields Electric F ad Conducti d Homogener quations – I opplications contential Magnetic T as – Magnetic 	e of a Vector elds. due to Cor Potential – R on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar	or – Divergence The ntinuous Charge Di Relationship betwee a – Conductors – Pe ctrics – Continuity E and Capacitance. Law – Magnetic FI 's Equation. Moment – Magne ry Conditions – In	eorem – Cur stributions - n E and V - blarization ir quation and ux Density - tic Dipole - ductors and
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole a Electric Fields Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic I Magnetization Inductances – I Maxwell's Equ Faraday's Law forms – Time-V	lume Introduces The okes The okes The electric of and Flux n Materi electric of a – Boun s Fields: E titions for ds in M ds in Materi Magnetic ations – Transf arying P	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Propo constant a idary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials -	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dens erties of M and Strengt ditions – Po rt Law – An 4 Fields – M Forces due lassification - Magnetic (d Motional B – Time-Harr	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – (h – Linear bisson's ar hpere's Cir lagnetic So to Magn Circuits.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an d Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials	 Divergend of vector fi ectric Fields Electric F s. d Conducti d Homogen quations – I opplications of tor Potential Magnetic T s. – Magne 	e of a Vector elds. due to Cor Potential – R on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar	or – Divergence The ntinuous Charge Di Relationship betwee s – Conductors – Pe ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne	eorem – Cur stributions - n E and V - blarization in quation and ux Density - tic Dipole - ductors and
Surface and Vo of a Vector – St Electrostatics Electrostatic file Electric Flux De Electric Dipole a Electric Fields i Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic I Magnetiz Equa Magnetiz Fiel Magnetization Inductances – N Maxwell's Equ Faraday's Law forms – Time-V Electromagnet	lume Introduces The okes The ensity - Co and Flux in Materi electric of e – Boun s Fields: E titons for ds in M in Materi Aagnetic ations – Transf arying P ic Wave	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a idary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials - e Propag	Del Operato Laplacian of Law – Elect Law – Applic Energy Dens erties of M and Strengt ditions – Po rt Law – An A Fields – M Forces due lassification Magnetic (d Motional E – Time-Harr gation	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cir lagnetic Si to Magn of Magr Circuits. EMFs – Di- monic Field	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an ad Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds.	 Divergend of vector fi ectric Fields Electric F s. d Conducti d Homogen quations – I oplications c tor Potential Magnetic T s. – Magne urrent – Ma 	e of a Vector elds. due to Cor Potential – F on Currents eous Dieleo Resistance a of Ampere's s – Poisson Forque and tic Boundar	or – Divergence The ntinuous Charge Di Relationship betwee G – Conductors – Pe trics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne ry Conditions – In ations in Integral and	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole a Electric Fields i Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic I Magnetiz Fiel Magnetiz Fiel Magnetiz Fiel Magnetiz Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave	lume Introduces The okes The elds: Co ensity - C and Flux in Materi electric (e – Boun s Fields: E titions for ds in M. in Materi Aagnetic ations – Transf arying P ic Wave Propag	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a dary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials - e Propag jation in L	Del Operato Laplacian of Law – Elect Law – Applic Energy Dens erties of M and Strengt ditions – Po rt Law – An f Fields – M Forces due lassification Magnetic (d Motional E – Time-Harr jation Lossy Diele	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cir lagnetic S to Magn circuits. EMFs – Di- monic Field ctrics – P	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an nd Laplace's E reuit Law – Ap calar and Veci etic Fields – netic Materials splacement C ds.	 Divergend of vector fi ectric Fields Electric F s. d Conducti d Homogen quations – I oplications c tor Potential Magnetic T s – Magne urrent – Ma Lossless I 	e of a Vector elds. due to Cor Potential – R on Currents eous Dieleo Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa	or – Divergence The Antinuous Charge Di Relationship betwee 5 – Conductors – Pe trics – Continuity E and Capacitance. Law – Magnetic FI 's Equation. Moment – Magne ry Conditions – In ations in Integral and	eorem – Cu stributions n E and V plarization i quation an ux Density tic Dipole ductors an d Differentia
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole a Electric Dipole a Electric Fields i Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic I Magnetiz Equa Magnetiz Fiel Magnetiz Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in	lume Introduces Introduces Introduces Introduces International International International International Internations Inte	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a idary Con Biot-Savar Static EM aterials: F rials – C E Energy – ormer and otentials - e Propag jation in L Conductor	Del Operato Laplacian of Law – Elect Law – Applie Energy Dens erties of M and Strengt ditions – Por t Law – An d Fields – M Forces due lassification - Magnetic (d Motional B – Time-Harr jation Lossy Diele s – Power	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hopere's Cin lagnetic S to Magn circuits. EMFs – Di- monic Field ctrics – P and the P	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an nd Laplace's E reuit Law – Ap calar and Veci etic Fields – netic Materials splacement C ds.	 Divergend of vector fi ectric Fields Electric F s. d Conducti d Homogen quations – I oplications c tor Potential Magnetic T s – Magne urrent – Ma Lossless I 	e of a Vector elds. due to Cor Potential – R on Currents eous Dieleo Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa	or – Divergence The ntinuous Charge Di Relationship betwee G – Conductors – Pe trics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne ry Conditions – In ations in Integral and	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole a Electric Dipole a Electric Fields i Dielectrics – Di Relaxation Time Magnetostatic Magnetostatic Magnetostatic Magnetostatic Fiel Magnetostatic Fiel Magnetization Inductances – Maxwell's Eque Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a	lume Introduces Introduces Introduces Introduces International International International International Internations Inte	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a idary Con Biot-Savar Static EM aterials: F rials – C E Energy – ormer and otentials - e Propag jation in L Conductor	Del Operato Laplacian of Law – Elect Law – Applie Energy Dens erties of M and Strengt ditions – Por t Law – An d Fields – M Forces due lassification - Magnetic (d Motional B – Time-Harr jation Lossy Diele s – Power	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hopere's Cin lagnetic S to Magn circuits. EMFs – Di- monic Field ctrics – P and the P	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an nd Laplace's E reuit Law – Ap calar and Veci etic Fields – netic Materials splacement C ds.	 Divergend of vector fi ectric Fields Electric F s. d Conducti d Homogen quations – I oplications c tor Potential Magnetic T s – Magne urrent – Ma Lossless I 	e of a Vector elds. due to Cor Potential – R on Currents eous Dieleo Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa	or – Divergence The Antinuous Charge Di Relationship betwee 5 – Conductors – Pe trics – Continuity E and Capacitance. Law – Magnetic FI 's Equation. Moment – Magne ry Conditions – In ations in Integral and	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole Electric Fields Dielectrics – Di Relaxation Time Magnetostatic Magnetostatic I Magnetostatic I Magnetization Inductances – N Maxwell's Equ Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s):	lume Introduces The okes The elds: Co ensity - Co and Flux in Materi electric of e – Boun s Fields: E titons for ds in Materi Aggnetic ations – Transf arying P ic Wave e Propag Good C Plane wa	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a idary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials - e Propag pation in L Conductor ave at Obl	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dens erties of M and Strengt ditions – Po t Law – An 4 Fields – M Forces due lassification Magnetic (d Motional B – Time-Han jation Lossy Diele s – Power ique Incide	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hopere's Cir lagnetic So to Magr Circuits. EMFs – Di- monic Field ctrics – P and the P nce.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an ad Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds.	 Divergend of vector fi ectric Fields Electric F Band Conducti d Homogen quations – I opplications c tor Potential Magnetic T a Agne urrent – Man Lossless I or – Reflecti 	e of a Vector elds. due to Cor Potential – R on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan	or – Divergence The ntinuous Charge Di Relationship betwee a – Conductors – Pro- ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magner ry Conditions – In ations in Integral and - Plane waves in F ne wave at Normal	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole Electric Fields i Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic I Magnetization Inductances – N Maxwell's Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s): 1 Matthew	lume Introduces Index Idds: Co ensity - Co and Flux in Materi electric (co e – Boun s Fields: E titons for ds in M. in Materi Aagnetic ations – Transf arying P ic Wave Propag Good C Plane wa	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a dary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials – e Propag jation in L Conductor ave at Obl	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dense erties of M and Strengt ditions – Por t Law – An f Fields – M Forces due lassification Magnetic (d Motional B – Time-Harr gation Lossy Diele is – Power ique Incide	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cir lagnetic S to Magn Circuits. EMFs – Di- monic Field ctrics – P and the P nce.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an ad Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vecto	 Divergend of vector fi ectric Fields Electric F Barting Conductions Conductions of the optications of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optic	e of a Vector elds. due to Cor Potential – F on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan	or – Divergence The ntinuous Charge Di Relationship betwee G – Conductors – Pe trics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne ry Conditions – In ations in Integral and - Plane waves in F ne wave at Normal (Press , 2014.	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole Electric Fields i Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic I Magnetization Inductances – N Maxwell's Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s): 1 Matthew	lume Introduces Index Idds: Co ensity - Co and Flux in Materi electric (co e – Boun s Fields: E titons for ds in M. in Materi Aagnetic ations – Transf arying P ic Wave Propag Good C Plane wa	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a dary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials – e Propag jation in L Conductor ave at Obl	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dense erties of M and Strengt ditions – Por t Law – An f Fields – M Forces due lassification Magnetic (d Motional B – Time-Harr gation Lossy Diele is – Power ique Incide	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cir lagnetic S to Magn Circuits. EMFs – Di- monic Field ctrics – P and the P nce.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an ad Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vecto	 Divergend of vector fi ectric Fields Electric F Barting Conductions Conductions of the optications of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optic	e of a Vector elds. due to Cor Potential – F on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan	or – Divergence The ntinuous Charge Di Relationship betwee a – Conductors – Pro- ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magner ry Conditions – In ations in Integral and - Plane waves in F ne wave at Normal	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fields Electric Flux De Electric Flux De Electric Fields Dielectrics – Di Relaxation Time Magnetostatic Magnetostatic Magnetostatic Magnetostatic Fiel Magnetization Inductances – Maxwell's Equa Magnetization Inductances – Maxwell's Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s): 1 Matthew 2 William	lume Introduces Index Idds: Co ensity - Co and Flux in Materi electric (co e – Boun s Fields: E titons for ds in M. in Materi Aagnetic ations – Transf arying P ic Wave Propag Good C Plane wa	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a dary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials – e Propag jation in L Conductor ave at Obl	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dense erties of M and Strengt ditions – Por t Law – An f Fields – M Forces due lassification Magnetic (d Motional B – Time-Harr gation Lossy Diele is – Power ique Incide	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cir lagnetic S to Magn Circuits. EMFs – Di- monic Field ctrics – P and the P nce.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an ad Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vecto	 Divergend of vector fi ectric Fields Electric F Barting Conductions Conductions of the optications of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optication of the optic	e of a Vector elds. due to Cor Potential – F on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan	or – Divergence The ntinuous Charge Di Relationship betwee G – Conductors – Pe trics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne ry Conditions – In ations in Integral and - Plane waves in F ne wave at Normal (Press , 2014.	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fields Electric Flux De Electric Flux De Electric Fields Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic Fields Magnetization Inductances – N Maxwell's Equa Magnetization Inductances – N Maxwell's Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s): 1 Matthew 2 William	lume Introduced International	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Propo constant a idary Con Biot-Savar Static EM aterials: F rials – C Static EM aterials: F cormer and otentials – e Propag pation in L Conductor ave at Obl	Del Operato Laplacian of Law – Elec: Law – Applie Energy Dens erties of M and Strengt ditions – Por t Law – An d Fields – M Forces due lassification - Magnetic O d Motional B – Time-Harr jation Lossy Diele is – Power ique Incide	r – Gradie a scalar – tric Field I cations of sity in Elec laterials – h – Linear bisson's ar hpere's Cir lagnetic So to Magn circuits. EMFs – Di- monic Field ctrics – P and the P nce.	es – Vector C nt of a Scalar - Classification ntensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an ad Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vecto	 Divergend of vector fields Electric Fields Electric F Electric F Conducti d Homogen quations – I oplications c tor Potential Magnetic T a Lossless I or – Reflecti ition , Oxfor cs', 8th Editio 	e of a Vector elds. due to Cor Potential – R on Currents eous Dielec Resistance a of Ampere's is – Poisson Forque and tic Boundar tic Boundar wwell's Equa Dielectrics – on of a Plan	or – Divergence The ntinuous Charge Di Relationship betwee - Conductors – Pe ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne ry Conditions – In ations in Integral and - Plane waves in F ne wave at Normal / Press , 2014. Graw-Hill, 2012.	eorem – Cu stributions – n E and V – plarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space –
Surface and Vo of a Vector – St Electrostatics Electrostatic fields Electric Flux De Electric Dipole a Electric Fields Dielectrics – Di Relaxation Time Magnetostatic Magnetostatic Magnetostatic Magnetostatic Fields Magnetostatic Fields Magnetization Inductances – Maxwell's Eque Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s): 1 Matthew 2 William Reference(s) : 1 John D.	lume Introduces The okes The okes The electric of and Flux in Materi electric of a – Boun s Fields: E tions for ds in Materi Agnetic ations – Transf arying P ic Wave e Propag Good C Plane wa V N.O.Sa H.Hayt , Kraus, 'f	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a idary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials – e Propag pation in L Conductor ave at Obl John.A.B	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dense erties of M and Strengt ditions – Por t Law – An 4 Fields – M Forces due lassification Magnetic (d Motional B – Time-Han jation Lossy Diele s – Power ique Incide ements of E suck , 'Engi	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – (h – Linear bisson's ar hopere's Cir lagnetic So to Magn Circuits. EMFs – Di- monic Field ctrics – P and the P nce. lectromag neering El	es – Vector C nt of a Scalar - Classification Intensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an id Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vector netics', 6 th Ed ectromagnetic fata McGraw-I	 Divergend of vector fi ectric Fields Electric F ad Conducti d Homogen quations – I oplications c tor Potential Magnetic T a Lossless I ar – Reflecti br – Reflecti dition , Oxfor s', 8th Editio 	e of a Vector elds. due to Cor Potential – F on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan rd University on, Tata Mcc Dielection	or – Divergence The ntinuous Charge Di Relationship betwee - Conductors – Pe ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magne ry Conditions – In ations in Integral and - Plane waves in F ne wave at Normal / Press , 2014. Graw-Hill, 2012.	eorem – Cur stributions - n E and V - blarization in quation and ux Density - tic Dipole - ductors and d Differentia ree space - Incidence -
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole Electric Fields Dielectrics – Di Relaxation Time Magnetostatic Magnetostatic Fiel Magnetostatic Fiel Magnetization Inductances – N Maxwell's Equa Magnetization Inductances – N Maxwell's Equa Faraday's Law forms – Time-V Electromagnet Waves – Waves Plane waves in Reflection of a Text book(s): 1 Matthew 2 William Reference(s) : 1 John D. 2 E.C. Jo	lume Introduces Indexes Indexe	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a dary Con Biot-Savar Static EM aterials: F rials – C Energy – ormer and otentials – Energy – ormer and otentials – e Propag jation in L Conductor ave at Obl adiku , 'Ele	Del Operato Laplacian of Law – Elecc Law – Applic Energy Dense erties of M and Strengt ditions – Por t Law – An 4 Fields – M Forces due lassification Magnetic (d Motional B – Time-Han jation Lossy Diele s – Power ique Incide ements of E suck , 'Engi	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – (h – Linear bisson's ar hopere's Cir lagnetic So to Magn Circuits. EMFs – Di- monic Field ctrics – P and the P nce. lectromag neering El	es – Vector C nt of a Scalar - Classification Intensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an id Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vector netics', 6 th Ed ectromagnetic fata McGraw-I	 Divergend of vector fi ectric Fields Electric F ad Conducti d Homogen quations – I oplications c tor Potential Magnetic T a Lossless I ar – Reflecti br – Reflecti dition , Oxfor s', 8th Editio 	e of a Vector elds. due to Cor Potential – F on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan rd University on, Tata Mcc Dielection	or – Divergence The ntinuous Charge Di Relationship betwee a – Conductors – Pro- ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magnetic ry Conditions – In ations in Integral and Plane waves in F ne wave at Normal / Press , 2014. Graw-Hill, 2012.	eorem – Cur stributions - n E and V - blarization ir quation and ux Density - tic Dipole - ductors and d Differentia ree space - Incidence -
Surface and Vo of a Vector – St Electrostatics Electrostatic fie Electric Flux De Electric Dipole Electric Fields Dielectrics – Di Relaxation Time Magnetostatic I Magnetostatic Fiel Magnetostatic Fiel Magnetization Inductances – N Maxwell's Equa Faraday's Law forms – Time-V Electromagnet Waves – Wave Plane waves in Reflection of a Text book(s): 1 Matthew 2 William Reference(s) : 1 John D. 2 E.C. Jo IV, V), T	lume Introduces Introduces Introduces Introduces International Internati	egrals – E eorem – L ulomb's L Gauss's L Lines – E als: Prope constant a dary Con Biot-Savar Static EM aterials: F rials – C E Energy – ormer and otentials - E Energy – ormer and otentials - e Propag Jation in L Conductor ave at Obl adiku , 'Ele John.A.B Electroma G. Balma	Del Operato Laplacian of Law – Elect Law – Applie Energy Dens erties of M and Strengt ditions – Por t Law – An f Fields – M Forces due lassification - Magnetic (d Motional B - Time-Harr jation Lossy Diele s – Power ique Incide ements of E suck , 'Engi gnetics', 4t ^t ain, 'Electro 9th reprint.	r – Gradie a scalar – tric Field I cations of sity in Elec aterials – h – Linear bisson's ar hpere's Cin lagnetic S to Magn of Magn Circuits. EMFs – Di- monic Field ctrics – P and the P nce.	es – Vector C nt of a Scalar - Classification Intensity – Ele Gauss's Law trostatic Field Convection ar r, Isotropic an id Laplace's E reuit Law – Ap calar and Vect etic Fields – netic Materials splacement C ds. lane waves in oynting Vector netics', 6 th Ed ectromagnetic fata McGraw-I	 Divergend of vector fi ectric Fields Electric F ad Conducti d Homogen quations – I oplications c tor Potential Magnetic T a – Magne urrent – Ma Lossless I or – Reflecti ition , Oxfor s', 8th Editic Hill International 	e of a Vector elds. due to Cor Potential – F on Currents eous Dielec Resistance a of Ampere's s – Poisson Forque and tic Boundar xwell's Equa Dielectrics – on of a Plan rd University on, Tata Mcc Dielection	or – Divergence The ntinuous Charge Di Relationship betwee a – Conductors – Pro- ctrics – Continuity E and Capacitance. Law – Magnetic Fl 's Equation. Moment – Magnetic ry Conditions – In ations in Integral and Plane waves in F ne wave at Normal / Press , 2014. Graw-Hill, 2012.	eorem – Cu stributions – n E and V – blarization in quation and ux Density – tic Dipole – ductors and d Differentia ree space – Incidence –

		40 CS 0P3	Data Struct	ures Labor	ratory			
		Com	mon to CS,I	T,EE & EC				
Semester	Hours / V	Veek	Total hrs	Credit		Maximum Marks		
	L T	Р	Total III's	С	CA	ES	Total	
	0 0	3	45	2	50	50	100	
Objective(s)	 To design and implement simple linear and non linear data structures To strengthen the ability to identify and apply the suitable data structure for the given real world problem To gain knowledge of graph applications At the end of the course, the students will be able to 							
Course Outcomes	 Demonstrate Demonstrate Investigate B Implement S Demonstrate Demonstrate Implement Ir Perform vari 	hortest Path a	ntation of Sta ntation of Que nthesis and F DT ion resolution g Techniques algorithm	ck ADT eue ADT Postfix expre n technique:		-	Stack ADT	
 Implement Implement Implement Implement (a) F (b) F Search Tree Develop a Implement Develop a Implement 	ation of List Abstra ation of Stack ADT ation of Queue AD ation of stack appl Program for 'Balanc Program for 'Evalua ee ADT program for variou ation of Internal So program for variou ation of Shortest P ation of Minimum S	T ications: eed Paranthes iting Postfix E us collision re- orting is Searching T ath algorithm	is' xpressions' solution tech Fechniques	niques in Ha	ashing			

	-		ege of Techno							
			rical Technolo							
		ectronics ar	nd Communica	tion Enginee		Me		Merke.		
Semester		T	Р	Total hrs	Credit C	Maximum Mar		viarks Tota		
	L0	=	0 3 45		2	50		100 100		
	0 0 3 45 2 50 50 100 • To determine or predetermine the internal and external characteristics of the given D									
Objective(s)	from the test To determine from the test At the end of the	or predeter data. or predete data. course, th	mine the perfo	lation and eff	iciency of					
Course Outcomes		lyze the peri lyze the peri peed of DC the regulative the load cl the perform the perform the perform	formance of DC formance of tra motor by applyi ion of alternator haracteristics of hance of the thr mance of the sin hance of the sin	Motors. nsformer. ng different te s. three phase ee phase indungle phase indungle phase indu	echniques induction uction mo duction m luction m	motor tor. notor				
		LIST	OF EXPERIM	ENTS						
 Determ Determ Determ Speed Determ Predete Predete Determ Drawin Determ 	tircuit and load charact inations of performance ination of performance control of D.C. shunt n nination of efficiency ar ermination of regulatio ination of performance of the speed-torque ch ination of performance ination of Performance	e characteris characteris notor operat not regulatior n of three ph characteris aracteristics characteris	stics of D.C. sh tics of D.C. ser ion of D.C. shu of single phas hase alternator tics of three phase of three phase tics of single phase	unt motor. ies motor. nt motor abov e transformer by EMF meth ase induction ase induction	ve and be od. motor. otor using	low the	rated spe			
Lab Manual:										

'Electrical & Electronics Engineering Laboratory Manual', Department of EEE, KSRCT.

		K.S.	Rangasa	my Colle	ge of Techr	nology – A	utonomous			
		40 I	EC 3P1 A	nalog ar	nd Digital El	ectronics	Laboratory			
		B.	E. Electr	onics an	d Communi	cation Eng	gineering			
Semester		Hours / Week			Total hrs	Credit	Maximum Marks			
		L	Т	Р		C	CA	ES	Total	
	т.	0	0	3	45 stics of Elect	2	50	50	100	
Objective(s)	• To	illustrate	the work	ing princij	ple of rectifie sequential cir	rs	jes			
Course Outcomes	 Tender 2. Tender 3. Decomposition 4. Decomposition 5. Tender 6. Tender 7. Decomposition 8. Decomposition 	st the cha aluate the termine the termine the st the red st and sin sign, imp sign and	aracteristi e h-paran he charac he charac ctifiers wit nulate log lement ar simulate	cs of Bipo neters cteristics of cteristics of th and wit nic gates nd simula Synchro	olar Junction of JFET and of photo dioc hout filters te combinati	Transistor UJT le and phot onal circuit ynchronous	to transistor	Emitter configu	iration and	
1 Chara	cteristic	s of PN .I	unction d		ST OF EXPE ner Diode an					
2. Chara Transi	cteristic stor.	s of BJT	(Commor	n emitter o			surement of H	Hybrid paramet	ers of the	
5. Half W 6. a) Stue 7. Desigr	cteristic /ave Re dy of loo n and im	s of Phote ctifier and gic gates. pplementa	o Diode a d Full Wa b) Desig ation of 4	nd Photo ve Bridge n and imp bit binary	blementation Adder/ subt	ractor usin	g IC 7483.	ors using logic	•	
IC741	50 and	IC 74154		•		•		s and study of dy of IC7445 a		
IC741/ 10. Chara 11. Consti	47. cteristic ruction a	s of SR, I and verific	D, JK and cation of 4	l T flip floj 4 bit ripple	os using logi e counter an	c gates and d Mod-10 F	d implementa Ripple counte	tion of shift reg		
12. Desigr	n and im	nplementa	ation of A	synchron	ous sequent	ial circuit (E	Edge triggere	d T flip flop)		

		40 TP	0P1 Care	er Compete	ency Develo	pment I			
				mon to all E					
	Semester	H	ours/Wee			Credit	Maximu	um Ma	arks
		L T		P	Total hrs	C 0		ES Total	
		0 0		2	30		100	00	100
hiec					elop career c				
-	Communication		onity onitio			sinpotonoy			
repos ne Sar	of noun, pronoun ition - Change of me Word as Differe als: Instructor Mar	Voice - Char ent Parts of S	ige of Spe Speech - C	eech - Syno Odd Man Ou	nyms & Anto t				
nalog enten	Communication ies - Sentence Fo ces, Letter Draftin als: Instructor Mar	rmation - Se g (Formal Le	tters) - Re	ading Comp	prehension(L				Jumble
	d Sentences, Lett	er Drafting (F	Formal Le	tters) - Fore	an Languag	o Wordo ur		~	
Nateria Dral Co Self Int Ninute ³	ation (Editing) als: Instructor Mar ommunication – I roduction - Situati ' Sessions (JAM) als: Instructor Mar	Part 1 onal Dialogue	es / Role				-		
Materia Dral Co Self Int Materia Dral Co Descrik Materia	als: Instructor Mar ommunication – I roduction - Situati	Part 1 onal Dialogue nual, News Pa Part 2 ations / Peop	es / Role apers le, Informa	Play (Telepl	honic Skills)	- Oral Pres	entations- Pre	eparec	d -'Just
Materia Dral Co Self Int Ainute Materia Dral Co Describ Materia	als: Instructor Mar ommunication – I roduction - Situati Sessions (JAM) als: Instructor Mar ommunication – I bing Objects / Situa als: Instructor Mar	Part 1 onal Dialogue nual, News Pa Part 2 ations / Peop	es / Role apers le, Informa	Play (Telepl	honic Skills) er - Picture T	- Oral Pres	entations- Pre	eparec	d -'Just
lateria oral Ce elf Int linute lateria oral Ce pescrik lateria valua	als: Instructor Mar ommunication – I roduction - Situati Sessions (JAM) als: Instructor Mar ommunication – I oing Objects / Situa als: Instructor Mar tion Criteria Pa Evaluation 1	Part 1 onal Dialogue nual, News Pa Part 2 ations / Peop nual, News Pa	es / Role apers le, Informa	Play (Telepl ation Transf	honic Skills) er - Picture T Tes	- Oral Pres alk - News st Portion	Paper and Bo	eparec bok Re	d -'Just
Value Self Int Ainute Alateria Dral Co Describ Aateria Svalua S.No.	als: Instructor Mar ommunication – I roduction - Situatio Sessions (JAM) als: Instructor Mar ommunication – I oing Objects / Situa als: Instructor Mar tion Criteria	Part 1 onal Dialogue nual, News Pa Part 2 ations / Peop nual, News Pa articular	es / Role apers le, Informa	Play (Telepl ation Transf 50 Questi Questions Self Introo Unit-3	honic Skills) er - Picture T <u>Tes</u> ions – 30Que s from Unit 5, duction, Role	- Oral Press alk - News stions from (External E Play & Pict	Paper and Bo	eparec bok Re	d -'Just eview Mark
Materia Dral Co Self Int Minute' Materia Dral Co Describ Materia S.No. 1	als: Instructor Mar ommunication – I roduction - Situati Sessions (JAM) als: Instructor Mar ommunication – I oing Objects / Situa als: Instructor Mar tion Criteria Evaluation 1 Written Test Evaluation 2	Part 1 onal Dialogue nual, News Pa Part 2 ations / Peop nual, News Pa articular	es / Role apers le, Informa	Play (Telepl ation Transfe 50 Questi Questions Self Introo Unit-3 (External Book Rev	honic Skills) er - Picture T tons – 30Que s from Unit 5, duction, Role Evaluation b riew & Prepa	- Oral Press alk - News stions from (External E Play & Pict y English an red Speech	entations- Pre Paper and Bo Unit 1 & 2, 2 Valuation) ure Talk from	eparec book Re 20	d -'Just eview Mark 50

1. Aggarwal, R.S. 'A Modern Approach to Verbal and Non-verbal Reasoning', Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.

2. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note :

• Instructor can cover the syllabus by Class room activities and Assignments(5 Assignments/week)

- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions from Unit 1, 2 and Unit 5 and 5 questions from Unit 3 and 4
- Evaluation has to be conducted as like Lab Examination.

				-	nology - Autono						
					andom Process						
B.E. Electronics and Communication Engineering											
Semester	Hours / We			Total	Credit	Maximum Marks					
IV	L 3	T 1	P 0	hrs 60	C 4	CA	ES 50	Total 100			
IV		•	-		•	50	50	100			
				•	bility and random		€.				
Objective(s)		-			nd random proce	sses.					
	 To discuss about the concepts of spectral density. To analyse datasets by using different testing methods. 										
	• Io ai	halyse dat	asets by us	sing different te	sting methods.						
					s will be able to						
				of probability.							
				es of a random							
				-	ng function of a ra			hutiana			
			-	-	ean and variance and ergodic rand			butions.			
Course	. ,			•	mal and Sine way	•					
Outcomes	-					-					
	 Discuss the properties of auto correlation and cross correlation. Understand the relationship between spectral density and correlation function. 										
	7. State and apply t, F and χ^2 tests for testing the hypothesis about parent population.										
	8. Apply ANOVA techniques to test the equality of means for more than two populations.										
	 Know the components of time series and methods to measure the trend. Apply suitable methods for measuring seasonal variations in time series. 										
distributions (e	Mean, vari excluding p ationary an	iance and problems).	l moment Definition	generating fund s and example	ction of Binomia es of first order, eess – Binomial,	second	order, s	trictly stationary,			
Correlation a	nd Spectra	al Donsitia	26								
	-			es –Power spe	ctral density – C	ross spe	ctral den	sitv – Properties			
			-	•	ower spectrum ar	-		•			
			-		·						
	othesis for	mean, va	ariance usi		e and F distribut ANOVA) – One						
Time Series											
	of a time s	eries – M	ethod of le	east square –	Parabolic trend	– Expor	ential tre	end – Method of			
seasonal varia	tions – Rat	io to trend	l method –	Ratio to moving	g average metho	d – Link	relative r	nethod.			
Text book(s):											
		bability, S	Statistics ar	nd Random pro	cess', Tata McG	raw-Hill	Publicati	ons, 2 nd Edition			
New De					-						
					Chand & compar						
.1			K, 'Fundam	nentals of Math	nematical Statist	ics', Sul	tan Cha	nd & sons, 11 th			
	New Delhi,	2014.									
Reference(s):		'Prohahilit	v Random	Variables and	d Random Sign	al Princ	inles' T	ata McGraw-Hill			
			-)2. (Chapters 6,	-		, colq				
2 Miller I. a		1 J.L, 1 1 U	Dadility and		ingineers', Prenti	ce Hall, I	2010.				

K.S.Rangasamy College of Technology - Autonomous											
		4	0 EC 40'	I Electronic	Circuits II						
B.E. Electronics and Communication Engineering											
Semester	Hours / Week			Total hrs	Credit	М	aximum Mark	s			
	L	Т	Р		С	CA ES		Total			
IV	3	0	0	45	3	50	50	100			
Objective(s)	 To analyze feedback amplifiers To design oscillators, wave shaping and multivibrator circuits To analyze the performance of power amplifiers To familiarize MOSFET amplifiers 										
Course Outcomes	 Describe th Analyze the Design and Design and Design and Discuss the Design and Design and Describe th 	ne concept e effects o d analyze l d analyze l e operation d construct ne working he perform OSFET sn	ts and ch f negative RC oscilla C & crys n of wave t multivib principle nance of nall signa	e feedback o ator circuits stal oscillator shaping circ rator circuits of power an various powe I amplifiers	of negative n amplifier circuits cuits nplifiers er amplifiers	feedback ar circuits					

Feedback Amplifiers

Concept of feedback- Topological classification : Voltage series, Voltage shunt, Current series, Current shunt - Effect of feedback on gain, stability, distortion, bandwidth, input and output impedances – Practical feedback amplifier circuits and their analysis –Multistage feedback amplifier.

Oscillators

Barkhausen criterion for sustained oscillations - RC oscillators : RC phase shift oscillator , Wein bridge oscillator - Resonant circuit oscillators : Tuned drain and Tuned collector oscillator - LC oscillators: Hartley, Colpitts, Clapp– Crystal oscillators and frequency stability.

Wave Shaping and Multivibrator Circuits

RL and RC Integrator and Differentiator circuits – Clipper and Clamper circuits – Voltage doubler, tripler and quadrupler circuits – Multivibrators: Design of astable, monostable and bistable multivibrators using transistors – Schmitt trigger circuit.

Power Amplifiers

Classification of amplifiers (Class A, B, AB, C&D) – Class A direct coupled and transformer-coupled power amplifiers– Class B complementary-symmetry and push-pull power amplifiers – Calculation of power output, efficiency and power dissipation– Crossover distortion and its elimination – Power transistor and heat sinking.

MOSFET Amplifiers

Small signal analysis of Common source, Common gate, Common drain and Differential amplifier- MOSFET internal capacitances and high frequency model-Frequency response of Common source amplifier and Differential amplifier.

Text l	book(s):
1.	Adel S.Sedra, Kenneth C. Smith, 'Micro Electronic Circuits' 6th Edition, Oxford University Press, 2010.
2.	Robert L. Boylestad, Louis Nashelsky, 'Electronic Devices and Circuit Theory', 11th Edition, Pearson, 2013.
Refer	ence(s) :
1.	Anil K. Maini, Varsha Agrawal, 'Electronics Devices and Circuits', Wiley India Pvt.Ltd, 2012.
2.	Behzad Razavi, 'Design of Analog CMOS Integrated Circuits', Tata McGraw-Hill, 2008.

3. S.Salivahanan, N.Sureshkumar, 'Electronic Devices and Circuits', 3rd Edition, Tata McGraw-Hill, 2013.

K.S.Rangasamy College of Technology - Autonomous											
				nission Line							
	B.E. Electronics and Communication Engineering										
Semester	Hour	<u>s / Week</u>		Total hrs	Credit		Maximum Mark				
D /		T	P		C	CA	ES	Total			
IV	3	1	0	60	4	50	50	100			
Objective(s)	 To de 	To describe signal propagation at Radio frequencies									
Course Outcomes	Objective(s) • To describe signal propagation at Radio frequencies • To illustrate the waveguide Structures propagation in TE, TM or TEM modes At the end of the course, the students will be able to 1. Describe the meaning and use of fundamental transmission line concepts: Traveling waves, wavelength and velocity of propagation. 2. Design common transmission line to achieve given characteristic impedance and attenuation. 3. Design simple matching networks using lumped elements, quarter - wave sections, and stubtuners. 4. Understand the Smith chart (generalized reflection coefficient plane) and its use for fundamental transmission line calculations										

Transmission Line Theory

Different types of transmission lines–Definition of Characteristic impedance -Definition of Propagation Constant. General Solution of the transmission line – physical significance of the equation and the infinite line – meaning of reflection coefficient – Wavelength and velocity of propagation - Waveform distortion – distortion less transmission line – The telephone cable – Inductance loading of telephone cables - Input impedance of lossless lines – reflection on a line not terminated in Zo - Transfer impedance – reflection factor and reflection loss.

The Line at Radio Frequencies

Constants for the line of zero dissipation – voltages and currents on the dissipationless line. Input impedance of the dissipationless line. Standing waves and standing wave ratio on a line – One eighth wave line – The quarter wave line and impedance matching – the half wave line – Single stub impedance matching on a line. The Smith Chart – Application of the Smith Chart – Conversion from impedance to reflection coefficient and vice - versa. Impedance to Admittance conversion and vice versa – single stub matching with the smith chart and double stub matching.

Guided Waves

Waves between parallel planes of perfect conductors – Transverse electric and transverse magnetic waves – characteristics of TE and TM Waves – Transverse Electromagnetic waves – Velocities of propagation – Attenuation of TE, TM and TEM waves in parallel plane guides – Wave impedances.

Rectangular Waveguides

Transverse Magnetic Waves in Rectangular Wave guides – Transverse Electric Waves in Rectangular Waveguides – characteristic of TE and TM Waves – Cutoff wavelength and phase velocity – Impossibility of TEM waves in waveguides – Dominant mode in rectangular waveguide – Attenuation of TE₁₀ and TM₁₁ modes in rectangular waveguides – Wave impedances – characteristic impedance – Excitation of modes.

Circular Wave Guides and Resonators

Bessel functions – Solution of field equations in cylindrical co-ordinates – TM and TE waves in circular guides – wave impedances and characteristic impedance – Dominant mode in circular waveguide – excitation of modes – Microwave Resonators - , Rectangular cavity resonators, circular cavity resonator, Q factor of a cavity resonator for TE₁₀₁ mode.

Text book(s):

1. J.D.Ryder, 'Networks, Lines and Fields', 2nd Edition, Prentice Hall, 2010.

2.	E.C. Jordan and K.G.Balmain, 'Electro Magnetic Waves and Radiating System', 2 nd Edition ,Prentice Hall,
	2009.
Ref	erence(s) :
1	Ramo, Whineery and Van Duzer, 'Fields and Waves in Communication Electronics', 3rd Edition, John
I	Wiley, 2008.
2	David M.Pozar, 'Microwave Engineering', 4th Edition, John Wiley, 2012.
3	David K.Cheng, 'Field and Waves in Electromagnetism', 2 nd Edition, Pearson Education1989.
4	John Daniel Kraus, Keith R.Carver, 'Electromagnetics', 2 nd Edition, Tata McGraw-Hill, 1975.

	K.S.Rangasamy College of Technology - Autonomous										
			40 EC 40	3 Signals and	d Systems						
		B.E. Elec	tronics a	nd Communi	cation Eng	ineering					
Semester	Hour	s / Week		Total hrs	Credit	N	;				
	L	Т	Р		С	CA	ES	Total			
IV	3	1	0	60	4	50	50	100			
Objective(s)	 To introduce the basic concepts, characteristics of continuous and discrete time signals and systems. To analyse signals and systems using various transforms in time and frequency domain. To realize systems using digital filters. 										
Course Outcomes	 Describe the Describe the Characterise Characterise Characterise Apply Fourie Apply Laplac Illustrate sar Apply Z tran Analyse CT 	At the end of the course, the students will be able to 1. Describe the classification of signals with their properties. 2. Describe the classification of systems with their properties. 3. Characterise CT systems using convolution Integral and Differential Equation.									
Classification o sinusoidal signa Continuous tim	o Signals and Sy f Signals –Periodio als. signal operati e and Discrete tim emoryless – Caus	c and aperi ons – signa ie – Stable	I models - and unsta	- even and od ble - Linear a	ld functions and non line	– systems –Cl ar – Time-varia	assification of Sy	/stems-			
	Analysis of Co		-			ty of LTICT Sys	tems - Differentia	al equation			

Convolution Integral - Propertiesof convolution Integral - graphical method- stability of LTICT Systems - Differential equation representation-Natural response, forced response, complete response. Convolution sum - properties of convolution sum - linear convolution – graphical method– stability of LTIDT Systems- Linear difference equation- natural response – forced response – complete response.

Transform Domain Analysis of Continuous Time Signals and Systems

Review of Fourier series - Fourier Transform – properties of Fourier transform - System function - system analysis using Fourier Transform – frequency response and impulse response. Laplace Transform, properties of Laplace Transform, poles and zeros, Inverse Laplace Transform – System function - Solution of differential equation using Laplace Transform.

Transform Domain Analysis of Discrete Time Signals and Systems

Sampling theorem – reconstruction of signal – Fourier series – DTFT - Inverse DTF - Properties of DTFT - System function -System analysis using DTFT - Frequency response and impulse response - Z transform - two sided and one sided Z transform - Properties of Z transform - Poles, zeros and ROC – Properties of ROC – Inverse Z transform, System function -System analysis using Z transform - frequency response and impulse response.

System Realization

Realization of continuous time systems – Direct form I and Direct form II, Realization of Discrete time systems – IIR system-Direct form I, Direct form II, cascade form, parallel form, FIR system – Direct form, cascade form, Linear phase FIR system.

Text	t book(s):
1	B P Lathi, 'Signal processing and Linear systems', Oxford University Press, 2010.
2	Ashok Ambardar, 'Analog and Digital Signal Processing', 2 nd Edition, CL Engineering, 1999.
Refe	erence(s) :
1	John G.Proakis and Dimitris G.Manolakis, 'Digital Signal Processing, Principles, Algorithms and Applications', 4 th Edition, Prentice Hall, 2009.
2	M.J.Roberts, 'Signals and Systems Analysis using Transform method and MATLAB', 2 nd Edition, Tata McGraw-Hill, 2012.
3	Simon Haykin and Barry Van Veen, 'Signals and Systems', 2 nd Edition, John Wiley & Sons, 2012.
4	Alan V.Oppenheim, Alan S.Willsky with S.Hamid Nawab, 'Signals & Systems', 2 nd Edition, Pearson Education, 2013.

	K.8	S.Rangasa	my Colle	ege of Techi	nology – A	Autonomous	S				
			-	inear Integr			-				
				d Commun							
Compositor	Hou	rs / Week		Tatal has	Credit	<u> </u>	Maximum Marks	6			
Semester	L	Т	Р	Total hrs	С	CA	ES	Total			
IV	3	0	0	45	3	50	50	100			
	To illu	strate the	basic prir	nciples chara	cteristics c	of anop-amp					
Objective(s)	To dis	scuss the u	ise of ope	erational amp	olifier in va	rious applica	itions.				
	To introduce the various special function ICs and their applications.										
	At the end of	the cours	e, the st	udents will	be able to						
	At the end of the course, the students will be able to 1. Explain the basic principles and characteristics of an Op-amp										
				sed loop cor	-		•				
Course		•	•	s in circuits f	or various	applications.					
Outcomes	-	-		active filters.		(:!!					
							using op – amp.				
			-	rator circuits	- .	•					
				pecial function							
				of special fur							
Introduction	to Operational	Amplifier	•	· ·							
configurations Amplifier, DC (Op - Amp Ap) Op Amp app Current Conv detector, Clipp rectifiers, Log Active Filters Active filters-L oscillator, We Saw tooth way Comparators Basic Compa Sample and h binary weighte slope and flast Specialized IC Switched capa diagram, appli	, Op amp with n Characteristics, plications lications – Sum erter, Current bers, Clampers and Antilog amp and Oscillator ow Pass, high in bridge oscilla ve generator. and Convertor rator, Zero Cro old circuit, Convector ed resistor, R a h type ADC. C Applications actor filter, 555	negative fe AC Chara nming, Sc to Voltage , Absolute olifier, Ana s pass, Bar ator, Quad rs ssing Dete vertors- V/ nd 2R res timer – As uency mult	eedback - cteristics. aling and e Conver value o log Multip nd Pass rature Os ector, Wi F Conver istors; A/ stable mu iplier, Div	Voltage Se d Averaging ter, Integrat utput circuit, lier. and Band R scillator, Squ ndow detect tor, F/V Con D Convertor ltivibrator, M ider, FSK de	ries Feedb Amplifier, or, Differe Precision eject filter are wave or, Schmit vertor, AD s – Succe onostable emodulator	nstrumenta ntiator, Op rectifier – s; Oscillator generator, T tt Trigger, C C/ DAC spec ssive approx multivibrator ; Frequenc	Curve; Open loc er, Voltage Shunt ation Amplifier, amp with diode Half Wave and rs – Principles, F Triangular wave Comparator Char cifications, D/A C ximation, single r, applications; P y translation, AM egulators.	Voltage to es – Peak Full Wave Phase shift generator, convertor – slope, dua			
Text book(s):	-		-				-				
		d, 'Op – A	mps and	Linear Integ	ated Circu	iits', 4 th Editio	on, Prentice Hall,	, 2013.			
2. Sergio I McGraw	Franco., 'Desig /-Hill, 2014.	-	-				Circuits', 4 th Ec				
Reference(s)											
1. D.Roy (2012.	Choudry , Shail	Jain , 'Li	near inte	grated Circu	ıts', 4 ^m Ec	lition, New /	Age Internationa	I Pvt Ltd,			

2. Gray and Meyer, 'Analysis and Design of Analog Integrated Circuits', 5th Edition, Wiley International, 2010.

3. J.Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall, 1993.

4. K.R.Botkar, 'Integrated Circuits', 8th Edition, Khanna Publishers, 2010.

	K.S. Rangasamy College of Technology - Autonomous										
		4	0 CS 004 O	bject Orient	ed Program	nming					
Common to CS,IT,EC,EE,EI & MC											
Semester	H	lours / We	ek	Total hrs	Credit		Maximum Marks				
	L	Т	Р	Total III's	С	CA	ES	Total			
IV	3	0	0	45	3	50	50	100			
	To enable the students to learn how C++ supports object Oriented properties										
Objective(s)	 To create and use classes and objects for specific applications 										
Objective(S)	• To understand the role of inheritance, polymorphism, dynamic binding and generic										
	structures in building reusable code										
	At the end of the course, the students will be able to										
	1. Recognize the principles of object-oriented problem solving and programming.										
	2. Review the essential features and elements of the C++ programming language										
	3. Imp	lement the	concept of	class and ob	ojects						
Course	4. Cor	mprehend t	he concept	of constructo	ors and des	tructors					
Outcomes	5. Ana	alyze the re	usability thr	ough various	s types of li	nheritance					
	6. Inte	erpret the co	oncept of op	perator overle	oading						
	7. Red	cognize the	concept of	dynamic me	mory alloca	ition					
	8. Implement the concept of runtime polymorphism by using virtual functions										
	9. Ide	ntify the use	es of generi	ic programmi	ing and exc	eption han	dling				
	10. Inte	erpret the fil	e operation	concepts to	manipulate	the data					
Introduction to	0	. From attack									

Introduction to C++ and Functions:

Evolution of C++ - The Object Oriented Technology - Disadvantages of Conventional Programming-Concepts of OOP - Advantages of OOP,Basics of C++:Structure of a C++Program- Streams in C++ and Stream Classes - Formatted Console I/O Operations-Bit Fields - Manipulators - User-defined Manipulators, C++ Declarations, Functions: L Values and RValues - Return by Reference - Returning more Values by Reference - Default Arguments -Constarguments - Inline Functions - Function Overloading.

Classes and Objects, Constructors and Destructors:

Classes in C++ - Declaring Objects- Access Specifiers and their Scope - Defining Member Functions - Static Members - Array of Objects - Constant object and Constant Member Functions - Object as Function Arguments - Friend Function and FriendClasses, Constructors and Destructors: Characteristics - Parameterized Constructors - Overloading Constructors - Copy Constructors - Dynamic Initialization Constructors - Destructors.

Inheritance, Operator Overloading and Type Conversion:

Inheritance: Reusability - Types of Inheritance - Object as Class Member, Operator Overloading: The Keyword Operator - Unary, Binary and Stream Operators Overloading- Constraint on Increment and Decrement Operators - Rules for Operator Overloading -Overloading using Friend Function -Type Conversion.

Pointers, Memory models, Binding and polymorphism:

Pointers: Pointer to Class - Pointer to Object –void, wild and this Pointers, Memory Models: Dynamic Memory Allocation - Heap Consumption - Object Address - Dynamic Objects, Binding: Binding in C++ - Pointer to Base and Derived class objects -Working with Virtual Functions - Pure Virtual Functions -Abstract Classes - Object Slicing - Virtual Destructor, Working with Strings.

Generic Programming with Templates, Exception Handling and Applications of Files:

Class and Function Templates -Overloading of Template Functions, Exception Handling: Principles of Exception Handling -try, catch and throw- Re-throwing Exception - Specifying Exception, Class Templates with Exception, File Stream Classes - Steps of File Operations - File Opening Modes - File Pointers and Manipulators - File Access - Command Line Arguments - Error Handling Functions.

Text book:

1 Ashok N. Kamthane, 'Programming in C++', Pearson, 2nd Edition, 2013.

Reference(s) :

1. Herbert Schildt, 'The Complete Reference C++', 4th Edition, McGraw-Hill Education, 2013.

2. BjarneStroustrup, 'The C++ programming language', Addison Wesley, 2013.

3. Venugopal K.R., Rajkumar Buyya, 'Mastering C++', 2nd Edition, McGraw-Hill Education, 2013.

	K.S	.Rangasa	my Colle	ege of Techr	nology – A	Autonomous	6					
				ctronic Circ		-						
	B.E. Electronics and Communication Engineering											
Semester	Hours / Week			Total hrs	Credit	Maximum Marks						
IV	L0	Т 0	P 3	45	C 2	CA 50	ES 50	Total 100				
Objective(s)	To design biasing circuits for BJT and MOSFET.											
Course outcomes	F. Design and inclusion (the function DO counted are differential in the function)											
			LIST	OF EXPERII	MENTS							
 Freque Study amplifi Study Study Differe Class Two st Series Design 	amplifier 4. Study of biasing circuit for MOSFET											

	K.S	.Rangasa	my Colle	ege of Techr	nology – A	utonomous						
	•	40 EC 4P2	2 Linear	Integrated C	ircuits La	boratory						
	В	B.E. Electr	onics an	d Communi	cation Eng	gineering						
Semester	Hour	s / Week		Total hrs	Credit	М	Maximum Marks					
	L	Т	Р		C CA ES		Total					
IV	0	0	3	45	2	50	50	100				
Objective(s)	 To design and test the various circuits using Op-amp. To design and test the various circuits using 555 timer. To construct and test the phase locked loop and DC power supply. 											
Course Outcomes	E Design and test verieve to per of resultivity store and some											
			LIS	T OF EXPE	RIMENTS							
 Integra Instrur Active Compa Wavef Phase Astable Charae Applica DC po 	ng, Non inverting ator and Differer mentation amplif Low pass and E arators using op form Generators shift and Wien e and Monostab cteristics of PLL ations of PLL - F wer supply using of SMPS contro	itiator ier 3and pass -amp - Sc using op- bridge osc ole multivik Frequency g LM317 a	filters hmitt Trig amp - As illators us rators us Multiplie and LM72	iger table and Mo sing op-amp sing NE555 T r 23								

		K.S. Ran	gasamy Co	ollege of Te	chnology –	Autonomo	ous			
		40 CS 0	P4 Object	Oriented Pro	ogramming	Laborato	ry			
			Commo	n to CS,IT,E	C,EE,EI & N	AC .				
Semester	ŀ	lours / Wee	ek	Total hrs	Credit	Credit Ma		Marks		
	L	Т	Р	Total III 3	С	CA	ES	Total		
IV	0	0	3	45	2	50	50	100		
Objective(s)	 To use object oriented programming language such as C++ and associated libraries to develop object oriented programs. To understand and apply various object oriented features such as inheritance, operator overloading and polymorphism to solve various computing problems using C++ language To apply exception handling and use built in classes from STL 									
Course Outcomes	At the end of the course, the students will be able to 1. Demonstrate the input and output operations using stream classes 2. Create a function to manage large amount of statements 3. Implement the concept of class and objects 4. Demonstrate the concept of constructors and destructors									
			L	IST OF EXP	ERIMENTS					
 Construct Design a Develop a destructor Design a Obsign a Write a C- Develop a Develop a Develop a 	a C++ progra C++ progra C++ progra C++ progra a C++ progra a C++ progra C++ progra a C++ progra	gram to mar im to implen ram to initial im for reusa to perform ram to imple ram to hand ram to allow C++ to hanc	hage large a nent the con ize the class bility using operator over ment the co le function of functions a lle predefine	inheritance verloading ar oncept of dyr overriding by and classes to ed and user	atements usi s and object using constru- d type conv namic object using virtua o operate wi defined exce	ing function s uctors and o ersion s I function. ith generic t	s destroy the c	objects by using emplates		

	K.S.Rangasamy College of Technology - Autonomous											
40 TP 0P2 Career Competency Development II												
Common to All Branches												
Semester		Hours/Week			Total Ura	Credit	M	laximum	Marks			
Semester		L	Т	Р	Total Hrs	С	CA	ES	Total			
IV		0	0	2	30	0	100	00	100			
Objective(s)	Тс	o enhance	employabi	lity skills an	d to develop	career competence	y					

Written Communication – Part 3

Reading Comprehension Level 2 (Paraphrasing Poems) - Letter Drafting - Email Writing - Paragraph Writing - News paper and Book Review Writing - Skimming and Scanning - Interpretation of Pictorial Representations. **Practices:** Sentence Completion - Sentence Correction - Jumbled Sentences - Synonyms & Antonyms - Using the Same Word as Different Parts of Speech - Editing

Materials: Instructor Manual, Word power Made Easy Book, News Papers

Oral Communication – Part 3

Self Introduction - Miming (Body Language) - Introduction to the Sounds of English - Vowels, Diphthongs & Consonants, Introduction to Stress and Intonation - Extempore - News Paper and Book Review - Technical Paper Presentation.

Material: Instructor Manual, News Papers

Verbal Reasoning – Part 1

Analogies - Alphabet Test - Theme Detection - Family Tree - Blood Relations (Identifying relationships among group of people) - Coding & Decoding - Situation Reaction Test - Statement & Conclusions **Material:** Instructor Manual, Verbal Reasoning by R.S.Aggarwal

Quantitative Aptitude - Part 1

Problem on Ages - Percentages - Profit and Loss - Simple & Compound Interest - Averages - Ratio, Proportion **Material:** Instructor Manual, Aptitude Book

Quantitative Aptitude – Part 2

Speed, Time & Work and Distance - Pipes and Cisterns - Mixtures and Allegations - Races - Problem on Trains - Boats and Streams

Practices : Puzzles, Sudoku, Series Completion, Problem on Numbers

Material: Instructor Manual, Aptitude Book

Evaluation Criteria								
S.No.	Particular	Test Portion		Marks				
1	Evaluation 1 Written Test	15 Questions Each from Unit 1, 3, 4 & 5 (External Evaluation)		60				
2	Evaluation 2 Oral Communication	Extempore & Miming – Unit 2 (External Evaluation by English, MBA Dept.)		20				
3	Evaluation 3 Technical Paper Presentation	Internal Evaluation by the Dept.		20				
			Total	100				

Reference Books

- 1. Aggarwal, R.S. 'A Modern Approach to Verbal and Non-verbal Reasoning', Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, 'Quantitative Aptitude', TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note :

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions from Unit 1, 3, 4 and Unit 5 and 5 questions from Unit 2.
- Evaluation has to be conducted as like Lab Examination.

		K.S.Rangas	samy College	of Technolo	gy – Autono	omous					
		40 E	EE 007 Contro	ol Systems E	ngineering						
B.E. Electronics and Communication Engineering											
Semester		Hours / Wee		Total hrs	Credit		aximum Mar				
	L	Т	P	Total III S	С	CA	ES	Total			
V	3	1	0	60	4	50	50	100			
Objective(s)	 To learn the concepts of models, transfer function, block diagram and signal flow graph To gain adequate knowledge in the time response of systems, steady state error and construction of the Root locus To define the time, frequency domain specifications and analyse the stability of the system To derive the transfer function of compensators namely lag, lead, lag-lead and draw their frequency response characteristics To understand the methods of state space representation of discrete time systems and transfer function 										
Course Outcomes	 Ide Coi Ana Coi Ana det List Ana T. Des Ana For 	ntify the basic mpute the over alyse the time efficients alyse the stat ermine the stat the character alyse the perfor sign a suitable alyse the stab mulate the stat	e, the student elements and rall gain of a s response of bility of the sy ability of system ristics of a system ormance of the e compensator lity of the syst ate space mod trollability and	derive the tra- system represent the system we were using language tem in frequence system using for the given em using Jury el of a discret	ansfer function ented by blo vith different Routh array ncy domain g frequency in performance y stability tes te time syste	ck diagram/s test inputs a and apply response plo e criteria usin t m	signal flow gr and determir root locus te ots ng Bode plot	e the error			

Systems and their Representation

Classification of control systems – open and closed loop systems- effect of feedback – Transfer function -Modeling of Mechanical systems- Electrical systems – analogous systems – Block diagram reduction techniques – Signal flow graphs- Transfer function of antenna azimuth position control system – human eye movement.

Time Response

Time response- Types of test input - First and Second order system response - Time domain specifications - Steady state error -static error coefficients -Routh Stability criterion - Root locus construction.

Frequency Response

Frequency response – Frequency domain specifications - Relationship between time & frequency response – Bode plot – Polar plot – Constant M and N circles.

Design of Compensator

Performance criteria – Lag, lead and lag-lead networks – Compensator design using Bode plot.

Stability Analysis of Digital Control Systems

Introduction to digital control systems-Impulse sampling and data hold-Reconstructing original signals from sampled signals-Pulse transfer function-Mapping between the s-plane and the Z-plane -Stability analysis of closed loop systems in the Z-Plane-Jury stability test-Bilinear transformation.

State Space Analysis of Digital Control Systems

State space representation of discrete time systems-Solution of discrete time state space equation –State transition matrix-Decomposition techniques- Controllability and Observability-Multivariable discrete time systems.

Text	book(s):
1	I.J. Nagrath & M. Gopal, 'Control Systems Engineering', 5th Edition, New Age International Publishers, 2009.
2	Norman S.Nise, 'Control Systems Engineering', 6th Edition, John Wiley & Sons, 2013.
3.	K. Ogata, 'Discrete time control systems', 2 nd Edition, Pearson Education, 2012.
Refe	erence(s):
1	M. Gopal, 'Control Systems, Principles & Design', 3rd Edition, Tata McGraw Hill, 2011.
2	B.C. Kuo, 'Automatic Control Systems', 9th Edition, Wiley, 2011.
3	K. Ogata, 'Modern Control Engineering', 5th Edition, Pearson Education, 2011.
4	B.C.Kuo, 'Digital Control Systems', Oxford University Press, 2010.
5.	Gopal M. 'Digital Control and State Variable methods', 4th Edition, 1st Reprint, McGraw-Hill Education, 2013.

			-	ege of Tech					
		B.E. Ele		nd Commun	0	ineering			
			40 EC	C 501 VLSI D	Design				
Semester	Ho	ours / Wee	k	Total hrs	Credit		Maximum M	larks	
	L	Т	Р	Total III's	С	CA	ES	Total	
V	3	0	0	45	3	50	50	100	
	• Toa	cquire bas	c knowledg	e on CMOS	transistors				
	 To d 	lescribe the	CMOS pro	cessing Tech	nnology				
Objective(s)	• Toa	nalyse the	characteris	ation of diffe	rent VLSI ci	rcuits			
	To design and verify the digital circuits using HDL and system Verilog								
	To understand the basic concepts of PLDs and FPGAs								
Course Outcomes	1. Knov MOS 2. Anal 3. Knov 4. Unde 5. Anal 6. Anal	w the basic S transistor yse the ide w the VLS erstand the yse the sta yse the diff	al, non-idea design flow rules of lay tic and dyna erent CMO	al I-V and DC v and various	stor theory a transfer cha fabrication stick diagra lissipation lies	aracteristics processes Im and enhar		niques of CMOS	

Introduction to MOS Transistor Theory

MOS Transistors, CMOS Logic, Long channel I-V Characteristics, Simple MOS Capacitance Models, Detailed MOS Gate Capacitance Model, Detailed MOS Diffusion capacitance model, Non-ideal I-V effects, DC Transfer Characteristics.

CMOS Processing Technology

Design Partitioning, Logic design, Circuit Design, Physical Design, Design Verification, Fabrication, Packaging and Testing CMOS Fabrication and Layout, CMOS Technologies, CMOS Process Enhancements, Technology Related CAD Issues.

VLSI Circuit Characterisation

RC Delay model, Linear Delay model, Dynamic Power, Static Power, Low Power Architectures, Design margin, Transistor Scaling, Circuit Families.

Digital Design Using Verilog HDL and System Verilog

Electronic Design Automation, Hardware modeling with the Verilog HDL, Logic System, Data Types and Operators for Modeling in Verilog HDL, Behavioral Descriptions in Verilog HDL.

System Verilog HDL: Modules & Files-Identifiers, Spaces and comments-Basic gate models, simple Netlist-Logic values-Continuous assignments, delays and parameters.

Rapid Prototyping With XILINX FPGAS

Introduction to FPGAs, Role of FPGAs in the ASIC Market, FPGA Technologies, XILINX XC3000 FPGA Family, XILINX4000 FPGA Family, Rapid prototyping with Verilog and FPGAs.

Text book(s):	
---------------	--

1.	Neil.H.E.Weste and David Money Harris, 'CMOS VLSI Design - A Circuits and Systems Perspective', 4 th Edition, Pearson Education, 2016.
2.	Samir Palnitkar, 'Verilog HDL – A Guide to Digital Design and Synthesis', 2 nd Edition, Pearson Education, 2011.
3.	Mark Zwolinski, 'Digital System Design with System Verilog', 1st Impression, Pearson Education, 2011.
Refer	rence(s):
1.	Neil.H.E.Weste, David Harris and Ayan Banerjee, 'CMOS VLSI Design - A Circuits and Systems Perspective', 4th
1.	Edition, Pearson Education, 2014.
2.	Michael D.Ciletti, 'Advanced Digital Design with the Verilog HDL', 2 nd Edition, Pearson Education, 2011.
3.	Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic 'Digital Integrated Circuits-A Design Perspective', 2nd
з.	Edition, Pearson Education, 2010.
4.	Douglas A.Pucknell and Kamran Eshraghian, 'Basic VLSI Design', 3rd Edition, Prentice Hall, 2012.
5.	Samir Palnitkar, 'Verilog HDL – A Guide to Digital Design and Synthesis', 2 nd Edition, Pearson Education, 2011.

	K.S. Rangas	amy Colle	ege of Techn	ology – A	utonomo	us	
	B.E. Elect	ronics an	d Communic	ation Eng	ineering		
	40	EC 502 /	Analog Comr	nunicatio	n		
Semester	Hours / Week	Σ.	Total hrs	Credit		Maximum N	/larks
	L T	Р	Total III's	С	CA	ES	Total
V	3 1	0	60	4	50	50	100
Objective(s) Course Outcomes	 To understand To learn the va To study pulse At the end of the cou 1. Explain the ma 2. Explain the tra 3. Explain the va 4. Explain the AN 5. Describe the to 	arious mode modulations rse, the s athematica ansmission rious methol d demodu	dulation and c on and detect tudents will al basis of ran of signals the nods of AM ge lators and sup	demodulati ion technic be able to dom proce rough linea eneration perheterod	on technic ques ess in com ar systems	ques munication	
	 Describe the v Analyze noise Analyze noise Analyze noise Explain the pu Design the an 	arious tec in amplitu in angle r Ise modul	hniques for F Ide modulatio nodulation system ation and deter	M detectio n systems stems ection tech			

Mathematical Foundation of Communication

Random variables – Random process – Stationary process – Mean, Correlation and Covariance function – Power Spectral Density –Ergodic process - Gaussian process- Autocorrelation – Cross correlation – Transmission of signals through linear systems – Hilbert Transform - Transmission of Random processes through a LTI filter.

Amplitude Modulation

Generation of AM – Square law modulators and switching modulators - DSB-SC - Product modulator and Ring modulator - SSB-SC - Filter method, Phase shift method and Modified phase shift method - Generation of VSB Signals. Demodulation of AM - Envelope detection and coherent detection - Comparison of Amplitude modulation systems, Frequency translation, Frequency Division multiplexing, Super heterodyne receiver.

Angle Modulation

Phase modulation, Frequency modulation, Narrowband and wideband FM, transmission bandwidth of FM signals, Generation of FM signal – Direct FM – indirect FM, Demodulation of FM signals - Phase discriminator method and ratio detector method - FM stereo multiplexing, PLL – Nonlinear model and linear model of PLL.

Noise in CW Modulation

Noise – Narrowband noise – Envelope of sine wave plus narrow band noise, SNR for coherent reception with DSBSC Modulation, SSB Modulation – Noise in AM receivers using envelope detection – Noise in FM reception - Noise in pulse modulation systems - Comparison of performance of AM and FM systems.

Pulse Modulation Systems

Introduction - Method of generation and detection of Pulse Amplitude Modulation, Pulse Width Modulation, Pulse Position Modulation, Spectra of pulse modulation, concept of time division multiplexing. Analog communication system design.

Text book(s)	:
1	Simon Haykin, 'Communication Systems', 4th Edition, John Wiley & sons, 2013.
2	Bruce Carlson et al, 'Communication Systems', 5th Edition, McGraw-Hill, 2013.
Reference(s):
1	B.P.Lathi, 'Communication Systems', BS publications, 2013.
2	Taub and Schilling, 'Principles of Communication Systems', 2 nd Reprint, McGraw-Hill, 2014.
3	Anokh Singh, 'Principles of Communication Engineering', 1 st Edition, S.Chand Pvt.Ltd, Reprint 2006.
4	P. Ramakrishna Rao, 'Analog Communication', McGraw Hill, 2011.
5	Kennedy, Davis, 'Electronic Communication Systems', 5 th Edition, McGraw Hill, 2012.

	ł			llege of Te						
				and Comm		-	ing			
Compositor				Digital Sig		essing	Massim	····· Manlea		
Semester		ours / Wee		Total	Credit	<u> </u>		um Marks		
V	L 3	T 1	P 0	hrs 60	C 4	CA 50	ES 50	Total 100		
V	-	•	-					I signal processing		
								sizing both continuous-		
Objective(s)		ne and disc								
Objective(3)								systems that process		
				phasis on r		•				
				students v			of digital si	gnal processing		
			-							
				ot of Discre ation of DFT			correlation	1		
				Impulse In						
				Bilinear Tr						
Course				R filters usi R filters usi				bd		
Outcomes								ed to general purpose		
				Voice/Spee						
		plications	the conc	ept of sar	npling rat	e convers	sion of d	igital signals in DSP		
			effects of	Finite word	length on (digital filte	rs			
	 Analyse the effects of Finite word length on digital filters Describe the architecture of TMS320C54x DSP processor and Develop ALP for various digital signal processing applications using TMS320C54x processor 									
Fourier Analy				rocessing a	pplications	s using TM	IS320C54	x processor		
•			-	n: Discrete l	Fourier Tra	nsform (F)FT) – Pro	perties of DFT –		
Efficient compu	•	-		-				-		
Decimation in I			-		-					
Design of IIR I				0		0				
-		-	•	•			(Butterwo	rth, Chebyshev):		
Properties – De	• .	se Invarian	t Techniq	ue – Bilinea	r Transfor	mation.				
Design of FIR			.				D 1			
Techniques – F	•		Antisymm		iters – Des	ign of Line	ear Phase	FIR filters: Windowing		
Digital Signal			ons							
	-		-	ectral anal	vsis of sinu	isoidal sig	nals, non s	stationary signals&		
		-	•			-		gnal generation-		
Sub band codi	ng of speech	and audic	signals-	Sparse ante	enna array	design.				
Digital Signal										
	•						•	t, DSP architectures –		
Instructions set	s – Address	ing modes	, Control o	operations,	Interrupt –	Applicatio	on Progran	ns.		
Text book(s):	Monalal'a	n al \ /: '	nale (Are	liad District	Clare al Di		/st ⊑ -021-			
1. Dimitris Press, 2		na vinay l	ngie, App	nea Digital	Signai Pro	cessing',	1° Edition	, Cambridge University		
B Vonka		M.Bhaska	r, 'Digital	Signal Pro	cessor Ar	chitecture.	Program	ming and Application',		
^{2.} 2 nd Editi	on, McGraw			-			-			
Reference(s):	(Data ()						0040			
Alan V	ven, 'Practic							ocessing', 3rd Edition,		
2. Pearsor			Condiel,		uon, Diaul		Signal Fl			
2 John G	Proakis, Din		nolakis, 'I	Digital Signa	al Processi	ing Princip	oles, Algor	ithms and Application',		
4"' Edillo	on, Pearson,					. - 446 -	- 10 - 1	One 11/1/ 0044		
	<u>a, 'Digital Si</u> sh Babu, 'Di							Graw-Hill, 2011.		
Avtar S								with Examples from		
^{6.} TMS320	C54XX', Tho	mson/Broc	ks/Cole, 2	2004.	•			•		
				ital Signal	Processi	ng Archit	ectures,	Implementations, and		
Applicat	ions', Pearso	on Educati	on, 2005.							

	K.S. Rangasamy C B.E. Electronics	-					
	40 EC 504 Micro						
Semester	Hours / Week	Total	Credit		Maximun	n Marks	
	L T P	hrs	С	CA	ES	Total	
V	3 0 0	45	3	50	50	100	
 To introduce the architecture and programming of 8085 microprocessor, in peripheral devices with 8085 microprocessor. To introduce the architecture, programming and interfacing of 8051 micro controduce the architecture, programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and interfacing of 8051 micro controduce the architecture and programming and programming 8085 							
Course Outcomes	At the end of the course, the 1. Describe the architectur 2. Write programs for sim 3. Interface peripheral IC 4. Describe the features 5. Write programs for sim 6. Program and handle in 7. Interface ADC, DAC, S 8. Describe the block dia 9. Develop algorithm for 8	ure of 8085 mi aple operations s and I/O devi- and operation aple operations a-built peripher Sensors, Displa gram of 8051	croprocess in 8085 ces with 80 of 8051 mid in 8051 als of 8051 ays and Mo Microcontro	or 85 Micropr crocontrolle Microcont tors with 8 oller based	er troller 051 Microc systems	controller	

8085 Microprocessor

8085 Architecture - Instruction set - Addressing modes ---Interrupt structure - Timing diagrams - Assembly language programming - Memory interfacing -- Interfacing I/O devices.

Peripheral Interfacing

Programmable Peripheral Interface(PPI 8255) –Programmable Interval Timer(PIT 8253) – 8259 Programmable Interrupt Controller – Keyboard & display controller (8279)- Interfacing serial I /O (8251)- ADC/DAC interfacing – DMA Controller

8051 Microcontroller

8051 – Architecture, Special Function Registers (SFRs), I/O Pins Ports and Circuits, Instruction set, Addressing modes, Assembly language programming.

8051 Peripheral Programming

Programming 8051 Timers- Programming 8051 UART- Interrupts and its Programming – Keyboard Interfacing-Seven segment LED, LCD interfacing, Sensor Interfacing - DC & Stepper Motor interfacing.

8051 Based Applications

External Memory Interface- RTC Interfacing using I²C Standard- Case studies: Traffic Light control, Wash Machine Control, Numerical control Machine, Automation of water supply for a colony, Turbine Monitoring.

Text b	Text book(s):								
1.	Ramesh S Gaonkar,' Microprocessor Architecture, Programming and application with 8085', 5 th Edition, Prentice Hall, New Delhi,2002.								
2.	Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, 'The 8051 Microcontroller and Embedded Systems: Using Assembly and C', 2 nd Edition, Pearson Education, 2011.								
Refere	ence(s):								
1.	Krishna Kant, 'Microprocessors and microcontrollers Architecture, Programming and System design 8085, 8086, 8051, 8096', 3 rd Reprint, Prentice Hall of India, 2013.								
2.	A.K. Ray and K.M.Burchandi, 'Intel Microprocessors Architecture Programming and Interfacing', 12 th Reprint, McGraw Hill, 2009.								
3.	Soumitra Kumar Mandal, 'Microprocessors and Microcontrollers Architecture, Programming and Interfacing using 8085, 8086 and 8051', 6 th Reprint, McGraw Hill, 2012.								
4.	NPTEL video lectures by M. Krishna Kumar, IISc.								

	K.S.Rar	ngasam	y Colleg	e of Technolog	y - Autonomou	s		
		40 HS	003 Tota	al Quality Mana	gement			
			Commor	n to all Branche	S			
Semester	Hours /	Week		Total hrs	Credit	Мах	imum Mar	ks
Ochicotei	L	Т	Р	Total III S	С	CA	ES	Total
V	2	0	0	45	2	50	50	100
Objective(s)	ective(s) To understand the Total Quality Management concept and principles and the various tool available to achieve Total Quality Management, statistical approach for quality control, ISO and QS certification process and its need for the industries. At the end of the course, the students will be able to							
Course Outcomes	 Recognize the List the role of Identify the cu Locate the cor List the seven Demonstrate of Implement the Assess the tot Demonstrate to 	e basic c f senior stomer tools of concept concept al produ	concepts managen satisfaction process quality a of six sig of of quali uctive ma for ISO	of total quality m nent. on, retention and improvement te nd new seven m ma. ty function deplo intenance, failur 9000 and other o	anagement d employee invol chniques. nanagement tool oyment e mode and effe	ls	yses	

Introduction

Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Quality Council, Quality Statements, Deming Philosophy, Barriers to TQM Implementation.

TQM Principles

Customer satisfaction, Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement, Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership, Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures-Basic Concepts, Strategy.

Statistical Process Control (SPC)

The tools of quality, Statistical Fundamentals, Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma.

TQM tools

Benchmarking, Reasons to Benchmark, Benchmarking Process, Quality Circle, Quality Function Deployment (QFD). House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM), Concept, Improvement Needs, FMEA–Stages, Types.

Quality Systems

Need for ISO 9000 Quality Systems, ISO 9001:2008 ISO 14000 Quality Systems, Elements Concepts, Implementation, Documentation, Quality Auditing, Requirements and Benefits, Non Conformance report, Case Studies on Educational System.

Text book (s) :

1	Dale H.Besterfield, et al., 'Total Quality Management', Pearson Education Asia, 1999. (Indian reprint 2002).
Reference	e(s) :
1	James R.Evans & William M.Lidsay, 'The Management and Control of Quality', (5th Edition), South-Western (Thomson Learning), 2002.
2	Feigenbaum A.V., 'Total Quality Management', McGraw Hill, 1991.
3	Jayakumar V, 'Total Quality Management', Lakshmi Publications, 2006.
4	Subburaj, Ramasamy, 'Total Quality Management', Tata McGraw Hill, 2005.

		B.E. Electro	nics and Con	nmunication E	Engineering			
			40 EC 5P1 VL	SI laboratory				
Semester	ŀ	lours / Wee	k	Total	Credit	Maxi	mum Ma	rks
	L	Т	Р	hrs	С	CA	ES	Tota
V	0	0	3	45	2	50	50	100
Objective(s)	 To designation 	gn combinat	dynamic CM ional and sequ us applications		S			
Course Outcomes	 Perfor Desig Analy: amplif Perfor Demo Demo Desig Demo 	rm DC and 1 n and simula se the gair ier using SF rm functiona instrate FPC n and imple instrate FPC	Transient analy ate layout of C b, bandwidth, PICE I verification of GA implement ment digital cir GA implementa	vsis of static CI vsis of dynamic MOS circuits u output imped f combinationa ation of combin cuits using sch tion of ALU an e concepts lear	CMOS circo sing SPICE lance and C al logic and s national logic nematic entry d traffic light	uits using SF tool. CMRR for I equential lo and sequer	PICE tool MOS diff gic circui	ferentia ts
			LIST OF EXF	PERIMENTS				
 DC and Trar Layout of a s Schematic E impedance a Design Entry multiplexer). Design Entry Functional v Synthesis, F Expt.No.5 ar configuration Schematic d Implementat 	nsient analysis of asient analysis of simple CMOS in intry and SPICE and CMRR. / and simulation Functional veri / and simulation erification and of &R, Post P&R sind No.6 given a in and pin assign esign of digital ion of ALU usin ation of traffic lig	of D-latch us inverter, para is simulation in of combina fication and in of sequenti concepts of of simulation and bove. Conce is bove. Conce is ment to be logic circuits g FPGA.	ing SPICE too sitic extraction of MOS different tional logic circuits concepts of co al logic circuits concurrent and nd configuratio epts of FPGA f taught in this e	I. and simulation ential amplifier. cuits (adders, r pncurrent and s s (flip-flops, con l sequential ex pn/fuse files for floor plan, critic	Determinati multipliers, d sequential ex unters, shift ecution to be all the block	ecoder, enco eccution to b registers). highlighted s/codes dev	oder, e highlig veloped ii	hted.

				f Technolog	n Engineering				
						-			
		Hours / We			ng Laboratory	Credit Maximum Marks			
Semester				Total hrs	Crean	CA ES		Total	
V	0	0	3	45	2	50	50	100ar	
Objective(s)	To develo	op an intuitiv	-	ling of digital	signal process				
Course Outcomes	1. C 2. P 3. D 4. E 5. D 6. P 7. E 8. E	compute the erform convi- valuate the valuate the vevice and i pplications erform gene valuate the valuate DF ⁻ nd MATLAE	g low pass fil effects of qua mplement alg eral purpose I effects of san I computatior	T system Itering in disc ter and verify antization erro gorithms to so DSP computa npling in digit based on F	rete time syste its performance	ce signal an tal signal ssor using dig	processor		
	I		LIST OF EX	PERIMENT	3				
sing MATLAB/S	SIMULINK*								
1. Compute t	he Stability	of LTI syste	em						
2. Illustrate tl	ne Filtering	Concept of	discrete-time	systems					
3. Computati	on of DFT ι	using FFT al	gorithms						
4. Perform bl	ock convolu	ution of the g	given sequen	ces					
5. Design an	Analog Lov	v pass filter							
-	-		P algorithms						
-	-		gnal and ima	ae processin	a				
a. Noise F b. Echo C	Reduction ancellation enhanceme		-	- · `	-				
sing TMS320C	54/6X								
 Implemen Generate Computat Implemen Implemen Verificatio * Other open s 	the various ion of FFT of tation of FIF tation of IIR n of Sampli	waveform s of a signal R filter filter ng theorem	-						

		B.	E. Electroni	cs and Comm	unication En	gineering								
		40 EC 5	P3 Micropro	ocessors and	Microcontrol	lers Laborato	ory							
Semester		Hours /	Week	Total	Credit	Ma	aximum Maı	'ks						
	L	Т	Р	hrs	С	CA	ES	Total						
V	0	0	3	45	2	50	50	100						
Objective(s)	•	 programming and interfacing of various modules with 8085 Microprocessor. To use IDE for programming and debugging 												
Course Outcomes1. Perform arithmetic operations using 8085 microprocessor by developing assembly language programsCourse Outcomes2. Interface keyboard & display controller, interrupt controller with 8085 Microprocessor 3. Interface ADC and DAC with 8085 Microprocessor 4. Operate and control the traffic signal by using 8085 Microprocessor 5. Display the room temperature by using 8051 microcontroller 6. Develop an automatic alarm by using 8051 microcontroller 7. Control the speed of motors by using 8051 microcontroller 8. Develop an elevator control system by using 8051 microcontroller 9. Program the processor/controller by using 0pen source compiler 10. Design and Implement an application based project														
			L	IST OF EXPER	IMENTS									
1. Progra	ams for	arithmetic	operations ir	n 8085.										
2. Interfa	icing an	d program	ming of keyb	oard & display	controller with	n 8085.								
3. Interfa	icing an	d program	ming of inter	rupt controller	with 8085.									
4. Interfa	icing an	d Program	ming ADC a	nd DAC with 80	085.									
5. Interfa	icing an	d Program	ming of Traf	fic light controll	er with 8085.									
6. Desig	n and im	nplementat	tion of tempe	rature indicato	r using 8051 r	nicrocontroller	r.							
7. Desig	n an aut	omatic col	lege bell usi	ng 8051 microc	controller.									
8. Speed	d control	of DC mo	tor using Pu	se Width Modu	lation.									
9. Eleva	or contr	ol using 80	051 microcor	ntroller.										
10. Study	of Oper	n source co	ompiler.											
11 Droio	t dociar	and imple	amontation					 Study of Open source compiler. Project design and implementation. 						

	K.S.Rangasamy College of Technology - Autonomous								
40 TP 0P3 Career Competency Development III									
Common to all Branches									
Semester		Hours/Week		Total Hrs	Credit	M	aximum Marks		
Semester	L	Т	Р		С	CA	ES	Total	
V	0	0 0 2		30	0	100	00	100	
Objective(s)	To enhance	employability s	kills and to d	evelop caree	r competency				

Written and Oral Communication – Part 1

Reading Comprehension Level 3 - Self Introduction - News Paper Review - Self Marketing - Debate-Structured and Unstructured GDs Psychometric Assessment – Types & Strategies to answer the questions **Practices:** Sentence Completion - Sentence Correction - Jumbled Sentences - Synonyms & Antonyms - Using the Same Word as Different Parts of Speech - Interpretation of Pictorial Representations - Editing - GD - Debate. **Materials:** Instructor Manual, Word power Made Easy Book, News Papers

Verbal & Logical Reasoning – Part 1

Syllogism - Assertion and Reasons - Statements and Assumptions - Identifying Valid Inferences - identifying Strong Arguments and Weak Arguments - Statements and Conclusions - Cause and Effect - Deriving Conclusions from Passages - Seating Arrangements **Practices:** Analogies - Blood Relations - Statement & Conclusions **Materials:** Instructor Manual, Verbal Reasoning by R.S.Aggarwal

Quantitative Aptitude – Part 3

Probability - Calendar- Clocks - Logarithms - Permutations and Combinations **Materials:** Instructor Manual, Aptitude Book

Quantitative Aptitude – Part 4

Algebra - Linear Equations - Quadratic Equations - Polynomials **Practices:** Problem on Numbers - Ages - Train - Time and Work - Sudoku - Puzzles **Materials:** Instructor Manual, Aptitude Book

Technical & Programming Skills – Part 1

Core Subject – 1,2 3 **Practices :** Questions from Gate Material **Materials:** Text Book, Gate Material

Evaluation Criteria

S.No.	Particular	Test Portion	Marks
1	Evaluation 1 Written Test	15 Questions each from Unit 1, 2, 3, 4 & 5 (External Evaluation)	60
2	Evaluation 2 - Oral Communication	GD and Debate (External Evaluation by English, MBA Dept & External Trainers)	20
3	Evaluation 3 – Technical Paper Presentation	Internal Evaluation by the Dept.	20
		Total	100

Reference Books

- 1. Aggarwal, R.S. 'A Modern Approach to Verbal and Non-verbal Reasoning', Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, 'Quantitative Aptitude', TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note :

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 Questions from Unit 1,2,3,4 and 5 and 5 Questions from Unit 1
- Evaluation has to be conducted as like Lab Examination.

		K.S. Rang	gasamy Co	llege of Tec	hnology –	Autonomo	bus	
				1 Digital Co				
				and Commu	nication E	ngineering	1	
Semester	Н	Hours / Week		Total hrs	Credit	Maximum Marks		
	L	Т	Р	Total III S	С	CA	ES	Total
VI	3	1	0	60	4	50	50	100
Objective(s)	 To discuss fundamental concepts and limits in information theory in the context of digital communication systems To study signal space representation of signals and discuss the process of sampling, quantization and coding that are fundamental to the digital transmission of analog signals To understand baseband and band pass signal transmission and reception techniques To learn error control coding which encompasses techniques for the encoding and decoding of digital data streams for their reliable transmission over noisy channels 							
Course Outcomes	 At the end of the course, the students will be able to 1. Discuss the fundamental concepts and limits in information theory in the context of a digital communication system 2. Analyze the sampling process and its various ramifications 3. Discuss the various waveform coding techniques 4. Describe the different channel coding techniques which are used to provide reliable transmission of digital information over the channel 5. Design of optimum receivers in the presence of additive noise for digital communication systems 6. Compare the models used for the transmission of digital data over a band pass channel 7. Examine the transmission of a signal at high modulation rate through a band-limited channel 8. Discuss the baseband data transmission systems employing pulse shaping techniques to avoid distortions 							
	ormation – biseless, BB uffman Cod ing Techn i odulation – e code mo	Entropy EC, BSC – ing, run lei i ques Sampling	- Source of Mutual info ngth coding g, Quantizin	ormation – C g, LZW algori ng, Encodin	hannel cap thm. g – Quant	acity – Sha ization noi	annon-Hartley se and robus	

Error Control coding

Channel coding theorem – Linear block codes – Hamming codes – Cyclic codes (CRC) – Convolutional codes – Viterbi decoding (Soft/Hard decision decoding).

Baseband Modulation

Gram-Schmidt orthogonalization procedure - Maximum-likelihood detector – Correlation receiver – Matched filter receiver - Generation, Detection, Signal space diagram, BER analysis for Coherent binary modulation schemes: BPSK, BFSK – Coherent quadrature modulation schemes: QPSK, MSK – Non coherent binary modulation schemes: BFSK, DPSK - Comparison of binary and quaternary modulation schemes – M-ary modulation schemes - Carrier and symbol synchronization.

Baseband Pulse transmission

Line codes – PSDs – ISI – Nyquist criterion for distortion less transmission – Pulse shaping – Correlative coding - M-ary schemes – Eye pattern.

Text bo	bk(s):
1.	Simon Haykin, 'Digital Communications', 1 st Edition, Wiley Publishers, 2010.
Referen	ce(s):
1.	Bernard Sklar & Ray, 'Digital Communications - Fundamentals and applications', 2 nd Edition, Pearson Education, 2012.
2.	Taub & Schilling, 'Principles of Digital Communication', 4th Edition, McGraw-Hill, 2015.
3.	Simon Haykin, 'Communication Systems', 4th Edition, Wiley Publishers, 2013.
4.	John G.Proakis, 'Digital Communication', 5 th Edition, Tata McGraw Hill, 2014.
5.	B.P.Lathi & Zhi Ding, 'Modern Digital and Analog Communication Systems', 4 th Edition, Oxford University Press, 2012.

	К	.S. Ranga	-	-	chnology		mous		
					ed Physic				
Semester	· · ·	//			Branches Credit		Maximum	Marka	
Semester		ours / Wee		Total					
	L	Т	P	hrs	C	CA	ES	Total	
VI	3	0	0	45	3	50	50	100	
Objective(s)				-			-	aspects in physics	
	• To co	orrelate th	e theoretic	cal principle	es with app	lication or	iented studie	S	
	At the en	d of the c	ourse the	students	will be ab	le to			
	1. Explain	the princi	ple of lase	er emission	and classi	fication of	lasers		
	2. Identify	the applic	cations of I	asers					
		3. Explain the propagation of lights in fibre optic cables, classification of fibre, splicing and							
		their fabrication							
Course			•			••	s and light pro	opagation losses	
Outcomes	-	•			of ultrasoni				
	-				lications of				
			•	•	heory and	••		<i></i>	
			•			•	elementary pa	articles	
					aracteristic				
Laser Technolo		suggestion	is for duiid	ings with g	ood acous	tics			
Crucible-crucible types of splicir communication sensors-principl Ultrasonics and Introduction-Pro piezoelectric ge Non destructive cardiology, neur Quantum and Quantum physic single slit experi- and time indepo Electron Microson Nuclear Physics Binding energy Hadrons: Mesor Acoustics Introduction-Cla Fechner law – formula (derivat	one of acc e technique ng- Losses links(Block e-liquid leve d Applicati operties-Pro- nerator – U e testing: Pu rology, ultras Nuclear Pi cs: Introduct riment – wa endent – P cope. s: Introduction r-Nuclear fins and Bary ssification of loudness let tion) – sour g the acous	eptance, - Classific in optica diagram) el sensors- ons duction: M lltrasonic o ulse echo sonic imag hysics ction – de ave function carticle in - con, atomic ssion-Ene rons of sound evel and in nd absorp	cation: bas I fiber – – Advan - Tempera Magnetostr detection- system, th ging (A, B e-Broglie h on-physica a box (on nucleus, r rgy releas – Charac intensity: 1 tion coeffi	eed on mat Light sou tage of fik ture, Displa- iction effe- acoustical prough tran and TM- S hypothesis al significa- e dimension nuclear fore sed in fis teristics of Bel, Decib cient meas	erials, mod rces for fi ber optical acement, n ct, magnet grating-Ap nsmission, can). –Matter w nce-Schroo onal and th ce, nuclear sion- Stell musical s el–Reverbe suring met	les and rei iber optic: cable over neasurement costriction plications: resonance vaves– Ur dinger's w hree dime density, a far energy sound – s eration – hod -Abso	fractive index s – Detecto er copper ca ent. generator- p : Cavitation, e system- Me neertainty pri rave equation ensional)–Mic atomic mass y-elementary sound intens Reverberatio orption co-eff	ation –Fabrication: c profile– Splicing – rs – Fiber optical ables- Fiber optic biezoelectric effect, cleaning, SONAR– edical applications: nciple, appli	
. ,			alas! T-1	Magness	1.11. 004.4				
-	ran, 'Engine	eering Phy	sics', Tata	McGraw I	HIII, 2014.				
Reference(s):	Dornatain F		abbana (tophon C		'Madare	Dhusias' D	Doroop Education	
2009.	· ·			•		-	•	Pearson Education,	
	athan, A.Rub		-	-			ns, 2010.		
3. A.Arumu	gam, 'Engin	eering Phy	ysics', Ant	iiadha Age	encies, 201	ა.			

			gasamy Co	ollege of Te	chnology -	Autonomo	ous			
				602 Embedo						
				and Comm		ngineering		<u> </u>		
Semester		lours / Wee		Total	Credit		Maximum			
VI	L 3	Т 0	P 0	hrs 45	C 3	CA 50	ES 50	Total 100		
VI		To learn the	-	-	-			100		
Objective(s)	, I • 1	o understar	nd the archi	tecture of Al	RM and do p	orogrammir				
	1. Interp	d of the coι ret the basic	design pro	cess of emb	edded syste	em				
		 Describe the I/O devices used in Embedded System Illustrate the wired and wireless networking protocols for an embedded application 								
		4. Examine the distributed architectures for embedded systems								
		ate the gener				systems				
Course		•								
Outcomes		opprograms			-	levelopmen	ttools			
	7. Exami	ine the ARM	processor	family and it	s features					
	8. Relate	e memory ar	chitecture a	and task swit	ching in AR	Μ				
	9. Descr	ibe the basic	architecture	e of an oper	ating systen	n and its fur	ndamental ope	erations		
	10. Impler	ment the bas	sic desian u	sing RTOS	and Task so	hedulina m	odels			
I ² C, SPI, CAN controller. ARM Architec	N, USB, AMBA							32, RS485, USART,		
 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch 	ARM Processo line architecture support for system archy: Memory ynchronization- erating System as of OS – OS A eduling: static,	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri	and Except ment-ARM speed – O tching. – System ca ority, preen	s model- Reg ions handlin processor n-chip men alls – Thread nptive, round	gisters – AR gs – ARM li families –A hory – Cao ds, tasks an d robin, Earl	M architect nstruction s RM7TDMI-, ches – Me d process - iest Deadlir	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - ne First, Rate I	ase study: Elevator Pipeline architecture instruction sets. ARM DMI-ARM10TDMI - ement- ARM MMU - Kernel and its		
– 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s):	ARM Processo line architecture support for system archy: Memory ynchronization- erating System as of OS – OS A eduling: static, cation: Semaph	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua	and Except ment-ARM speed – O tching. – System c: ority, preen I exclusion	s model- Reg ions handlin processor n-chip men alls – Threa nptive, round – Inter proce	gisters – AR gs – ARM li families –A nory – Cao ds, tasks an d robin, Earl ess commun	M architect nstruction s RM7TDMI-, ches – Me d process - iest Deadlir nication – S	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - ne First, Rate I Synchronizatio	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement– ARM MMU – Kernel and its Monotony – on and deadlock.		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn Morga	ARM Processo line architecture support for system rochy: Memory ynchronization- erating System so f OS – OS A eduling: static, cation: Semaph e Wolf, 'Comp an Kaufman Pu	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua	and Except ment-ARM speed – O tching. – System c: ority, preen I exclusion I exclusion omponents I3.	s model- Regions handlin processor n-chip men alls – Thread ptive, round – Inter proce	gisters – AR gs – ARM In families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd	M architect nstruction s RM7TDMI-, ches – Me d process - iest Deadlir nication – S	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - he First, Rate I Synchronizatio	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement– ARM MMU – Kernel and its Monotony – on and deadlock.		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn 3. Steve	ARM Processo line architecture support for system support for system inchy: Memory ynchronization- erating System es of OS – OS A eduling: static, cation: Semaph e Wolf, 'Comp an Kaufman Pu	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua outers as C blishers, 207 System on c	and Except ment-ARM speed – O tching. – System c: ority, preen I exclusion I exclusion omponents I3. hip Archited	s model- Regions handlin processor n-chip men alls – Thread ptive, round – Inter proce	gisters – AR gs – ARM II families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd dition, Addis	M architect nstruction s RM7TDMI-, ches – Me d process - iest Deadlir nication – S ded Compu	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - he First, Rate I Synchronizatio uting System 2013.	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement- ARM MMU - Kernel and its Monotony - on and deadlock. Design', 2 nd Edition		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn 1. Morga 2. Steve 3. Rajka	ARM Processo line architecture support for system archy: Memory ynchronization- erating System as of OS – OS A eduling: static, cation: Semaph e Wolf, 'Comp an Kaufman Pu Furber, 'ARM S mal, 'Embedde	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua outers as C blishers, 207 System on c	and Except ment-ARM speed – O tching. – System c: ority, preen I exclusion I exclusion omponents I3. hip Archited	s model- Regions handlin processor n-chip men alls – Thread ptive, round – Inter proce	gisters – AR gs – ARM II families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd dition, Addis	M architect nstruction s RM7TDMI-, ches – Me d process - iest Deadlir nication – S ded Compu	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - he First, Rate I Synchronizatio uting System 2013.	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement– ARM MMU – Kernel and its Monotony – on and deadlock.		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn 1. Morga 2. Steve 3. Rajka Reference(s):	ARM Processo line architecture support for system rochy: Memory ynchronization- erating System as of OS – OS A eduling: static, cation: Semaph e Wolf, 'Comp an Kaufman Pu Furber, 'ARM S mal, 'Embedde	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua outers as C blishers, 20 System on c d Systems A	and Except ment-ARM speed – O tching. – System c: ority, preen l exclusion l exclusion omponents 13. hip Architecture	s model- Regions handlin processor n-chip men alls – Thread ptive, round – Inter proce	gisters – AR gs – ARM II families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd dition, Addis ing and Des	M architect hstruction s RM7TDMI-, ches – Me d process - iest Deadlin hication – S ded Compu- ded Compu- on Wesley, ign', 2 nd E	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - he First, Rate I Synchronizatio uting System 2013. dition, Tata Me	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement– ARM MMU – Kernel and its Monotony – on and deadlock. Design', 2 nd Edition,		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn 3. Rajka Reference(s): 1. David 2. Dr K.	ARM Processo line architecture sor Core support for system archy: Memory ynchronization- erating System as of OS – OS A eduling: static, cation: Semaph e Wolf, 'Comp an Kaufman Pu Furber, 'ARM mal, 'Embedde E.Simon,'An E V.K.K.Prasad,'	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua outers as C blishers, 20' System on c d Systems A mbedded So Embedded	and Except ment-ARM speed – O tching. – System c: ority, preen I exclusion I exclusion omponents I3. hip Architecture	s model- Regions handlin processor n-chip men alls – Thread ptive, round – Inter proce	gisters – AR gs – ARM II families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd <u>lition, Addis</u> ing and Des	M architect hstruction s RM7TDMI-, ches – Me d process - iest Deadlin hication – S ded Compu on Wesley, ign', 2 nd E n Educatior	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - ne First, Rate I Synchronizatio uting System 2013. dition, Tata Me n, 2014.	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement– ARM MMU – Kernel and its Monotony – on and deadlock. Design', 2 nd Edition,		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn 1. Wayn 2. Steve 3. Rajka Reference(s): 1. David 2. Dr K. 2. Drean 3. Andre	ARM Processo line architecture sor Core support for system recting System recting System so of OS – OS A eduling: static, cation: Semaph e Wolf, 'Compan Kaufman Pu Furber, 'ARM S mal, 'Embedde E.Simon,'An E V.K.K.Prasad,' n TechPress, 2 ew N.Sloss, Dor	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua outers as C blishers, 207 System on c d Systems A mbedded So Embedded 013. minic Symes	ment-ARM speed – O tching. – System c: ority, preen I exclusion I exclusion omponents 13. hip Architecture oftware Prir /Real-Time	s model- Regions handlin processor n-chip men alls – Thread prive, round – Inter proce : Principles cture', 2 nd Edit : Programm ner', 3 rd Edit s systems:	gisters – AR gs – ARM II families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd dition, Addis ing and Des ion, Pearso Concepts, ayfield,' AR	M architect hstruction s RM7TDMI ches – Me d process - iest Deadlin hication – S ded Compu- ded Compu- on Wesley, sign', 2 nd E n Educatior Design& F	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - ne First, Rate I Synchronizatio uting System 2013. dition, Tata Ma 2014. Programming',	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement– ARM MMU – Kernel and its Monotony – in and deadlock. Design', 2 nd Edition, c GrawHill, 2012.		
- 5 Stage pipe Programming. ARM Process Architectural s Memory hiera Architecture-S Real Time Op Basic principle function – Sch Resource alloc Text book(s): 1. Wayn 1. Wayn 1. Morga 2. Steve 3. Rajka Reference(s): 1. David 2. Dr K. 2. Drean 3. Andre Optim	ARM Processo line architecture sor Core support for system archy: Memory ynchronization- erating System as of OS – OS A eduling: static, cation: Semaph e Wolf, 'Comp an Kaufman Pu Furber, 'ARM mal, 'Embedde E.Simon,'An E V.K.K.Prasad,' n TechPress, 2 w N.Sloss, Don izing System S	e- Interrupts tem develop size and s Context swi ns Architecture dynamic, pri ores, mutua outers as C blishers, 20' System on c d Systems A mbedded So Embedded 013. minic Symes oftware', Els	and Except ment-ARM speed – O tching. – System c: ority, preen I exclusion I exclusion I exclusion omponents: 13. hip Architecture offware Prir /Real-Time s, Chris Wri sevier Public le To The F	s model- Re- ions handlin processor n-chip men alls – Thread prive, round – Inter proce : Principles cture', 2 nd Ec : Programm ner', 3 rd Edit s systems: ight, John R cations, 201	gisters – AR gs – ARM In families –A hory – Cad ds, tasks an d robin, Earl ess commun of Embedd <u>lition, Addis</u> ing and Des ion, Pearso Concepts, ayfield,' AR 3.	M architect hstruction s RM7TDMI-, ches – Me d process - iest Deadlin hication – S ded Compu on Wesley, ign', 2 nd E n Educatior Design& F M System	ure – 3 Stage ets – THUMB ARM8-ARM9T mory manage - Task states - he First, Rate I Synchronizatio uting System 2013. dition, Tata Ma 2014. Programming', Developer's G	ase study: Elevator Pipeline architecture instruction sets. ARM TDMI-ARM10TDMI - ement- ARM MMU - Kernel and its Monotony - in and deadlock. Design', 2 nd Edition, c GrawHill, 2012. New Edition,		

K.S. Rangasamy College of Technology – Autonomous								us
				ntennas a				
		B.E. Ele	ctronics	and Con	nmunicat	ion Engi		
Semester	Но	ours / We	ek	Total	Total Credit Maxi		ximum Marks	
	L	Т	Р	hrs	С	CA	ES	Total
VI	3	1	0	60	4	50	50	100
Objective(s)	 To study the fundamental theory behind the design of different types of antenna for various applications To understand special antennas and measurement of parameters for antennas To learn the types of radio wave propagation at different frequencies 							
Course Outcomes	1. Ur 2. De 3. Fo 4. De 5. Ex 6. De 7. Ar 8. Ar 9. De	nderstand escribe th ormulate t escribe th cplain the escribe th nalyse the nalyse the escribe th	I the radia e propert he radiat e concept concept e mutual radiation various e basics	the stud ation mecl ies of anten of Travelli ly coupled n concepts paramete of Wave p ts of Iono	hanism of ennas rties of loo na arrays ing wave I antenna s of speci rs for ante propagatio	antenna antennas s al antenn enna mea	s na as asuremen pes	ıts
radiation pattern,	as-radiatio beam so ation, bar	olid angle ndwidth,	e, radiati beam wi	on intens dth, ante	ity, radiat nna impe	tion pow	er densit	enna- antenna parameters- ty, directive gain, effective vector –Friis transmission

formula, duality of antennas, antenna and transmission lines.

Thin Linear Wire Antennas & Loop Antennas

Radiation fields of point source, radiation from a dipole antenna: infinitesimal dipole, and half-wave dipole, Radiation resistance, Directivity and Design procedure, -Loop antenna- Radiation resistance, Directivity, helical antenna, normal mode and axial mode.

Travelling Wave Antennas & Antenna Arrays

Radiation from a travelling wave on a wire. Rhombic Antenna, Coupled antenna, two and three element yagiuda antenna-Log Periodic antenna. Antenna Arrays :Definition, power patterns, array of two point sourcespattern multiplication, broad side array, end fire array, N-element linear array, evaluation of null directions and maxima, amplitude distributions, binominal arrays, Dolph- Chebychev arrays.

Special Antennas & Antenna Measurements

Design procedure and selection of antenna based on frequency of operation and application, turnstile antenna- phased array antennas- horn antenna-reflector antennas and their feed systems- micro strip antennas- rectangular patch-Smart antennas: Principle, types, array design, antenna beamforming, direction of arrival algorithms, adaptive beam forming.

Antenna Measurements: antenna ranges- measurement of radiation pattern- gain, directivity and impedance measurements.

Wave Propagation

Propagation in free space – propagation around the earth- surface wave propagation- structure of the ionosphere –propagation of plane waves in ionized medium- determination of critical frequencies- maximum usable frequency- effect of the earth's magnetic field- ionospheric variations –fading- tropospheric propagation- space wave propagation- super refraction- refractive index of troposphere- scatter propagation

10X1 000A(3).	
1.	K.D.Prasad, 'Antenna and Wave Propagation', 2 nd Edition, Satya Prakasham, 2013.
2.	Constantine A, Ballanis, 'Antenna Theory', 2 nd Edition, Wiley India (Pvt) Ltd, 2011.
Reference(s):	
1.	John D. Kraus Ronald J.Marhefka, and Ahmed S.Khan, 'Antennas and Wave propagation', 4 th Edition, McGraw-Hill, 2015.
2.	H. Griffiths, J. Encianas, A. Papierinik & Serge Drabowitch, 'Modern Antennas', 1 st Edition, 3 rd Indian Reprint, Springer Publishers, 2011.

			40 EC 60	4 Compute	er Network	ĸs				
B.E. Electronics and Communication Engineering										
Semester	H	Hours / Week			Credit	Maximum Marks				
	L	Т	Р	hrs	С	CA	ES	Total		
VI	3	0	0	45	3	50	50	100		
Objective(s)	OSI • To t • To I	 OSI and TCP/IP To understand the architecture and function of SONET and ATM 								
Course Outcomes	1. Und stan 2. Und 3. Kno 4. Des 5. Kno 6. Outl 7. Des 8. Exp 9. Und	lerstand the idards lerstand the w the vario cribe the co cribe the co cribe the v lain the me lerstand the	e fundame e ISO/OSI ous flow an oncepts of ous IP addu ncept of rou arious prot ethods to ir e protocols	model d error con various LA ressing met uting and a cocols of tra nprove the s used in ap	trol protoco N protoco hods Ilgorithms u nsport laye QoS	r types, top ols Is used er	pologies, prote nalysis methoo			
switching and pa TCP/IP , Measure Data Link Layer Error – detection	irection of cket switch ement of ne and correc	Data flow ing- Proto twork perfo tion: – Intr	 networks cols and S ormance-B oduction - 	Standards – andwidth, ⁻ Block codir	TCP/IP P Throughput	rotocol Su t, Latency, - Flow Cor	uite,ISO/OS Jitter. ntrol and Erro	ternetwork, Circui SI model –OSI Vs r control: stop and Ethernet- Gigabi		

wait - Piggybacking- HDLC. Media Access Control-Random access, LAN: Ethernet – Fast Ethernet- Gigabit Ethernet, IEEE 802.3, IEEE 802.11–Bluetooth, SONET/SDH architecture, ATM architecture, ATM layers. **Network Layer**

Internetworking – IP addressing methods (IPv4 and IPv6) – Sub netting – Routing – Unicast routing protocols (RIP,OSPF, BGP4), Multicast routing-Multicast addresses (DVMRP,MOSPF).

Transport Layer

Transport layer services, protocols-- Go back N – selective repeat - sliding window techniques – User Datagram Protocol (UDP) – Transmission Control Protocol (TCP) – Congestion Control – Quality of services (QOS) – Integrated Services.

Application Layer

Domain Name Space (DNS) – Simple Mail Transfer Protocol (SMTP) – File Transfer Protocol (FTP) – Hyper Text Transfer Protocol (HTTP) – World Wide Web (WWW) – Security – Cryptography – Ethical Hacking- Intrusion Detection.

Text book(s):

1.	Behrouz A. Forouzan, Sophia Chung Fegan, 'Data communication and Networking', 5 th Edition, McGraw- Hill, 2012.
Refer	ence(s):
1.	Andrew S. Tanenbaum, David J.Whetherall, 'Computer Networks', 5th Edition, Pearson Education, 2013.
2.	James .F. Kurose, 'Computer Networking: A Top down Approach', 6 th Revised Edition, Pearson Education, 2012.
3.	Larry L.Peterson & Bruce S. Davie, 'Computer Networks', 5th Edition, Morgan Kaufmann, 2011.
4.	William Stallings, 'Data and Computer Communication', 8th Edition, Pearson Education, 2012.
5.	W. Richard Stevens, 'TCP/IP Illustrated, Volume 1: The Protocol', Pearson Education, 3 rd Impression, 2009.

		E	B.E. Electro	onics and Co	ommunication	n Engineering	9		
S	emester	ŀ	lours / We	ek	Total	Credit	Max	kimum Ma	irks
0		L	Т	Р	hrs	С	CA	ES	Tota
	VI	0	0	3	45	2	50	50	100
Obj	jective(s)	sche • To ar as la • To m	mes halyse and boratory co easure the	test digital co omponents radiation pat	ding of the oper communication ctern of antenn dents will be	systems using a			
_	Course itcomes	 Demo Test 1 Desig Gene Perfo Deve Meas Analy 	onstrate the the circuits in and test rate the lin rm Delta m lop a progr ure the spe ze the radi	e various puls for sampling the various of e coding and odulation an am for error ectrum of filte ation pattern	ligital modulati decoding tech d demodulatio control coding	techniques on techniques nniques n using MATLA			
1.		Modulation a							
2.		Modulation		dulation					
3.		ulation (PPN		K : 1 ·					
4.	•			multiplexing					
5.	-			K, PSK, FSK	.)				
6. -		g and decod	-						
7.		ulation techn	•						
8.				dulation and	detection				
9.		ation of conv	_	odes					
10.		ation of cycli							
11.		measuremer							
12.		esign and si		-					
13.	Project des	sign and imp	iementatio	1					
	Ilowing tools	can be used	d for antenr	na design an	d analysis: An	sys HFSS, AD	PS, CST, M	agus, MA ⁻	TLAB,

				-	Networks Lab	-				
					nmunication E	-	-			
Semester			Hours / We		Total	Credit				
VI		L 0	Т	P 3	hrs 45	C 2	CA 50	ES 50	Tota 100	
Objective(s)	•	To sim To imp	nulate differe	nt networking rent networki lement routin	protocols ng protocols	2				
Course Outcomes	1. 2. 3. 4. 5. 6.	Design Analys Analys Design Design Design Gener Test th	n and implen se the stop a se the Go ba n and implen n and implen n and implen rate the IP su ne error in da	nent various l nd wait proto ck-N and sel- nent distance nent link state nent Data end b netting add ata transmiss	ective repeat provide the repeat provide the repeating a location and decorrection and deco	otocols algorithm hm cryption ent error ra	tes			
To cre simula 3. Wirele To cre CSMA 4. Impler 5. Impler 6. Impler 7. Impler	ate scen tion. ss LAN p ate scen /CD prot nentatior nentatior nentatior	ario and protocol ario and ocols. n of Erro n and str n and str n of IP s	s. d study the p or Detecting (udy of stop a udy of Go ba ubnet.	erformance of erformance of Codes. and wait proto ack-N and sel	of token bus and of network with (pcol. ective repeat pr	CSMA / CA rotocols.	A protocol a	and compa	re with	
9. Impler 10. Impler	nentatior nentatior	n of Rou n of Lea n of Data	iting Informa ky bucket alç	tion Protocol/	Open Shortest			-	et.	

			K.S.I	Rangasamy Col	lege of Techno	ology - Autor	nomous			
				40 EC 6P3 Emb	-		-			
			B.E	. Electronics ar		-	-			
Se	emester	_		Hours / Week		Total	Credit			
	VI		L0	Т 0	P 3	hrs 45	C 2	CA 50	ES 50	Total 100
Objec	tive(s)	At t	 To devel To interfa To devel the end of the 	op programs usin ace ARM Contro op applications to course the stu	ng ARM contro ollers using Emb using ARM cont udents will be	llers bedded IDEs rollers able to	1			
	urse omes		 assembly Demonstration Perform Interface Demonstration Test the Test the Test RTMING MDK. 	arithmetic opera y language trate the input ar LED and LCD in actuators for co rrate the analog throller ISR operation in serial data comm OS environment application spec	nd output function terface with AR ntrolling applica g to digital ar ARM controller nunication of int in high speed	ons of an ARM M Microcontr ations with AR ad digital to dernal UART is clock and s	M microco oller M analog n ARM system pr	ntroller conversio	on usir	ng ARM
					OF EXPERIMEN	NTS				
1.	Arithme	tic o	perations usi	ng In-line assem	bler					
2.	Read th	ne ke	ey and display	the key using A	RM*					
3.	Interfac	ing L	ED and LCD	with ARM*						
4.	Buzzer	and	relay interfac	e using ARM pro	cessor*					
5.	Interfac	ing /	ADC and DAC	C with ARM						
6.	Program	nmir	ng the externa	l interrupts of AF	RM processor					
7.	ARM to	РС	communicatio	on by UART						
8.	ARM in	terna	al PLL progra	nming						
9.	Multitas	king	using RTOS	environment						
10.	Project	desi	gn and implei	mentation						
	* Stude	ents	may use Ope	n Source IDE						

	K.	S.Rangasam	y College d	f Technolog	y - Autono	mous			
		40 TP 0P4 (Career Com	petency Dev	velopment	IV			
	Common to all Branches								
Semester		Hours/Week		Total hrs	Credit	Maximum Marks			
Semester	L	Т	Р		С	CA	ES	Total	
VI	0 0 2 30 0 100 100								
Objective(s)	To enhance	employability	skills and to	develop care	eer compete	ency			

Written and Oral Communication – Part 2

Self Introduction – GD - Personal Interview Skills

Practices on Reading Comprehension Level 2 - Paragraph Writing - News paper and Book Review Writing -Skimming and Scanning - Interpretation of Pictorial Representations - Sentence Completion - Sentence Correction - Jumbled Sentences - Synonyms & Antonyms - Using the Same Word as Different Parts of Speech - Editina

Materials: Instructor Manual, Word power Made Easy Book, News Papers Verbal & Logical Reasoning – Part 2

Analogies - Blood Relations - Seating Arrangements - Syllogism - Statements and Conclusions, Cause and Effect - Deriving Conclusions from Passages - Series Completion (Numbers, Alphabets & Figures) - Analytical Reasoning - Classification - Critical Reasoning Practices: Analogies - Blood Relations - Statement & Conclusions

Materials: Instructor Manual, Verbal Reasoning by R.S.Aggarwal

Quantitative Aptitude - Part - 5

Geometry - Straight Line - Triangles - Quadrilaterals - Circles - Co-ordinate Geometry - Cube - Cone -Sphere. Materials: Instructor Manual, Aptitude book

Data Interpretation and Analysis

Data Interpretation based on Text – Data Interpretation based on Graphs and Tables. Graphs can be Column Graphs, Bar Graphs, Line Charts, Pie Chart, Graphs representing Area, Venn Diagram & Flow Charts. Materials: Instructor Manual, Aptitude Book

Technical & Programming Skills – Part 2

Core Subject – 4.5.6 Practices : Questions from Gate Material Materials: Text Book. Gate Material

Evaluation Critaria

S.No.	Particular	Test Portion		Marks
1	Evaluation 1 Written Test	15 Questions each from Unit 1, 2, 3, 4 & 5 (External Evaluation)		60
2	Evaluation 2 - Oral Communication	GD and HR Interview (External Evaluation by English, MBA Dept.)		20
3	Evaluation 3 – Technical Interview	Internal Evaluation by the Dept 3 Core Subjects		20
		·	Total	100

Reference Books

- 1. Aggarwal, R.S. 'A Modern Approach to Verbal and Non-verbal Reasoning', Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, 'Quantitative Aptitude', TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough Work pages
- Each Assignment has 20 guestions from Unit 1,2,3,4,5 and 5 guestions from Unit 1 (Oral Communication) & Unit 5(Programs)
- Evaluation has to be conducted as like Lab Examination.

	К	.S.Rangas	amy Colleg	ge of Techno	ology – Auto	onomous		
	40 H	IS 002 Eng	ineering E	conomics ar	nd Financial	Accountin	ng	
			Commo	on to all Brai	nches			
Semester	He	ours / Wee	k	Total	Credit		Maximum M	larks
Semester	L	Т	Р	Hrs	С	CA	ES	Total
VII	2	0	0	45	2	50	50	100
Course Objective(s)	The main objective of this course is to make the Engineering student to know about the basic o economics, how to organize a business, financial aspects related to business, different methods of appraisal of projects and pricing techniques.							
Course Outcomes	 Apply su Appraise Describe Distingu Explain Illustrate Different Interpret Apply br 	uitable dem e the preva e forms of t ish betwee the various e the baland tiate betwee t technical f reak even a	and forecas ling market ousiness in a n proprietor kinds of ba e sheet with en fixed cos easibility an nalysis in e	an organizationship and part	es. on. nership. example. e cost. easibility. ojects.			

Basic Economics

Definition of economics – nature and scope of economics – basic concepts of economics – factors of production – demand analysis – definition of demand – Law of demand – Exception to law of demand – Factors affecting demand – elasticity of demand – demand forecasting – definition of supply – factors affecting supply – elasticity of supply – market structure – perfect competition – imperfect competition - monopoly – duopoly – oligopoly and bilateral monopoly .

Organization and Business Financing

Forms of business – proprietorship – partnership - joint stock company - cooperative organization - state Enterprise - mixed economy - Money and banking – kinds of banking - commercial banks - central banking functions - control of credit - monetary policy - credit instrument – Types of financing - Short term borrowing -Long term borrowing - Internal generation of funds - External commercial borrowings - Assistance from government budgeting support and international finance corporations.

Financial Accounting and Capital Budgeting

The balance Sheet and related concepts – The profit and loss statement and related concepts – Financial ratio analysis – Cash flow analysis – fund flow analysis – Capital budgeting– Average rate of return – Payback period – Net present value and internal rate of return.

Cost Analysis

Types of costing – traditional costing approach - activity based costing - Fixed Cost – variable cost – marginal cost – cost output relationship in the short run and in long run – pricing practice – full cost pricing – marginal cost pricing – going rate pricing – bid pricing – pricing for a rate of return – appraising project profitability - cost benefit analysis – feasibility reports – appraisal process – technical feasibility - economic feasibility – financial feasibility.

Break Even Analysis

Basic assumptions –break even chart – managerial uses of break even analysis - applications of break even analysis in engineering projects.

Textbook(s):

-	
1.	Khan MY and Jain PK., 'Financial Management' McGraw - Hill Publishing Co., Ltd., New York, 2000.
2.	Varshney RL and Maheshwary KL. 'Managerial Economics' S Chand and Co., New Delhi, 2001.
Ref	ference(s):
1.	Barthwal R.R., 'Industrial Economics - An Introductory' Text Book, New Age Publications, New Delhi, 2001.
2.	Samuelson P.A., 'Economics - An Introductory Analysis', McGraw - Hill & Co., New York, 2000.
3.	S.K.Bhattacharyya, John Deardon and Y.M.Koppikar, 'Accounting for Management Text and Cases', Vikas Publishing House Pvt Ltd., New Delhi – 110002, 1984.
4.	V.L.Mote, Samuel and G.S.Gupta, 'Managerial Economics – Concepts and Cases', Tata Mcgraw Hill Publishing Company Ltd., New Delhi – 110002, 1981.

	K.:					utonomou	S	
					ation and lication En			
Semester	н	ours / Wee		Total	Credit	gineering	Maximun	n Marks
••••••	L	T	P	hrs	C	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objective(s)	0 • T • T 0	onfiguratio o facilitate o enrich th DMA.	ns and stru the knowle he idea of c	uctures. edge about optical fiber	optical fibe networks a	r sources ar gorithm suc	nd transmis	iink, fiber modes, sion techniques T/SDH and optical
Course outcomes	1. E 2. E 3. A 4. E 5. E 6. E 7. E 8. E 9. D	Explain the Explain about the Explain the Explain about the Explain about the Explain the Explain the Explain the Describe th	basic cond out different k signal deg out LED a out the fibe fiber optic basic geor e basic con	cepts of opt nt modes a kind of losse radation by nd Laser di r to fiber join receiver op metric paran ncepts of di	es in optical dispersion ode structu ning technic veration and meters mea fferent optic	nication. ation in optio waveguide: factor res	s on echniques	IA

Introduction to Optical Fibers

Evolution of fiber optic system – Element of an Optical Fiber Transmission link – Total internal reflection-Acceptance angle –Numerical aperture – Ray Optics – Optical Fiber Modes and Configurations – Mode theory of Circular Wave guides – Key Modal concepts – Linearly Polarized Modes – Single Mode Fibers – Graded Index fiber structure-fiber materials, fiber fabrication techniques.

Signal Degradation in Optical Fibers

Attenuation – Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides – Information Capacity determination – Group Delay - Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers – Polarization Mode dispersion, Intermodal dispersion– Pulse Broadening in GI fibers - Mode Coupling – Design Optimization of SM fibers

Fiber Optical Sources and Coupling

Light source materials – LED structures –Quantum efficiency , laser Diodes – Modes and Threshold condition – Rate equations - External Quantum efficiency – Resonant frequencies – Laser Diode structures -Temperature effects, Power Launching and coupling, Lensing schemes, Fiber alignment ,Fiber -to- Fiber joints, Fiber splicing ,fiber connectors.

Fiber Optical Receivers and Measurements

PIN and APD diodes –Fundamental Receiver Operation – preamplifiers-types - High impedance, Trans impedance amplifiers, Error Sources – Receiver configuration – Probability of Error , Fiber Attenuation measurements-Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.

Optical Networks and Components

WDM optical networks, SONET/SDH/FDDI optical networks, layered optical network architecture, Wavelength Routed Networks – Non linear effects on Network performance – Link Power budget - Rise time budget- Optical couplers, filters, isolators, switches, optical amplifiers - erbium doped fiber amplifiers, Optical CDMA – Ultra High Capacity Networks.

Text book(s):	
1.	Gerd Kaiser, 'Optical Fiber Communications', 4th Edition, Tata McGraw Hill Publishers, 2010.
2.	John M. Senior, 'Optical Fiber Communication', 2 nd Edition, Pearson Education, 2007.
Reference(s):	
1.	Govind P. Agarval, 'Fiber-Optic Communication Systems', 3 rd Edition, John Wiley & Sons, 2004.
2.	Rajiv Ramasamy and Kumar. N. Sivarajan, Galen H. Sasaki, 'Optical networks-A practical perspective', 3 rd Edition, Morgan Kauffman, 2010.
3.	Ramaswami, Sivarajan and Sasaki 'Optical Networks', Morgan Kaufmann, 2009.

		College of Techi 702 Microwave E					
		cs and Communi					
Semester	Hours / Week	Total hrs	Credit	<u> </u>	Maximum	Marks	
	LTF		С	CA	ES	Total	
VII	3 0 0	0 45	3	50	50	100	
Objective(s)	 To understand the working of Microwave components and analyse them with high frequency parameters. To learn the functioning of Microwave sources, integrated circuits and measuring devices. To design microwave passive components such as 3dB hybrid, Rate race, backward wave directional coupler, power divider. 						
Course Outcomes	 Analyse the work Know the charac Discuss the mate circuits Analyse the vario Understand the vario 	ction and characte king of low power r king of high power teristics of strip lir erials used and fat ous microwave me various parameters ransformations us	microwave microwave microwave microwave orication of easuring ins s for microv ed in MIC f	transmiss assive mic sources devices monolithic struments wave meas filter desig	rowave devic microwave i surements n	es	

Microwave Passive Devices

Introduction to S parameters, properties of S Matrix, relationship between Y-Z & ABCD Parameters with S parameters, Terminations, Attenuators, Phase Shifters, Directional Couplers, Hybrid Junctions, Power Dividers, Microwave Propagation in Ferrites, Faraday Rotation, Microwave Devices Employing Faraday Rotation, Isolators, Circulators, Gyrators.

Microwave Sources

High power sources: Klystron amplifier, Velocity-Modulation Process, Bunching Process, Output Power of Two-Cavity Klystron, Reflex Klystrons, Velocity Modulation, Power Output and Efficiency, Helix Traveling-Wave Tubes (TWTs), Slow-Wave structures, Amplification Process, Magnetron Oscillators, Cylindrical Magnetron, Coaxial Magnetron, Tunable Magnetron, Low power sources: Gunn diodes - Two-Valley Model Theory, Modes of Operation, IMPATT, TRAPATT and BARITT Diodes- Principles of Operation, Power Output and Efficiency

Strip Lines and Monolithic Microwave Integrated Circuits

Microstrip Lines, Characteristic Impedance of Microstrip Lines, Losses in Microstrip Lines, Quality Factor Q of Microstrip Lines, Parallel Strip Lines, Distributed Lines, Characteristic Impedance, Attenuation Losses, Coplanar Strip Lines, Shielded Strip Lines, MONOLITHIC MICROWAVE INTEGRATED CIRCUITS: Introduction, Materials, Substrate Materials, Conductor Materials, Dielectric Materials, Resistive Materials, Monolithic Microwave Integrated-Circuit Growth, MMIC Fabrication Techniques, Fabrication Example.

Microwave Measurements

Measuring Instruments – VSWR meter, Power meter, Spectrum Analyser, Network Analyser – principles; Measurement of Impedance, frequency, power, VSWR, Q factor, dielectric constant, S Parameter. Non linear measurements: vector signal analyser - Applications.

MIC Components Design

Low pass to high pass, band pass and band stop transformations, 3dB hybrid, Rate race, backward wave directional coupler, power divider, and Realization using microstrip lines.

Text book(s):							
1.	Samuel Y.Liao, 'Microwave Devices and Circuits', 3 rd Edition, Prentice Hall of India, 2008.						
2.	David M.Pozar, 'Microwave Engineering', 4th Edition, John Wiley & Sons, 2014.						
3.	Annapurna Das and Sisir K. Das, 'Microwave Engineering', Tata McGraw-Hill, 2007.						
Referer	nce(s):						
1.	Robert E.Collin, 'Foundations for Microwave Engineering', 2 nd Edition, Wiley, Reprint 2009.						
2.	P.A.Rizzi, 'Microwave Engineering. (Passive circuits)', Prentice Hall of India, 1988.						

K.S.Rangasamy College of Technology – Autonomous 40 EC 703 Wireless Communication											
B.E. Electronics and Communication Engineering											
a <i>i</i>	He	ours / Wee	k	Total hrs	Credit	Maximum Marks		Marks			
Semester	L	Т	Р		С	CA	ES	Total			
VII	3	0	0	45	3	50	50	100			
Objective(s) Course Outcomes	 To stud To unde To stud To stud At the end of 1. Disc 2. Anal 3. Impl 4. Class 5. Anal 6. Anal 7. Disti 	y modulation erstand the y the different of the cour cuss the even lyse radio w ement the varies of the varies lyse the per- lyse the varies nguish the	on technique different sig ent wireless se, the stu blution and vave propag various cha ious modul formance c ious equali various mu	a cellular network es and radio p gnal processing standards. dents will be basic concept gation model nnel modellin ation technique of modulation zation and div ltiple access te ess standards	able to ts of wireless ts for wireless techniques techniques inversity techni techniques	ole access communio s ess commu n fading ch	cation and i	its capacity			

Introduction

Introduction to wireless communication systems - Modern wireless communication systems: 2G cellular networks - 3G cellular networks - WLAN - PAN - Cellular concept: Frequency reuse - channel assignment - hand off - interference & system capacity - trunking& grade of service - Coverage and capacity improvement.

Mobile Radio Propagation

Free space propagation model - Three basic propagation mechanisms: Reflection - Two-Ray model - Diffraction - Knife-edge diffraction model - Scattering - Log-normal shadowing - Okumara model - Hata model - Log-distance path loss model - Small-scale multipath propagation - Parameters of mobile multipath channels - Types of small scale fading - Rayleigh and Rician distributions.

Modulation Techniques for Mobile Radio

Structure of a wireless communication link - Principles of Offset-QPSK - /4-DQPSK - Minimum Shift Keying - Gaussian Minimum Shift Keying - Error performance in fading channels - Spread Spectrum Modulation - Orthogonal Frequency Division Multiplexing.

Wireless Signal Processing and Multiple Access Techniques

Equalization - Linear and Non-Linear equalization - Adaptive equalization - Zero forcing and LMS Algorithms -Diversity - Microdiversity - Macrodiversity - Diversity combining techniques Rake receiver - Multiple Access Techniques: FDMA, TDMA, CDMA, SDMA, Introduction to MIMO systems.

Wireless Standards

GSM: features - Architecture - Radio subsystems - Traffic channels - call processing - CDMA: features - Architecture - IS 95 - Forward and reverse channels - power control - system capacity - WiMax - 4G(LTE).

Textbook(s):										
1	T.S.Rappaport, 'Wireless Communications: Principles and Practice', 2 nd Edition, Pearson Education/ Prentice Hall of India, Third Indian Reprint, 2009.									
2	Andreas F.Molisch, 'Wireless Communications', 2 nd Edition, Wiley and IEEE, 2010.									
Refe	Reference(s):									
1	R. Blake, 'Wireless Communication Technology', Thomson Delmar, 2004.									
2	W.C.Y.Lee, 'Mobile Communications Engineering: Theory and applications', 2 nd Edition, McGraw-Hill International, 2009.									
3	Stephen G. Wilson, 'Digital Modulation and Coding', Pearson Education, 2008.									
4	David Tse and Pramod Viswanath, 'Fundamentals of Wireless Communication', Cambridge university press, 2005.									
5	Van Nee.R and Ramji Prasad, 'OFDM for wireless multimedia Communication', Artech house, 2000.									

				ollege of Teo ical and Mic					
		B.E. E	lectronics	and Commu	inication Er	ngineering	7		
Semester	Hours / Week			Total hrs	Credit	Maximum Marks			
	L	Т	Р		С	CA	ES	Total	
VII	0	0	3	45	2	50	50	100	
Objective(s) • To learn the working principle of optical sources and detectors. • To develop a simple optical communication link. • To analyse the characteristics of microwave devices. • To learn the concept of microstrip components. • At the end of the course, the students will be able to									
Course Outcomes	2. Tes 3. Tes 4. Ana 5. Cal 6. Exa 7. Ana 8. Tes 9. Tes 10. Exa	st the chara st the P-I C alyze the b culate the amine the C alyze the g st the mode st the chara amine the c	acteristics of haracteristic andwidth of maximum b Gain charact ain and radi characteristics of characteristics of characteristic	aperture and f laser diodes cs of LED an Analog trans- it rate of a di teristic of AP ation pattern stics of reflex f Microwave cs of Solid s s of a Micro	s d photo dioc smission of a gital fiber op Ds of Horn ant klystron. passive dev tate devices	de a fiber opti otical link enna. ices			
 LED & PI Cha Gain c Analog Plastic 	Photo Did Photo Did aracteristic haracteris transmis fiber links	ure determ ode Charac of laser di tic of APDs sion Chara s.	ination for fi cteristics. odes-Thres s-determina icteristic of a	bers and Att hold current tion of break a fiber optica	enuation Me determinatio down voltag I link – Dete	easuremen on e and aver rmination o			
 Detern VSWR Charace Gunn Study 	nd Radiat nination of t, Impedar cteristic of diode chai of Microst study on d ools can b	f mode cha nce Measur Directiona racteristics rip compor esign of im	racteristic o rement. Il Couplers a hents (Filters pedance m	ent of Horn / f Reflex Klys and Multiport s, Antennas, atching netw sign and and	etc.) ork		DS, CST, Ma	igus, MATLAB	

		K.S. Ran	gasamv Co	ollege of Te	chnoloav –	Autonomo	ous				
				System Des							
B.E. Electronics and Communication Engineering											
Semester	Hours / Week			Total hrs	Credit		Maximum	aximum Marks			
	L	Т	Р		С	CA	ES	Total			
VII	0	0	3	45	2	80	20	100			
Objective(s)	 To design a system which meets the desired specifications To identify, formulate, and solve engineering problems To use the techniques, skills and modern engineering tools necessary for engineering practice At the end of the course, the students will be able to 										
Course Outcomes	 Design the instrumentation amplifier with the bridge type transducer and convert the amplified voltage from the instrumentation amplifier to 4-20mA current using op-amp. Design a sequential timer to switch on & off at least 3 relays in a particular sequence using timer IC. Design a modem system to meet given specifications with realistic engineering constraints. 										
 Design Design PCB la Microco DSP ba ASIC b 	of proces of modes yout desi ontroller b ased syst pased syst	(ss control tin m. (gn using CA pased syste (em design. tem design.	or) mer. or) \D. m design. or) or)	lge type tran	sducer.						
		ns must be lotted by the		y each group charge	o of students	S.					

K.S. Rangasamy College of Technology – Autonomous											
40 EC 7P3 Project Work – Phase I											
B.E. Electronics and Communication Engineering Semester Hours / Week Credit Maximum Marks											
Semester		Hours / we	P	Total hrs	Credit C	CA	ES	Total			
VII		0	3	45	2	100	0	100			
Objective(s)	 To impart practical knowledge to the students and also to make them to carry out the technical procedures in their project work. To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work and placing this as their beginning stage for their final presentation 										
Course Outcomes											
Methodology	 5. Demonstrate their responsibility as an individual and a leader in group presentation. A committee is constituted with the project coordinator, project guide and HOD/Senior professor in the department Three reviews have to be conducted by the committee Problem should be selected by every batch of students Students must do a literature survey collecting a minimum of 10 papers related to their work Report has to be prepared by the students as per the format Preliminary implementation can be done if possible 										

	K.S. Rangasamy College of Technology – Autonomous										
40 TP 0P5 Career Competency Development V											
	B.E. Electronics and Communication Engineering										
Semester	Hours / Week			Total hrs	Credit	Maximum Marks					
	L	Т	Р	45	С	CA	ES	Total			
VII	0	0	2	45	0	100	0	100			
Objective(s)	To enha	nce employ	ability skills	and to deve	lop career	competenc	у				

Written and Oral Communication

Self-Introduction – GD – HR Interview Skills – Corporate Profile Review Practices on Company Based Questions and Competitive Exams Materials: Instructor Manual

Verbal & Logical Reasoning

Practices on Company Based Questions and Competitive Exams Materials: Instructor Manual

Quantitative Aptitude

Practices on Company Based Questions and Competitive Exams Materials: Instructor Manual

Data Interpretation and Analysis

Practices on Company Based Questions and Competitive Exams Materials: Instructor Manual

Programming & Technical Skills – Part 3

Data Structure - Arrays – Linked List – Stack – Queues – Tree – Graph 6 Practices on Algorithms and Objective Type Questions Materials: Instructor Manual

Evaluation Criteria

S.No.	Particular	Test Portion	Marks
1	Evaluation 1	15 Questions each from Unit 1, 2,3, 4 & 5	60
	Written Test	(External Evaluation)	
2	Evaluation 2 -	GD and HR Interview	20
	Oral Communication	(External Evaluation by English, MBA Dept.)	
3	Evaluation 3 –	Internal Evaluation by the Dept. – 3 Core Subjects	20
	Technical Interview		
	•	Total	100

Reference Books

1. Aggarwal, R.S. 'A Modern Approach to Verbal and Non-verbal Reasoning', Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.

- 2. Abhijit Guha, 'Quantitative Aptitude', TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & Goswami Upkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

• Instructor can cover the syllabus by Class room activities and Assignments(5 Assignments/week)

• Instructor Manual has Class work questions, Assignment questions and Rough work pages

• Each Assignment has 20 questions for Unit 1,2,3,4 & 5 and Unit 5 and 5 questions from Unit 5(Algorithms) & Unit 1(Oral Communication)

• Evaluation has to be conducted as like Lab Examination.

	K.S.Ra				logy- Autono	mous				
	B.F				or Networks	rina				
Semester	Hours/We		Total	Credit		Maximum Marl	(
VIII	L T	Р	hrs	С	CA	ES	Total			
VIII	3 0	0	45	3	50	50	100			
Objective(s)	 To lear To be f To be e To lear At the end of 	 To understand the design issues in ad hoc and sensor networks To learn the different types of MAC protocols To be familiar with different types of ad hoc routing protocols To be expose to the TCP issues in ad hoc networks To learn the architecture and protocols of wireless sensor networks At the end of the course, the students will be able to Explain the concepts, network architectures and applications of ad hoc networks 								
Course Outcomes	networks 3. Analyze th 4. Analyze th 5. Design rou 6. Design rou 7. Evaluate th	e protoco e protoco iting prot iting prot ne QoS r	ol design is ol design is ocols for ac ocols for wi elated perfo	sues of ad l sues of wire l hoc netwo reless sens ormance me	noc networks eless sensor r orks or networks easurements	ations of wireless networks of ad hoc networ of sensor networ	ks			

Introduction

Fundamentals of Wireless Communication Technology - The Electromagnetic Spectrum - Radio propagation Mechanisms - Characteristics of the Wireless Channel - Mobile Ad hoc networks (MANETs) and wireless sensor networks (WSNs): Concepts and architectures - Applications of Ad Hoc and Sensor networks. Design Challenges in Ad hoc and Sensor Networks.

MAC Protocols for Ad Hoc wireless networks

Issues in designing a MAC Protocol - Classification of MAC Protocols - Contention based protocols - Contention based protocols with Reservation Mechanisms - Contention based protocols with Scheduling Mechanisms - Multi channel MAC - IEEE 802.11.

Routing Protocols and Transport Layer in AD HOC Wireless Networks

Issues in designing a routing and Transport Layer protocol for Ad hoc networks - proactive routing, reactive routing (on-demand), hybrid routing - Classification of Transport Layer solutions - TCP over Ad hoc wireless Networks.

Wireless Sensor Networks (WSNS) and MAC Protocols

Single node architecture: hardware and software components of a sensor node - WSN Network architecture: typical network architectures-data relaying and aggregation strategies - MAC layer protocols: self-organizing, Hybrid TDMA/FDMA and CSMA based MAC - IEEE 802.15.4.

WSN Routing, Localization & QOS

Issues in WSN routing – OLSR - Localization - Indoor and Sensor Network Localization - absolute and relative localization, triangulation - QOS in WSN - Energy Efficient Design –Synchronization - Transport Layer issues.

-			
Tovt	hnn	k(s):	

TEXLOU	57(5).
1	C. Siva Ram Murthy, and B. S. Manoj, 'Ad Hoc Wireless Networks: Architectures and Protocols', Prentice Hall Professional Technical Reference, 2008.
Referen	ces:
1	Carlos De Morais Cordeiro, Dharma Prakash Agrawal 'Ad Hoc & Sensor Networks: Theory and Applications', World Scientific Publishing Company, 2006.
2	Feng Zhao and Leonides Guibas, 'Wireless Sensor Networks', Elsevier Publication - 2002.
3	Holger Karl and Andreas Willig 'Protocols and Architectures for Wireless Sensor Networks', Wiley, 2005.
4	Kazem Sohraby, Daniel Minoli, & TaiebZnati, 'Wireless Sensor Networks-Technology, Protocols, and Applications', John Wiley, 2007.
5	Anna Hac, 'Wireless Sensor Network Designs', John Wiley, 2003.

		K.S. Ran		ollege of Te			ous		
				1 Project W					
Semester		B.E. E Hours / We		and Commu	Credit	ngineering	Maximum	Marks	
Oemester	L T P		Total hrs	C	CA	ES	Total		
VIII	0	0	16	240	8	50	50	100	
Objective(s)	 To improve the academic and technical skills of the students, choosing the project in one of the technical areas, they have learnt during the course. To make the students learn to work in teams, gain confidence to solve real world problems related to their area, make presentations and manage a project. 								
Course Outcomes	 At the end of the course, the students will be able to Identify engineering problems relevant to the domain and carryout literature survey for its support Analyse and identify an appropriate technique to solve the problem Do experimentation / simulation / programming / Fabrication, collect and interpret data Document, prepare technical report and do power point presentation 								
Methodology	 4. Document, prepare technical report and do power point presentation 5. Demonstrate their responsibility as an individual and a leader in group project work. A committee is constituted with the project coordinator, project guide and HOD/Senior professor in the department. Three reviews have to be conducted by the committee Each review has to be evaluated for 100 marks. Attendance is compulsory for all reviews. If a student fails to attend review for some valid reason, one or more chance may be given. A senior professor from other departments may be included in the committee for final review The report should be submitted as per the format by the students during the first week of April. 							and HOD/Senior eview for some ommittee for final	

	K	.S.Rangas	amy Colle	ge of Tech	nology – /	Autonomo	ous		
		B.E. Elect	tronics an	d Commur	nication Er	ngineering	J		
				Elective I					
			40 EC E11	Medical I	Electronics	5			
Semester Hours / Week Total Credit Maximum Marks									
	L	Т	Р	hrs	С	CA	ES	Total	
VI	3	0	0	45	3	50	50	100	
Objective(s)	•	potentials To evaluate	the meas e operatio	urement of	bio-chemic	al and nor	n-electrical pa	cording various bio- arameters iipments, Telemetry	
Course Outcomes	1. 2. 3. 4. 5. 6. 7.	Understand Evaluate th Evaluate th Understand Discuss the Describe th	undamenta I the conce e measure e measure I the opera types of p e various u	als of bioele epts, operat ement of bio ement of no tion of assis ohysical me units of bio-	ectric signa ion of elect p-chemical on-electrica st devices dicine and telemetry a	ls, charact rodes and parameter I parameter their applic ind their ap	their types rs ers cations	ecording methods	

Electro-Physiology and Biopotential Recording

The origin of Biopotentials; biopotential electrodes; biological amplifiers; ECG, EEG, EMG, PCG, EOG – lead systems and recording methods, typical waveforms and signal characteristics.

Bio-Chemical and Non Electrical Parameter Measurements

pH, pO2, pCO2,pHCO3 Electrophoresis, colorimeter, photometer, Auto analyzer, Blood flow meter, cardiac output, respiratory measurement, Blood pressure, temperature, pulse, Blood cell counters, differential count.

Assist Devices

Cardiac pacemakers, DC Defibrillators, Dialyser, Heart-Lung machine, Hearing aids.

Physical Medicine and Bio-Telemetry

Diathermies – Short-wave, ultrasonic and microwave type and their applications, medical stimulator, Telemetry principles, frequency selection, Bio-telemetry, radio pill and tele-stimulation, electrical safety.

Recent Trends In Medical Instrumentation

Thermograph, endoscopy unit, Laser in medicine, Surgical diathermy, cryogenic application, introduction to telemedicine.

Text book(s):	
1.	John G.Webster, 'Medical Instrumentation Application and Design', 4 th Edition, Wiley India (Pvt) Ltd., 2013.
2.	Leslie Cromwell, 'Biomedical instrumentation and measurement', 2 nd Edition, Prentice Hall, 2013.
Reference(s):	
1.	Khandpur, R.S. 'Handbook of Biomedical Instrumentation', 2 nd Edition, McGraw-Hill, 2015.
2.	Joseph.J, Carr and John M.Brown, 'Introduction to Biomedical Equipment Technology', 4th Edition, Pearson Education, 2009.

	K.			ege of Tecl					
		D.E. Elec	aronics an	Elective I	incation Er	igineering			
		4	0 EC E12	VLSI Signa	l Processi	na			
Semester	Н	ours / We	ek	Total	Credit		Maximun	n Marks	
	L								
VI	3	0	0	45	3	50	50	100	
Objective(s)	 To understand the various VLSI architectures for digital signal processing. To know the techniques of critical path and algorithmic strength reduction in the filter structures. To learn the performance parameters, viz. area, speed and power. 								
Course outcomes	1.Lea 2. Rea 3. Ana 4. Ana 5. Ana 6. Des 7. Uno 8. Des 9. Uno	rning the b alizations of alysis of dig alysis of dig alysis of dig sign of fold derstanding sign of fast derstanding	asics of DS of digital filte gital filters of gital filters of ed Multirat g the algori convolutio g the sever	ers using pi using retimi using unfolo using foldin	and graph pelining an ng for critic ding for criti g for critica st convoluti g process	ical repres d parallel p al path red cal path re l path redu	orocessing luction duction	f DSP Algorithms for low power	
DSP Systems, Pi Introduction To DS bound and iteratic digital filters, para	pelining a SP System n bound, I	Ind Paralle Is -Typical ∟ongest pa	el Process DSP algori th Matrix a	ing ithms; Itera Igorithm; Pi	tion Bound pelining an	d parallel p			
Retiming, and Unfolding, Application	ons and p	properties;		echniques;	Unfolding	–Algorithn	n for Unfold	ding, Properties o	
Folding Folding transform of Mutilate system		ister minim	ization tecl	hniques, Re	egister mini	mization in	n folded Arc	hitectures, Folding	
Fast Convolution									

Fast Convolution

Introduction, Cook – Toom Algorithm, Modified Cook – Toom Algorithm, Iterated convolution, Cyclic Convolution, Design of Fast convolution Algorithm.

Algorithmic Strength Reduction in Filters and Transforms Parallel FIR filters – DCT and inverse DCT, Parallel Architectures for rank order filters

Text book(s):

1.	Keshab K. Parhi, 'VLSI Digital Signal Processing Systems, Design and Implementation', John Wiley & sons, 2 nd Edition, 2014.

Reference(s):

2.	U. Meyer Baese, 'Digital Signal Processing with Field Programmable Arrays', 4 th Edition, Springer, 2014.
3.	S.Y. Kuang, H.J. White house, T. Kailath, 'VLSI and Modern Signal Processing', Prentice Hall of India Private Ltd., 2013.

				ege of Tec							
	B.E. Electronics and Communication Engineering Elective I										
40 EC E13 Consumer Electronics											
40 EC E13 Consumer Electronics Semester Hours / Week Total Credit Maximum Marks											
	L	T	P	hrs	C	CA	Total				
VI	3	0	0	45	3	50	50	100			
Objective(s)				es, block d audio-syste				mer electronics			
Course Outcomes	1. Uno 2. Exp 3. Des 4. Exp 5. Uno 6. Exp 7. Exp	derstand the blain the o scribe the blain the fu derstand the blain the o blain the o	he working peration o operation inctions of he mobile perating p perating p	he student g principles f digital sou of various various br phone arcl rinciples of rinciples of ssues and	of basic a und record camera tul oadcasting hitecture home App office sys	udio syste ing syster bes g systems pliances tems	n	ystems			

Audio System

Microphones, their types; Carbon, velocity, crystal, condenser, cordless-Loud Speaker: Direct radiating, horn loaded woofer, tweeter, mid range, multi-speaker system, baffles and enclosures- Digital sound recording on disc-DTS-Dolby systems-CD system- Introduction to Blue ray technology-Hi-Fi system, preamplifier, amplifier and equalizer system, stereo amplifiers.

Television

Principles of Television: - TV standards- Scanning- Video Bandwidth - Composite Video signal- TV Camera:-Principle & working of Vidicon TV Camera - Monochrome picture tube-- TV Receiver –block diagram and working of B&W receiver- colour television display tube- Delta gun-Precision- in- line picture tube-HD TV systems-LCD, LED, PLASMA Systems. Block diagram and working principle of cable TV and DTH, set top box, cable TV using internet.

Pervasive Devices

Mobile Phone: Elements – Mobile Information Architecture - Mobile Phone Design – Types of mobile operating system- Android Overview-The Stack – Android User Interface – Preferences, the File System, the Options Menu and Intents.

Home and Office Systems

Conventional telephone block diagram and working-Basic principle and block diagram of microwave oven; washing machine hardware and software-components of air conditioning and refrigeration systems-Construction and working principles of Dot Matrix Printer, Inkjet Printer- Laser Printer- Facsimile: Block diagram and Working principle of FAX- RFID-Ultrasonic remote transmitter, IR remote-control transmitter.

Compliance

Product safety and liability issues- standards related to electrical safety and standards related to fire hazards, e.g., UL and VDE- EMI/EMC requirements and design techniques for compliance - ESD, RF interference and immunity- line current harmonics and mains voltage surge-case study.

Text boo	bk(s):
1.	Bali S.P, 'Consumer Electronics', Pearson Education, 2012.
Referen	ce(s):
1.	R.R Gulati, 'Monochrome & Color Television', 2 nd Edition, New Age international, 2010.
2.	R.R Gulati, 'Complete Satellite & Cable Television', Revised Edition, New Age international, 2006.
3.	K. Blair, Benson 'Audio Engineering Hand book', McGraw-Hill, 2001.
4.	Gupta R.G. 'Audio Video Systems', 2 nd Edition, McGraw-Hill, 2010.
5.	Brian Fling, 'Mobile Design & Development', 1 st Edition, O'Reilly, 2011.
6.	Marko Gargenta, 'Learning Android', 1st Edition, O'Reilly, 2011.

	K.			ege of Tecl				
		B.E. Elec	tronics an	d Commu		ngineering	1	
				Elective				
		40 EC E	E14 High	Performan	ce RISC P	rocessor		
Semester Hours / Week Total Credit Maximum Marks								
	L	Т	Р	hrs	С	CA	ES	Total
VI	3	0	0	45	3	50	50	100
Objective(s)	 To acquire the basic knowledge on 16, 32 bit Advanced Microprocessors To describe each module in MSP430, working out to the on-chip peripherals and use low power features of MSP430 to develop embedded solutions To acquire knowledge on free scale processor architecture and peripheral interfacings To develop the basic programs for MSP430 and Freescale microprocessors 							
Course Outcomes	1. Illus 2. App 3. Leau 4. Stud 5. Des 6. Des 7. Rep 8. Dev appl 9. Leau	trate the co ly knowled rning the v dy of variou cribe the a cribe interr produce the elop an <i>A</i> lication rning new g	oncepts of ge of I/O n arious inbu is algorithmediate rchitecture nal module e Peripher Assembly generation	ms and app of Free-sc s of proces al features	Inctionalitie evelop simp of MSP 43 lications of ale 32 bit F sor to deve of Free-sca or free-sca	s ble prograr 30 peripher MSP 430 Processor elop a syste ale Process ale cold fi	ral interface em sor ire process	sor for a specific

MSP430 RISC CPU Architecture

Introduction, Functional block diagram, Memory map, Architecture, Addressing modes, Instruction set Functions, Interrupts, Digital I/O –Digital Input and Output, Parallel ports, Mixed signal systems, Programming examples.

MSP430 Peripheral Interface

Timer – Watchdog Timer, Clock System, Resets, Comparator, Op-Amp. On chip peripherals – ADC, DAC, I²C, SPI, Programming examples. Case study – Algorithm Execution comparison between Microchip PIC24F16KA and the TI MSP430F2252, Biomedical application, Metering Application.

Free-Scale Cold Fire 32 bit processor core

Introduction to Cold Fire Core - User, Supervisor, EMAC and Interrupt Programming Models, Addressing modes, Exception processing sequence, Exception Vector Table, Interrupt Controller, Interrupt Vector Generation, Reset Controller Module, Clock Module, System Control Module, Chip Configuration Module Programming with S12X processor.

Free-Scale Cold Fire 32 Bit Processor Peripherals and Programming

Analog to Digital Converters, Universal Asynchronous Transmitter Receiver, Timer Unit, Queued Serial Peripheral Interface, Fast Ethernet controller, Tools and Software. C programming examples with Code Warrior tools.

Recent Mobile Processor

Evolution of Processor Architecture in Mobile Phones, Benefits of Multiple CPU Cores in Mobile Devices, Processors for Mobile Applications, features and comparison – Quad Core, Octa Core processor.

Text book(s):	
1.	John H. Davies, 'MSP430 Microcontroller Basics', 2 nd Edition, Elsevier Science & Technology, 2015.
2.	Munir Bannoura, Rudan Bettelheim and Richard Soja 'ColdFire Microprocessors & Microcontrollers', AMT Publishing, 2007.
Reference(s):	
1.	'ColdFire Family Programmer's Reference Manual', Free scale Semiconductors, 2005.

		B.E. Elect		ege of Tecl d Commu	nication Er	ngineering	J		
				Elective					
		40	EC E15 D	igital Imag	ge Process	sing			
Semester Hours / Week Total Credit Maximum Marks							m Marks		
	L	Т	Р	hrs	С	CA	ES	Total	
VI	3	0	0	45	3	50	50	100	
	•	To underst	and the in	nage funda	amentals a	nd mathei	matical tra	nsforms for imag	
		processing							
Objective(s)	To learn the image enhancement techniques and image restoration procedures								
	To study the image compression techniques and image segmentation procedures								
	To understand the fundamentals of color image processing								
	At the end of the course, the students will be able to								
	1. Understand the fundamentals of Digital image								
	2. Analyse various transforms and their application								
	3. Discuss image enhancement techniques in spatial domain								
Course	Analyse image restoration through various filters								
Outcomes	Explain the concepts of segmentation and boundary extraction								
outcomes	6. Discuss the basics of boundary representation and various boundary descriptors								
	7. Understand the basics of colour image processing								
		Describe co							
				ompressior	n and vario	us compre	ession algo	prithms for lossles	
		compressio							
	10.	Understand	the algorit	thms for los	sy compre	ssion			

Digital Image Fundamentals and Transforms

Elements of visual perception – Image sampling and quantization Basic relationship between pixels – Basic geometric transformations-Introduction to Fourier Transform and DFT – Properties of 2D Fourier Transform – FFT – Separable Image Transforms – Walsh – Hadamard – Discrete Cosine Transform, Haar, Slant – Karhunen – Loeve transforms.

Image Enhancement and Restoration

Basic gray level transformations – Histogram equalization – Histogram matching –spatial filtering – smoothing spatial filters – sharpening spatial filters- model of the image degradation / Restoration process- mean filters – order – statistics filters- Adaptive filters – Inverse filtering – minimum mean square error filtering – constrained least squares filtering – Geometric mean filter – geometric transformations.

Image Segmentation and Representation

Edge detection – Thresholding – Region Based segmentation – Boundary representation: chair codes-Polygonal approximation – Boundary segments – boundary descriptors: Simple descriptors-Fourier descriptors – Regional descriptors –Simple descriptors- Texture

Color Image Processing

Color Fundamentals – Color Models – Pseudo color Image Processing –Basics of Full-Color Image Processing – Color Transformations – Smoothing and Sharpening – Image Segmentation Based on Color.

Image Compression

Lossless compression: Variable length coding – LZW coding – Bit plane coding- predictive coding - DPCM. Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG, Basics of Vector quantization.

Text book(s):

1.	Rafael C Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson Education, 3 rd Edition, 2015.
Refere	ence(s):
1.	Rafael C Gonzalez, Richard E. Woods, 'Digital Image Processing', Prentice Hall, 3rd Edition, 2013.
2.	A.K. Jain, 'Fundamentals of Digital Image Processing', New Edition, Prentice Hall of India, 2011.

	K.S. Ranga	samy Colle	ege of Tecl	nnology –	Autonom	ous	
			d Commu				
			Elective I				
	40 EC	E16 Four	dations fo	r Nanoeleo	tronics		
Semester	Hours / We	ek	Total	Credit		Maximun	n Marks
	L T	Р	hrs	C	CA	ES	Total
VI	3 0	0	45	3	50	50	100
	 To unders 	and the fur	ndamentals	of Quantur	n Mechani	ics	
Objective(s)			onic Oscilla			imations	
Objective(5)	 To study the 	ne concepts	s of Statistic	al Mechani	CS		
			ons of Nanc				
Course Outcomes	 for different s Discuss the f solutions Illustrate Qua mechanism Describe the Simple Harm Analyse the o dimensional s Describe the Discuss the o Understand f models Analyse the r topographical 	ne basics o ystems usir unction of c ntitative an function o onic Oscilla concept of o ystems quantization oncept of s he concep ole of gased view of thing r inorganic	f wave mec ng Schrodin operators us alysis of ar f quantum tors coupling in n in Electror tatistical me ts of quan ous interact n films	chanics and ger equations and oscillating LC circuit two level s magnetic file achanics and turn system ion with name	d analyse n tum mech mass-sp and find ystems ar eld and de d microsc ms and s no electric	nanics and p ring system the approx and solve the ensity of var opic system statistical a materials a	

Introduction to Quantum Mechanics

Particles, waves, probability amplitudes, Schrodinger equation, wave packets solutions, operators, expectation values, Eigen functions, piecewise constant potentials.

Simple Harmonic Oscillators and Approximations

SHM Operators, SHM wave packet solutions, Quantum LC circuit, WKB approximations, variational methods.

Systems With Two and Many Degrees Of Freedom

Two level systems with static and dynamic coupling, problems in more than one dimensions, electromagnetic field quantization, density of states.

Statistical Mechanics

Basic concepts, microscopic, quantum systems in equilibrium, statistical models applied to metals and semiconductors.

Applications

Hydrogen and Helium atoms, electronic states, Atomic force microscope, Nuclear Magnetic Resonance, carbon nanotube properties and applications.

Text book	s):
1.	Hagelstein, Peter L., Stephen D. Senturia, and Terry P. Orlando, Introduction to Applied Quantum and Statistical Physics', Wiley, 2004.
2.	Rainer Waser, 'Nanoelectronics and Information Technology', 3rd Edition, Wiley-VCH, 2012.
3.	Michael A. Nielsen and Isaac L. Chuang, 'Quantum Computation and Quantum Information', 10 th Edition, Cambridge University Press, 2010.
Reference	(s):
1.	Neil Gershenfeld, 'The Physics of Information Technology', Cambridge University Press, 2011.
2.	Adrian M.Ionesu and Kaustav Banerjee 'Emerging Nanoelectronics: Life with and after CMOS', Vol I, II and III, Kluwer Academic Publishers, 2005.

				Elective I						
		40 EC I	E17 Micro	Electrom	echanical	Systems				
Semester		Hours / Wee	ek	Total	Credit		Maximur	n Marks		
	L	Т	Р	hrs	С	CA	ES	Total		
VI	3	0	0	45	3	50	50	100		
	•	To understa	and the cor	ncepts of M	EMS and M	/licrosyster	ns			
	•	To unders	stand the	diverse	technolog	ical and	functiona	l approaches		
Objective(s)		Microsystems								
	• To understand the applications of MEMS which provides an insight of microsensors,									
	actuators and micro fluidics									
	At the	end of the c	ourse, the	e students	will be abl	e to				
	1.									
	2.	Describe the materials used for MEMS								
Course	3.	Discuss the manufacturing process of MEMS								
Outcomes	4.	Understand the working of Microsensors and Microactuators								
Outcomes	5.	Know the fundamentals of Micro/Nano fluids								
	6.	6. Understand the design rules, modeling, simulation, verification and testing of								
		actuators.								
	7.	Describe the								
	8.	Understand	assembly	and packad	aina techno	oloaies of N	ЛЕMS			

Laws of scaling- The multi-disciplinary nature of MEMS- Survey of materials central to micro engineering-Applications of MEMS in various industries.

Micro Manufacturing Techniques

Photolithography- Film deposition, Etching Processes-Bulk micro machining, silicon surface micromachining-LIGA process-Rapid micro product development.

Micro Sensors and Micro Actuators

Energy conversion and force generation-Electromagnetic Actuators, Reluctance motors, piezoelectric actuators, bi-metal-actuator Friction and wear –Transducer principles, Signal detection and signal processing-Mechanical and physical sensors-Acceleration sensor, pressure sensor, Sensor arrays.

Introduction to Micro/Nano Fluids

Fundamentals of micro fluidics- Micro pump – introduction – Types – Mechanical Micro pump – Non mechanical micro pumps, Actuating Principles, Design rules for micro pump – modeling and simulation, Verification and testing –Applications.

Microsystem Design and Packaging

Design considerations-Mechanical Design, Process design, Realization of MEMS components using Intellisuite. Micro system packaging-Packing Technologies-Assembly of Microsystems- Reliability in MEMS.

Text book	(s):
1.	Maluf, Nadim, 'An introduction to Micro Electro-mechanical Systems Engineering'', 2 nd Edition,
١.	Artech House, 2000.
Reference	(s):
1.	Mohamed Gad – el – Hak, 'MEMS Handbook', Edited CRC Press, 2002.
2.	Sabrie Solomon, 'Sensors Handbook', 2 nd Edition, McGraw Hill, 2013.
3.	Marc F madou, 'Fundamentals of Micro Fabrication', 3 rd Edition, CRC Press, 2011.
4.	Francis E.H Tay and W. O. Choong, 'Micro Fluidics and Bio MEMS Application', IEEE Press, 1997.
5.	Trimmer William S, 'Micromechanics and MEMS', IEEE Press, 1997.

	K.S.Rangasamy College of Technology – Autonomous Regulation B.E. Electronics and Communication Engineering								
	Elective I								
	40 IT E17 Programming in Java								
Semester Hours / Week Total Credit Maximum									
Semester	L T P hrs C CA ES Tota								
VI	3 0 0 45 3 50 50 100								
Objective(s)	 Introduce the concepts of packages and class libraries. Design and develop GUI programs with the help of Applet, AWT and JDBC. At the end of the course, the students will be able to 								
Course Outcomes	 Implement classes and control access to members of a class. Demonstrate reusability through inheritance concepts. Extrapolate code reduction and access different operations through single packages interfaces and error-handling techniques using exception handling. Apply the concept of multithreading applications that can take advantage of multiple processors and perform string operations. Explore the importance of lang package and I/O file system. Analyze the basic differences between byte stream and character stream I/O classes. Explain the functionalities of collections framework classes and interfaces. Design the application using Legacy Classes and Interfaces of utility package. Effectively use layout managers with AWT and build complex screens with the help of one or multiple layout managers using Applet. Designing an event - driven Application using Event Handling concepts and apply JDBC technology to manipulate data from databases. 								

Java Introduction

An overview of Java, Arrays, Methods, Object oriented java programming - Classes and Objects, Inheritance and Polymorphism.

Java Concepts

Packages and Interfaces, Exception handling, Multithreaded programming, String Handling.

Packages

Introduction to Lang package, I/O packages – File, The stream classes, The byte streams, The character streams, Serialization, Externalizable.

Collection Framework and Utility Classes

The Collection Interfaces, The Collection Classes and Interfaces, Using an Iterator, Working with Maps, The Legacy Classes and Interfaces, String Tokenizer.

Gui Programming With JDBC

Applet Class - Basics, Skeleton, The HTML APPLET Tag, Introducing the AWT - working with windows, Graphics and Text, Using AWT controls, Layout Managers and Menus, Event handling, Java Data Base Connectivity (JDBC).

Text book (s) :

1	Herbert Schildt, 'The complete Reference – Java 2', 5 th Edition, Tata McGraw Hill Publishing Company, 2006.
2	H.M. Deitel, P.J. Deitel 'JAVA [™] How to program', 6 th Edition, Pearson Education – 2007. [JDBC only]
3	K.Rajkumar, 'Java programming', 1 st Edition, Pearson Education – 2013.
Refere	ence (s) :
1	Advanced programming in JAVA prentice – Hall of India Private Limited NIIT – 2003.
2	Pratik patel and Karlmoss 'Java Data base programming with JDBC', 2 nd Edition, Dream tech press –

2 2000.

	K.	S. Rangas	samy Colle	ege of Tec	nnology - /	Autonomo	ous	
		B.E. Elect	tronics an	d Commur	nication Er	ngineering		
				Elective I				
40 HS 001 Professional Ethics								
Semester Hours / Week Total Credit Maximum Marks							n Marks	
	L	Т	Р	hrs	C	CA	ES	Total
VII	2	0	0	45	2	50	50	100
Objective(s)	To create	e an aware	ness on Et	hics and H	uman Valu	es and inst	till Moral a	nd Social Values in
Objective(3)	students							
Course Outcomes	 To create an awareness on Ethics and Human Values and instill Moral and Social Values in students At the end of the course, the student will be able to Know the concept of ethics and engineering as a profession. Learn the core qualities of professional practitioners. Realize engineering as experimentation. Study the role of codes and industrial standards as per law. Understand the need of safety in testing and designing. Know about risk benefit analysis and reducing risk. Understand the importance of collegiality, conflict of interest, and professional rights. Know the employee rights and IPR. Understand the ethics in MNC's, Computers and Social Medias. Know the values of engineers as managers and engineers responsibilities in 							

Introduction

Morals, values and ethics – Integrity – Respect for others, Honesty – Commitment – Character– Core qualities of professional practitioners –Theories of right action – Types of inquiry – Kohlberg's stages of moral development – Carol Gilligan theory – Moral dilemmas – Moral autonomy.

Engineering as Social Experimentation

Engineering as Experimentation – Engineers as Responsible Experiments – Codes of Ethics – A Balanced Outlook on Law – The Challenger Case Study and Volks Wagon's Case Study.

Engineers Responsibility for Safety and Risk

Safety and Risk – Assessment of Safety and Risk – Risk Benefit analysis and reducing Risk – The Three Mile Island Disaster Case Study and Chennai Moulivakkam Building Accident case study.

Responsibilities and Rights

Collegiality and Loyalty – Respect for Authority – Conflict of Interest – Collective Bargaining – Confidentiality - Occupational Crime – Professional Rights – Employee Rights – Customers Rights - Intellectual Property Rights (IPR) – Discrimination – Nestle Maggi Case Study.

Global Issues

Multinational corporations(MNC) – Environmental Ethics – Computer ethics – Social Media Ethics – Engineers as Managers, Expert Witnesses and Advisors – Moral leadership - Weapons development – The Bhopal Gas Tragedy Case Study.

Text book(s)):
1.	Govindarajan M, Natarajan S, Senthil Kumar V.S, 'Engineering Ethics', Prentice Hall of India (P) Ltd, New Delhi, 10 th Reprint, 2009.
Reference(s):
1.	Mike W. Martin and Roland Schinzinger, 'Ethics in Engineering', Tata McGraw Hill Publishing Company Limited, New Delhi, 2007.
2.	Govindan K.R., and Sendhil Kumar S., 'Professional Ethics and Human Values', Anuradha Publications, Chennai, 2011.

	K.S. Rangasamy College of Technology – Autonomous B.E. Electronics and Communication Engineering						
	Elective II						
	40 EC E21 Advanced Digital Signal Processing						
Semester Hours / Week Total Credit Maximum Marks							
	L T P hrs C CA ES Total						
VII	3 0 0 45 3 50 50 100 The purpose of this course is to provide in depth treatment on methods and techniques in						
Objective(s)	Discrete time signal transforms, digital filter design, optimal filtering						
Course Outcomes	 At the end of the course, the students will be able to Understand the basic theory of discrete time random process. Understand various approaches to spectrum estimation problem based on signal modeling techniques. Understand various approaches for estimating the power spectrum of a stationary random process Analysis various algorithms for solving a set of linear equation for several signal modeling 						

Discrete Random Signal Processing

Weiner Khitchine relation Power spectral density – filtering random process, Spectral Factorization Theorem, special types of random process – Signal modeling Least Squares method, Pade approximation, Prony's method, iterative Prefiltering, Finite Data records, Stochastic Models.

Spectrum Estimation

Non-Parametric methods Correlation method Covariance estimator Performance analysis of estimators – Unbiased consistent estimators Periodogram estimator Barlett spectrum estimation Welch estimation Model based approach AR, MA, ARMA Signal modeling Parameter estimation using YuleWalker method.

Linear Estimation and Prediction

Maximum likelihood criterion Efficiency of estimator Least mean squared error criterion Wiener filter Discrete Wiener Hoff equations Recursive estimators Kalman filter Linear prediction, Prediction error Whitening filter, Inverse filter Levinson recursion, Lattice realization, Levinson recursion algorithm for solving Toeplitz system of equations.

Adaptive Filters

FIR Adaptive filters Newton's steepest descent method Adaptive filters based on steepest descent method Widrow Hoff LMS Adaptive algorithm Adaptive channel equalization Adaptive echo canceller Adaptive noise cancellation RLS Adaptive filters Exponentially weighted RLS Sliding window RLS Simplified IIR LMS Adaptive filter.

Multirate Digital Signal Processing

Mathematical description of change of sampling rate Interpolation and Decimation Continuous time model Direct digital domain approach Decimation by integer factor Interpolation by an integer factor Single and multistage realization Poly phase realization Applications to sub band coding Wavelet transform and filter bank implementation of wavelet expansion of signals.

Text	book(s):
1	Monson H. Hayes, 'Statistical Digital Signal Processing and Modeling', John Wiley and Sons Inc., New York, 2008.
2	P. P. Vaidyanathan, 'Multirate Systems and Filter Banks', Prentice Hall, 1992.
Refe	rence(s):
1	Sophoncles J. Orfanidis, 'Optimum Signal Processing', McGrawHill, 2007.
2	Dimitris Manolakis and Vinay Ingle, 'Applied Digital Signal Processing', Cambridge University Press, 2012
3	Simon Haykin, 'Adaptive Filter Theory', Prentice Hall, Englehood Cliffs, NJ1986.
4	S. Kay,' Modern Spectrum Estimation Theory And Application', Prentice Hall, Englehood Cliffs, Nj1988.
5	Sophoncles J. Orfanidis, 'Optimum Signal Processing', McGrawHill, 2007.
6	Mark Owen, 'Practical Signal Processing', Cambridge University Press, 2012
7	Alan V Oppenheim, Ronald W Schafer, John R Back, 'Discrete Time Signal Processing', Prentice-Hall, 2 nd Edition 2000.
8	Sen M.Kuo, Woon – Seng Gan, 'Digital Signal Processing Architectures, Implementations, and Applications', Pearson Education, 2005

K.S. Rangasamy College of Technology - Autonomous								
	B.E. Electronics and Communication Engineering							
	Elective II							
	40 EC E22 Robotics							
Semester	r Hours / Week Total hrs Credit Maximum Marks							
	L T P C CA ES Total							
VII	3 0 0 45 3 50 50 100							
Objective(s)	 To introduce the basic concepts, parts of robots and types of robots. To make the student familiar with the various drive systems for robot and power transmission system in robots To discuss about the robot manipulator and end effector To enhance the knowledge about localization and path planning To broaden the importance of robot vision and robotic operating systems 							
Course At the end of the course, the students will be able to 0.1. Know about the specification and classification of robots 2. Gain knowledge about the forward and inverse kinematics of robots 3. Acquire good knowledge about the robot drive systems 4. Learn about the power transmission of robots 5. Describe the construction of robot manipulator 6. Gain good knowledge of end effectors 7. Analyze the challenges of localization 8. Evaluate the path planning 9. Learn about the elements of visual perception and Image processing 10. Acquire good knowledge about Robotic Operating Systems								

Introduction

Specifications of Robots- Classifications of robots – Robot anatomy - Work envelope - Flexible automation versus Robotic technology – Applications of Robots. Robot Kinematics and Dynamics: Positions, Orientations and frames, Mappings: Changing descriptions from frame to frame, Operators: Translations, Rotations and Transformations - Transformation Arithmetic - D-H Representation - Forward and inverse Kinematics Of Six Degree of Freedom Robot Arm – Robot Arm dynamics

Robot Drives and Power Transmission Systems

Robot drive mechanisms, hydraulic – electric – servomotor- stepper motor - pneumatic drives, Mechanical transmission method - Gear transmission, Belt drives, cables, Roller chains, Link – Rod systems - Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws

Robot Manipulators and End Effectors

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators Classification of End effectors – Tools as end effectors. Drive system for grippers Mechanical adhesive-vacuum-magneticgrippers. Hooks & scoops. Gripper force analysis and gripper design. Active and passive grippers

Localization and Path planning

Introduction-Challenges of Localization- Map Representation- Probabilistic Map based Localization- Monte carlo localization- Landmark based navigation -Globally unique localization- Positioning beacon systems- Route based localization.

Trajectory planning and avoidance of obstacles, path planning, skew motion, joint integrated motion –straight line Motion-Robot languages -. Computer control and Robot software.

Robot Vision

Basic Components – Elements of visual perception, Lenses: Pinhole cameras, Gaussian Optics – Cameras – Camera-Computer interfaces. Vision and Tracking: Following the road, Iconic image processing, Multiscale image processing, Video Tracking - Learning landmarks: Landmark spatiograms, K-means Clustering, EM Clustering. Basic introduction to Robotic operating System (ROS) - Real and Simulated Robots - Introduction to OpenCV, Open NI and PCL, installing and testing ROS camera Drivers, ROS to OpenCV - The cv_ bridge Package.

Refere	Reference book(s):						
1.	Barry Leatham - Jones, 'Elements of industrial Robotics', Pitman, 1987.						
2.	MikellP.Groover, Mitchell Weiss, Roger N.Nagel Nicholas G.Odrey, 'Industrial Robotics Technology, Programming and Applications', McGraw Hill Book Company, 2008						
3.	R.Patrick Goebel, 'ROS by Example: A Do-It-Yourself Guide to Robot Operating System –Volume I', A Pi Robot Production, 2012.						
4.	Fu K.S. Gonzaleaz R.C. and Lee C.S.G., 'Robotics Control Sensing, Vision and Intelligence', McGraw Hill International Editions, 1987						
5.	Bernard Hodges and Paul Hallam, 'Industrial Robotics', British Library Cataloging in Publication, 1990						
6.	Deb, S.R., 'Robotics Technology and flexible automation', Tata McGrawHill, 2010						

	K.S. Rangasamy College of Technology - Autonomous B.E. Electronics and Communication Engineering								
				Elective		J	5		
		40	EC E23 R	adar and N	lavigationa	al Aids			
Semester	H	ours / Wee	ek	Total	Credit		Maximum	Marks	
	L	Т	Р	hrs	С	CA	ES	Total	
VII	3	0	0	45	3	50	50	100	
Objective(s)								ples of navigation,	
Course Outcomes	 To understand the basic concepts, types of radars and antennas, principles of navigation, in addition to the basic ideas and learning aids related to navigation. At the end of the course, the students will be able to Analyse the radar parameters and frequency and describe the block diagram of radar Determine the noises in radar system and describe and Analyse the different types of radar. Design LNA and describe the types of displays used in radar. Design the antenna used for radar system and understand the detection of radar signal in noise and clutter. Design matched filter used in radar system and understand the detection of non fluctuation target in noise. Explain the general principals of radio navigation and identify the radio compass suitable for radar system. Describe the different types of landing and basics of satellite navigation Identify the usage of GPS and DGPS and Analyse the parameter of GPS Understand the usage of radar in different applications and describe the signal processing in radar application. 								

Range Equation and Types of Radar

Basic Radar, Radar equation, Block diagram, Radar frequencies. Types of Radar: CW, Doppler, MTI, FMCW, Pulsed, Tracking Radar. Digital MTI processing (MTD)

Radar System Concepts

Different type of Noise, Noise figure, LNA. False alarm & Missed detection, Radar cross section, TR, ATR, Types of Displays -Color CRT, Bright displays, synthetic video displays, A scope, PPI.

Detection of Radar Signals in Noise and Antennas

Detection of radar signals in Noise and clutter, detection criteria and detectors, Matched filter, Matched filter response to delayed Doppler shifted signals, Radar measurements. Types of Antennas: Parabolic, Cassegrain and Electronically steered phased array antennas.

Radio Navigation and Landing Aids

General principles, NDB, ADF, VOR, DME, Hyperbolic Navigation DECCA, OMEGA, LORAN, Mechanics of Landing: Instrument Landing System, Microwave Landing System

Satellite Navigation and Hybrid Navigation System

Basics of Satellite Navigation, Introduction to Global Positioning System., System Description, Basic principles, position, velocity determination, Signal structure- DGPS, Integration of GPS & INS.

Text book(s	5)·
1.	M.I.Skolnik, 'Introduction to Radar Systems', Tata McGraw Hill, 2007.
2.	Myron Kyton and W.R.Fried, 'Avionics Navigation Systems', 2 nd Edition, John Wiley & Sons, 1997.
Reference(5):
1	Nagaraja, 'Elements of Electronic Navigation', Tata McGraw Hill, 2 nd Edition, 2000.
2	Albert Helfrick. D, 'Principles of Avionics', Avionics communications Inc., 2000.
3	Nathansan, 'Radar design principles-Signal processing and environment', PHI, 2 nd Edition, 2007.
4	Hofmann-Wellenhof, Hlichlinegger and J.Collins, 'GPS Theory and Practice', 5 th Edition, Springer International Edition, 2007.
5	Roger J.Sullivan, 'Radar foundations for Imaging and advanced concepts', PHI, 2004.
6	Mark A.Richards, 'Fundamentals of Radar Signal Processing', Tata McGraw Hill, 2005.
7	Bassem R.Mahafza, 'Radar systems analysis & Desgin using Matlab', Chapman & Hall/CRC, 2000.

	K.S. Rangasamy College of Technology – Autonomous								
	B.E. Electronics and Communication Engineering								
				Elective II					
		40 E0	C E24 Adva	anced Digital	Communio	cation			
Semester		Hours / Wee	k	Total hrs	Credit		Maximum	Marks	
	L	Т	Р	Total hrs	С	CA	ES	Total	
VII	3	0	0	45	3	50	50	100	
Objective(s)	 To study the advanced digital modulation/demodulation techniques suitable for band limited fading channels To learn the advanced error control coding techniques and multi carrier spread spectrum techniques 								
Course Outcomes	techniques At the end of the course, the students will be able to 1. Discuss advanced digital modulation techniques suitable for band limited fading channels 2. Discuss advanced digital demodulation techniques suitable for band limited fading channels 3. Describe the various types optimum receivers and its performances 4. Analyse the various diversity techniques for multipath channels 5. Discuss the various signal detection and equalization techniques 6. Examine the advanced error control coding techniques 7. Describe the various multi carrier and spread spectrum techniques								

Advanced Digital Modulation

Memory less modulation methods: PAM, M-QAM, one shot minimum distance receiver, minimum distance sequence detection, optimum detection and error probability for PAM and QAM in AWGN channels, modulation schemes with memory: continuous-phase frequency-shift keying (CPFSK), continuous-phase modulation (CPM).

Digital Communication Through Band Limited and Fading Channels

Characterization of band-limited channels, optimum receiver for channels with ISI and AWGN: maximum likelihood receiver, discrete time model for a channel with ISI, maximum likelihood sequence estimation, performance of MLSE for channels with ISI, characterization of fading multipath channels: channel correlation functions and power spectra, statistical model for fading channels, the effect of signal characteristics on the choice of a channel model, frequency non selective and slowly fading channel, diversity techniques for fading multipath channels.

Detection and Equalization

Detection of a single real valued symbol, detection of a signal vector, known signal in gaussian noise, mI sequence detection: VITERBI algorithm, map detection: BCJR algorithm, equalization: optimal zero forcing equalizer, generalized equalization methods, fractionally spaced equalizer (FSE), decision feedback equalizer (DFE), adaptive DFE.

Error Control Signal Space Coding

Capacity penalty of binary coding, binary linear block code, convolution codes, low density parity check, turbo codes, trellis codes, COSET codes, signal space coding and ISI.

Multicarrier Systems and Spread Spectrum Technique

Single carrier Vs multicarrier modulation, orthogonal frequency division multiplexing (OFDM), modulation and demodulation in an OFDM system, FFT algorithm implementation of an OFDM system, spectral characteristics of multicarrier signals, performance degradation of an OFDM system due to doppler spreading, direct sequence spread spectrum technique, frequency-hop spread spectrum technique, rake demodulator.

Text book(s)	
1.	Proakis J G, 'Digital Communications', McGraw Hill Inc , New York, 2010.
2.	Barry S, Lee E A and Messershmitt D J, 'Digital Communications', Kluwer Academic Press , 2009.
Reference(s)	
1.	Marvin K Simon, and Mohamed-Slim Alouini, 'Digital Communication over fading channels', John Wiley & sons Inc. singapore, 2005.
2.	Robert G Gallager, 'Principles of Digital Communication', Cambridge University Press, New Delhi ,2008.
3.	Won Y. Yang et al, 'MATLAB/Simulink for Digital Signal Processing' Hongrung Publishing, Korea, Indian Edition, 2012.

	K	.S. Rangas	amy Coll	ege of Te	chnology -	Autonom	ous	
		B.E. Elect	ronics ar	nd Commu	inication E	ngineerin	g	
				Elective	II			
		40 EC E2	25 Crypto	ography ai	nd Network	Security		
Semester Hours / Week Total Credit Maximum Marks								Marks
	L	Т	Р	hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objective(s)		urity tools	and unde	rstanding th	e system	and number th level security	
Course Outcomes Number Theo	At the end of the course, the students will be able to1.Understand the concepts of Ciphers.2.Examine the different GF (2) fields.3.Understand the different ciphers and its Encryption Standards.4.Know the multiple uses of modern block ciphers and modern stream ciphers5.Evaluate the mathematics of cryptography, Primarily Testing and Factorization.6.Design the different Asymmetric key Encipherment algorithms.7.Understand the message integrity and formulate the message authentication.8.Analyze the digital signature schemes and understand the concepts of key management9.Examine the security at the Application, Transport and Network layer.10.Understand the Two Security Protocol.							actorization. entication. concepts of key
Modern block stream cipher Asymmetric Primarily Test	Key Encipher ing – Factoriza	ment ation – Chin	ese Rema	ainder The				lock ciphers and
Integrity Autl Message integ Biometrics – P	SA Rabin – E nentication ar grity –messag ćerberos – syr	nd Key Man e authentica	agement tion – SH	t A-512 – W				
	Application L curity Associa				ayer, Securi	ty at the n	etwork layer,	Two Security
Text book(s)					-		-	
1.	Behrouz A. Fo	erouzan, 'Cr	yptograpl	ny & Netwo	ork Security'	', Tata Mc	Graw Hill, 2 nd	Edition, 2011.
2. W.Stallings, 'Cryptography & Network Security: Principles and Practice', Prentice Hall of India, 4th Edition, 2007.								
Reference(s)	:							
	Douglas R.Stlinson, 'Cryptography Theory and Practice', CRC Press series on Discrete							
1.	Mathematics and its application 1995 Charlie Kaufman, Radia Perlman, Mike Speciner, 'Network Security Private Communication in a						ss series on D	Discrete

	K.S. Rangasamy College of Technology – Autonomous								
	B.E. Electronics and Communication Engineering								
				Elective I					
		EC E26 Ele	-	etic Interfe	erence and	Compati			
Semester	ŀ	lours / Wee	ek	Total	Credit		Maximum	Marks	
	L	Т	Р	hrs	С	CA	ES	Total	
VII	3	0	0	45	3	50	50	100	
Objective(s)	 To understand the basics of EMI To study EMI Sources To understand EMI problems To understand Measurement technique for emission To understand Measurement technique for immunity To understand Solution methods in PCB 								
Course Outcomes									

EMI/EMC Concepts

EMI-EMC definitions and Units of parameters; Sources and victim of EMI; Conducted and Radiated EMI Emission and Susceptibility; Transient EMI, ESD; Radiation Hazards.

EMI Coupling Principles

Conducted, radiated and transient coupling; Common ground impedance coupling; Common mode and ground loop coupling; Differential mode coupling; Near field cable to cable coupling, cross talk; Field to cable coupling; Power mains and Power supply coupling.

EMI Control Techniques

Shielding- Shielding Material-Shielding integrity at discontinuities, Filtering- Characteristics of Filters Impedance and Lumped element filters-Telephone line filter, Power line filter design, Filter installation and Evaluation, Grounding- Measurement of Ground resistance-system grounding for EMI/EMC- Cable shielded grounding, Bonding, Isolation transformer, Transient suppressors, Cable routing, Signal control. EMI gaskets.

EMI Measurements and Standards

Open area test site; TEM cell; EMI test shielded chamber and shielded ferrite lined anechoic chamber; Tx /Rx Antennas, Sensors, Injectors / Couplers, and coupling factors; EMI Rx and spectrum analyzer; Civilian standards-CISPR, FCC, IEC, EN; Military standards-MIL461E/462. Frequency assignment - spectrum conversation. British VDE standards, Euro norms standards in japan - comparisons. EN Emission and Susceptibility standards and Specifications.

EMC Design Of PCBS

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

Text book(s):
1.	V.P.Kodali, 'Engineering EMC Principles, Measurements and Technologies', IEEE Press, Newyork, 2 nd Edition 2010
2.	Clayton R.Paul,' Introduction to Electromagnetic Compatibility', John Wiley Publications, 2 nd Edition 2010
Reference(s):
1.	Henry W.Ott, 'Noise Reduction Techniques in Electronics Systems. A Wiley Inter Science Publication John Wiley and Sons New York 2009
2.	Bemhard Keiser, 'Principles of Electromagnetic Compatibility', Artech house, Norwood, 2008.
3.	White Donald R J Consultant Incorporate, Handbook of EMI/EMC, Vol I-V, 1988

K.S. Rangasamy College of Technology – Autonomous B.E. Electronics and Communication Engineering									
	Elective III								
	40 EC E31 Testing and Fault Diagnosis of VLSI Circuits								
Semester Hours / Week Total hrs Credit Maximum Marks									
	L T P C CA ES Total								
VII	3 0 0 45 3 50 50 100								
Objective(s)	 To know the concepts of the test generation methods-DFT-BIST. To understand the fault diagnosis methods. 								
Course At the end of the course, the students will be able to 1. Apply test pattern for the detection of logical faults in digital circuits 2. Describe the various logical fault models simulation 3. Analyze test generation of various algorithms for combinational circuit 4. Apply test generation of various algorithms for sequential circuit 5. Describe the various techniques for design for testability 6. Explain the concepts of system level DFT approaches 7. Know the various BIST architecture 8. Understand the various BIST test algorithms 9. Illustrate the fault diagnosis method 10. Design a self-checking for digital circuit and system									

Testing and Fault Modeling

Introduction to testing – Faults in Digital Circuits – Modeling of faults – Logical Fault Models simulation – Delay models – Gate Level Event – driven simulation.

Test Generation

Test generation for combinational logic circuits – Testable combinational logic circuit design – Test generation for sequential circuits – design of testable sequential circuits.

Design for Testability

Design for Testability – Ad-hoc design – generic scan based design – classical scan based design – system level DFT approaches.

Self – Test and Test Algorithms

Built-In self Test – test pattern generation for BIST – Circular BIST – BIST Architectures – Testable Memory Design – Test Algorithms – Test generation for Embedded RAMs.

Fault Diagnosis

Logical Level Diagnosis – Diagnosis by UUT reduction – Fault Diagnosis for Combinational Circuits – Selfchecking design – System Level Diagnosis.

Reference(s):

1.	M.Abramovici, M.A.Breuer and A.D. Friedman, 'Digital systems testing and Testable Design', Jaico Publishing House, 2002.
2.	P.K. Lala, 'Digital Circuit Testing and Testability', Academic Press, 2002.
3.	M.L.Bushnell and V.D.Agrawal, 'Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits', Kluwer Academic Publishers, 2002.
4.	A.L.Crouch, 'Design-For-Test For Digital IC's And Embedded Core Systems', Prentice Hall International, 2002.
5.	http://www.facweb.iitkgp.ernet.in/~isg/TESTING/

K.S. Rangasamy College of Technology – Autonomous									
B.E. Electronics and Communication Engineering									
	Elective III								
40 EC E32 High Speed Networks									
Semester	Hours / Week Total Credit Maximum Marks								
	L	Т	Р	hrs	С	CA	ES	Total	
VII	3	0	0	45	3	50	50	100	
	• 7	Fo familiari:	ze High Sp	eed Netwo	rks				
Objective(s)	To understand Congestion and Traffic Management								
	To know the QoS of High speed networks								
	At the end of the course, the students will be able to								
	1. Describe the concepts of asynchronous transfer mode.								
	2. Describe the architecture of high speed LANs.								
	3. Dis	scuss cong	estion con	trol and its	effects.				
Course	4. De	scribe traff	ic manage	ment in dat	a transmis	sion.			
Outcomes	5. Dis	scuss TCP	congestion	n control pr	otocol.				
Outcomes	6. Dis	scuss ATP	congestion	n control pro	otocol.				
	7. De	scribe the	architectur	e of integra	ted service	es.			
	8. De	scribe the	various int	egrated and	d differentia	ated servic	es.		
	9. An	alysis the	protocol m	echanism fo	or QoS.				
	10. Dis	scuss multi	protocol la	bel switchir	ng and RTF	P.			

High Speed Networks

Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL. High Speed LANs: Fast Ethernet– WirelessLANs: applications, requirements – Architecture of 802.11.

Congestion and Traffic Management

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks.

TCP and ATM congestion control

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO back off – KARN's Algorithm – Window management – Performance of TCP over ATM Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations.

Integrated and Differentiated Services

Integrated Services -Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection.

Protocols for QOS Support

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol.

Text book	(s):									
1.	William Stallings, High Speed Networks and Internet, Pearson Education, 2002.									
Reference	(s):									
1	Warland, PravinVaraiya, High Performance Communication Networks, Jean Harcourt Asia									
1.	,2001.									
2.	IrvanPepelnjk, Jim Guichard and Jeff Apcar, MPLS and VPN Architecture, Cisco Press,									
۷.	Volume 1 and 2, 2003									

	K.S. Rangasamy College of Technology – Autonomous								
B.E. Electronics and Communication Engineering									
	Elective III 40 EC E33 Measurements and Instrumentation								
Semeste	Hours / Week Credit Maximum Marks								
	L T P C CA ES Total								
VII	3 0 0 45 3 50 50 100								
Objective(s)	 To introduce principles of various measurement techniques using analog and digital equipments To teach Importance of signal generators and analyzers in measurements To emphasize the need for data acquisition systems and optical domain measurement techniques 								
Course Outcomes	 At the end of the course, the students will be able to 1. Understand the basic concepts measurement system 2. Learn the characteristics of various measurement techniques 3. Discuss the classification of various transducer 4. Understand the concepts of various sensors 5. Determine the relevant parameter measurement using AC and DC bridges 6. Learn the concepts of various signal analyzer 7. Understand the principle of digital instruments 8. Learn the basic concepts of IEEE buses 9. Discuss the storage oscilloscope device 10. Understand the virtual instrumentation and its application 								

Science of Measurement

Measurement System – Instrumentation – Characteristics of measurement systems – Static and Dynamic – Errors in Measurements – Calibration and Standards.

Transducers

Classification of Transducers – Variable Resistive transducers – Strain gauges , Thermistor, RTD-Variable Inductive transducers- LVDT, RVDT,- Variable Capacitive Transducers – Capacitor microphone- Photo electric transducers – Piezo electric transducers – Thermocouple – IC sensors - Fibre optic sensors – Smart/intelligent sensors.

Signal Conditioning and Signal Analyzers

DC and AC bridges – Wheatstone, Kelvin, Maxwell, Hay and Schering. Pre- amplifier – Isolation amplifier – Filters – Data acquisition systems. Spectrum Analyzers – Wave analyzers – Logic analyzers.

Digital Instruments

Digital Voltmeters – Millimeters – automation in Voltmeter – Accuracy and Resolution in DVM - Guarding techniques – Frequency counter- Data Loggers – Introduction to IEEE 488/GPIB Buses.

Data Display and Recording Systems

Dual trace CRO – Digital storage and Analog storage oscilloscope. Analog and Digital Recorders and printers. Virtual Instrumentation - Block diagram and architecture – Applications in various fields. Measurement systems applied to Micro and Nanotechnology.

Text	book(s):							
1.	Albert D.Helfrick and William D. Cooper, 'Modern Electronic Instrumentation and Measurement Techniques', Prentice Hall of India, 2007.							
2.	Ernest O. Doebelin and Dhanesh N. Manik, 'Measurement Systems', 5th Edition, McGraw-Hill, 2007.							
Refer	ence(s):							
1.	John P. Bentley, 'Principles of Measurement Systems', 4th Edition, Pearson Education Limited, 2005.							
2.	A. K. Sawhney, 'Course In Electrical and Electronic Measurement and Instrumentation', Dhanpat Rai Publisher, 2000.							
3.	Bouwens,A.J, 'Digital Instrumentation', Tata Mc-Graw Hill, 1986							
4.	David A.Bell, 'Electronic Instrumentation and Measurements', 2 nd Edition, Prentice Hall of India, 2007.							

	K.S. Rangasamy College of Technology – Autonomous								
	B.E. Electronics and Communication Engineering								
	Elective III								
-	40 EC E34 Satellite Communication								
Semester	F	ours / Wee		Total hrs	Credit		Maximu		
	L	Т	P	Total III S	С	CA	ES	Total	
VII	3	0	0	45	3	50	50	100	
	• (Overview of	satellite sys	tems in relati	on to other	errestrial sy	/stems.		
	• 5	Study of sate	ellite orbits a	nd launching] .				
Objective(s)	Study of earth segment and space segment components.								
	Study of satellite access by various users.								
	Study of DTH and compression standards.								
	At the er	nd of the c	ourse, the	e students v	will be abl	e to			
	1.Lea	rn basic cor	ncepts and o	operation of s	satellite com	munication	systems		
				coordinate s					
				eostationary		0			
Course	4. Disc	uss the con	cepts on blo	ocks of space	e segment.				
outcome(s)				tracking of th					
	6. Discuss the various parameters of space linking satellite system.								
	7. Und	erstand how	analog and	digital techr	nologies are	used for sa	tellite comm	nunication networks.	
				proadcasting					
	9. Lear	n MPEG co	mpression i	methods and	satellite mo	bile service	s		

Overview of Satellite Systems, Orbits and Launching Methods

Introduction – Frequency Allocations for Satellite Services – Intelsat – U.S.Domsats – Polar Orbiting Satellites – Problems – Kepler's Law –Definitions of Terms for Earth-orbiting Satellites – Orbital Elements – Apogee and Perigee Heights – Orbital Perturbations –Inclined Orbits – Calendars – Universal Time – Julian Dates – Sidereal Time – The Orbital Plane – The Geocentric-Equatorial Coordinate System – Earth Station Referred to the IJK Frame – The Top centric-Horizon Co-ordinate System – The Sub-satellite Point – Predicting Satellite Position.

Geostationary Orbit & Space Segment

Introduction – Antenna Look Angels – The Polar Mount Antenna – Limits of Visibility – Near Geostationary Orbits – Earth Eclipse of Satellite – Sun Transit Outage – Launching Orbits – Problems – Power Supply – Attitude Control – Spinning Satellite Stabilization – Momentum Wheel Stabilization – Station Keeping – Thermal Control – TT&C Subsystem – Transponders – Wideband Receiver – Input Demultiplexer – Power Amplifier – Antenna Subsystem – Morelos – Anik-E – Advanced Tiros-N Spacecraft

Earth Segment & Space Link

Introduction – Receive-Only Home TV Systems – Master Antenna TV System – Community Antenna TV System – Transmit-Receive Earth Stations – Problems – Equivalent Isotropic Radiated Power – Transmission Losses – Free-Space Transmission – Feeder Losses – Antenna Misalignment Losses – Fixed Atmospheric and Ionospheric Losses – Link Power Budget Equation – System Noise – Carrier-to-Noise Ratio – Uplink – Saturation Flux Density – Input Back Off – The Earth Station HPA – Downlink – Output Back off – Satellite TWTA Output – Effects of Rain –Combined Uplink and Downlink C/N Ratio.

Satellite Access

Single Access – Preassigned FDMA, Demand-Assigned FDMA, SPADE System. Bandwidth- limited a Power-limited TWT amplifier operation, FDMA downlink analysis. TDMA : Reference Burst; Preamble and Postamble, Carrier recovery, Network synchronization, unique word detection, Traffic Date, Frame Efficiency and Channel capacity, preassigned TDMA, Demand assigned TDMA, Speech Interpolation and Prediction, Downlink analysis for Digital transmission. Companion of uplink Power requirements for FDMA & TDMA. On-board signal Processing for TDMA / FDMA operation, Satellite switched TDMA. Code -Division Multiple Access. Network Layers – TCP Link – Satellite Links and TCP – Enhancing TCP Over Satellite Channels Using Standard Mechanisms – Requests for comments – Split TCP connections – Asymmetric Channels – Proposed Systems

Direct Broadcast Satellite Services

Introduction – Orbital Spacings – Power Rating and Number of Transponders – Frequencies and Polarization --Transponder Capacity – Bit Rates for Digital Television – MPEG Compression Standards – Forward Error Correction – Home Receiver Outdoor Unit (ODU) – Home Receiver Indoor Unit (IDU) – Downlink Analysis – Uplink -Problems - Satellite Mobile Services – VSATs – Radarsat – Global Positioning Satellite System – Orbcomm.

Text book(s):									
1.	Dennis Roddy, 'Satellite Communications', McGraw-Hill Publication, 3 rd Edition, 2001.									
Reference	(s):									
1.	Timothy Pratt, Charles Bostian & Jeremy Allmuti, 'Satellite Communications', John Willy & Sons (Asia) Pvt. Ltd. 2004.									
2.	Wilbur L. Pritchars Henri G. SuyderHond Robert A.Nelson, 'Satellite Communication Systems Engineering', Pearson Education Ltd., 2 ND Edition 2003.									
3.	M.Richharia, 'Satellite Communication Systems (Design Principles)', Macmillan Press Ltd. 2 nd Edition 2003.									

K.S. Rangasamy College of Technology - Autonomous									
B.E. Electronics and Communication Engineering									
	Elective III								
			40 E	C E35 Ac	Ivanced Mic	rocontrol	lers		
Semeste	r	н	ours / We	ek	Total hrs	Credit	Ν	laximum Mark	S
	-	L	Т	Р	i otar mo	С	CA	ES	Total
VII		3	0	0	45	3	50	50	100
Objective(s)	 To understand the embedded electronic systems and microcontrollers To introduce the Texas MSP430 To develop the knowledge of Texas MSP430 To enhance the knowledge about functions, interrupts and low power modes To broaden the importance of mixed signal peripherals 								
Course At the end of the course, the students will be able to: 1. Know about the embedded electronic systems and microcontrollers 2. Learn about C programming language and assembly language to access the microcontroller 3. Analyze the architecture of Texas MSP430 4. Learn about the CPU instruction set and exceptions 5. Gain knowledge about the MSP430 6. Acquire good knowledge about automatic control 7. Describe functions, interrupts and low power modes 8. Gain good knowledge about interrupt service routines									

Embedded Electronic Systems and Microcontrollers

Introduction to Embedded System, and microcontrollers, Anatomy of a typical small microcontroller, Memory, Software, The C programming language, Assembly language, Access to microcontroller for programming and debugging. Where does the MSP430 fit.

TEXAS MSP430

Architecture of the MSP430, Memory, addressing modes, Constant generator and emulated instructions, Instruction set, Reflections on the CPU instruction set, Reset, Clock system, Exceptions: Interrupts and resets.

A Simple Tour of the MSP430

First program on a conventional desktop computer, Light LEDs in C, Light LEDs in assembly language, Read input from a switch, Automatic control: flashing light by software delay, Automatic control: Use of subroutines, Automatic control: Flashing light by polling Timer A, Header files and issues that have been brushed under the carpet.

Functions, Interrupts and Low-Power modes

Functions and subroutines, Storage for local variables, passing parameters to a subroutine and returning a result, Mixing C and assembly language, Interrupts, Interrupt service routines, Issues associated with interrupts, Low-power modes of operation.

Mixed Signal Peripherals

Digital input/output, LCD Displays, Watchdog timers, timers, ADC, DAC,SPI, I2C,UART, Low power embedded system design using MSP430 processors.

Refer	ence book(s):
1.	Steve Furber,'ARM System-on-ChipArchitecture', 2 nd Edition, Addison Wesley, 2000.
2.	David Seal,'ARM Architecture Reference Manual', 2 nd Edition, Addison Wesley, 2007.
3.	Alex Van Somer anand Carol Attack,'The ARM RISC Chip: A Programmer's Guide', Addison Wesley, 1993.
4.	Trevor Martin, Theinsider's guide to Philips ARM1-based microcontroller.www.hitex.co.uk/arm
5.	Sen.M.Kuo, Woon - Seng Gan, Digital signal processors architectures, Implementation and Applications Pearson education.
6.	C.P. Ravi Kumar, MSP430 ,Micro controller in Embedded system Projects, TI.
7.	John Davies, Newness, MSP430 Microcontroller Basics.
8.	Chris Nagy, Embedded system design using the TI MSP430 series, Elsevier Publications

K.S. Rangasamy College of Technology – Autonomous								
B.E. Electronics and Communication Engineering								
Elective III								
40 EC E36 RFID and Biometrics								
Semester	H	ours / We	ek	Total	Credit		Maximum	Marks
	L	Т	Р	hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objective(s)	 To understand the principle of RF ID To know the different modes in RF ID To understand the problems in the data transmission 							
Course outcomesAt the end of the course, the students will be able to 1. Able to gain knowledge about RFID technology 2. Able to understand the operation modes of RFID 3. Able to learn basic working of Biometrics 4. Able to learn the various scans in Biometrics								

Introduction to RFID

Definitions and Vocabulary, History, Frequencies and their Classification, RFID vs. Barcodes, Fundamentals of RFID-RFID Tags, Passive Transponders, Passive RFID Coupling, Active Transponder, Semi-passive Transponders, Middleware, Radio Frequency (or Contact less) Identification and its range of applications

Communication and Operating Modes In RFID

Contact less Communication Concepts, Elements of RFID, Energy Transfer and Communication Modes, Forward Link and Return Link, Data Communications, Principle of Communication, Concept of Operating Modes, General Operating modes, Problems in Data Transmission, Problems Relating to 'Long Distance' RFID Systems.

Introduction to Biometrics

Over view of bio metrics - Benefits of biometric security – Verification and identification and enrollment – Basic working of biometric matching – Accuracy – False match rate – False non-match rate – Failure to enroll rate – Derived metrics – Layered biometric solutions. Biometric system security.

Finger Scan and Facial Scan

Finger scan, Features, Components, Operation (steps), Competing finger Scan technologies, Strength and weakness. Types of algorithms used for interpretation. Facial Scan, Features, Components, Operation (steps), Competing facial Scan technologies – Strength and weakness.

Iris Scan, Voice Scan

Features, Components, Operation (steps), Competing iris Scan and voice scan technologies – Strength and weakness. Other physiological biometrics ,Hand scan ,Retina scan, AFIS (Automatic Finger Print Identification Systems), Behavioral Biometrics ,Signature scan, keystroke scan, Biometrics Application ,Biometric Solution Matrix ,Bio privacy ,Comparison of privacy factor in different biometrics technologies ,Designing privacy sympathetic biometric systems. Biometric standards - (BioAPI, BAPI), Biometric middleware.

Text book(s):								
1.	Camir Nanavati, Michael Thieme, Raj Nanavati, Biometrics - Identity Verification in a Networked Vorld, Khanna Publications, WILEY- Dream Tech, 2002.								
2.	Domanique Paret, RFID At Ultra And Super High Frequencies Theory And Application, Wiley Publications, 2009.								
Reference(s):								
1.	1. Paul Reid, Biometrics for Network Security, Pearson Education, 2000.								
2.	Albert Lozano-Nieto, RFID Design Fundamentals and Applications, CRC Press, 2010								

					nnology – J			
		B.E. Elect	ronics an	Elective I	nication Er	igineering	1	
		40	EC E37 C		i System des	ign		
Semester	Hours / Week			Total	Credit	Maximum Marks		
	L	Т	Р	hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objective(s)	To understand the analysis and design of RF front end systems including the circuits, blocks and architecture.							
Course Outcomes	1. U cc 2. D b 3. II 3. II 4. D 5. U 6. S 7. A 8. D 9. II 10. U	omponents Discuss the ehaviors. D stimate the mplifiers Discriminate mplifiers Jnderstand haracteristi Summarise witching, B nalyse the Describe the lustrate the	the RF ch design gu bescribe th MOS ban open an the work the work the topo and switch character working design, q the RF ch	aracteristic uidelines of ne concepts dwidth at F d short cir king princip orking princip orking princip orking princip orking princip orking princip orking princip logies in I ning in LNA istics of diff of RF oscill uantitative	s and semi coaxial lin a of long an adio freque cuit time co ole, gain ar ciple of	conductor e, stripline d short chi- ency. onstant pro- nd stability power a he proble of mixer o d applicat	annel approx ocedures an / factors of mplifiers ar ms of input	line and their F cimations and d high frequen shunt and tune nd analyse th matching, Ga

RF Characteristics of Passive Components

RF characteristics of chip resistor, capacitor and inductors, semiconductor realization of resistors, capacitors, inductors, transformers. Coaxial, stripline, and microstrip line design guidelines and behavior at RF.

MOS Characteristics at RF

Long and Short channel approximations, bandwidth estimation techniques, open and short circuit time constant procedures, high frequency amplifiers.

Amplifier Design

Series shunt amplifiers, tuned amplifiers, neutralization, feedback and RF stability criteria, gain and phase margins, compensation techniques Class A,B,C,D,E,F power amplifier definitions, PA characteristics, RF PA design examples.

LNAS and Mixers

Noise definitions and noise models, two port noise parameters of MOSFET, LNA topologies, noise match and power match design considerations, linearity and large signal performance of LNAs, Mixer fundamentals, nonlinear mixers, multiplier based mixers, sub-sampling mixers.

Oscillators, Phase Locked Loops

Colpitts oscillator, Ring Oscillators, VCOs, Linearized PLL models, noise properties of PLLs, phase detectors, loop filters, charge pumps, PLL design examples, detailed considerations of phase noise.

Text book(s):	
1	Thomas Lee, 'The Design of Radio Frequency CMOS Integrated Circuits', Cambridge University Press, 2 nd Edition, 2007.
2	Behzad Razavi, 'RF Microelectronics', John Wiley, 2006.
Reference(s):	
1	Reinhold Ludwig, Pavel Bretchko, 'RF Circuit Design-Theory and Applications', Pearson Education, 2002.
2	Ulrich Rohde, 'RF/Microwave Circuit Design for Wireless Applications', John Wiley, 2000.

	K	.S. Rangas	amy Colle	ege of Tech	nnology –	Autonomo	ous	
	B.E. Electronics and Communication Engineering							
	Elective IV							
		40 EC	E41 Softw	vare for Em	bedded S	ystems		
Semester	H	ours / Wee	ek	Total	Credit		Maximur	n Marks
	L	Т	Р	hrs	С	CA	ES	Total
VIII	3	0	0	45	3	50	50	100
	•	To Introduc	e the GNU	I C Program	nming Tool	Chain in L	inux.	
Objective(s)	 To study the basic concepts of embedded C and Embedded OS 							
	 To introduce time driven architecture, Serial Interface with a case study. 							
	To introduce the concept of embedded Java for Web Enabling of systems.							
	At the e	nd of the c	ourse, the	e students	will be abl	e to		
				features ar				
	Identify the various open source tools used in embedded systems							
	3. Illustrate the features of GNU C programming in Linux							
Course				on constrair				
Outcomes	5. l	Jnderstand	the basic	concepts of	f Embedde	d OS		
				ental operati				
				tworking pro			systems	
	8. l	Jnderstand	the basic	concepts of	f Embedde	d JAVA		
	9. I	mplement	he Embed	Ided JAVA	n Web App	olications.		

Embedded Programming

C and Assembly - Programming Style - Declarations and Expressions - Arrays, Qualifiers and Reading Numbers - Decision and Control Statements - Programming Process - More Control Statements - Variable Scope and Functions - C Preprocessor - Advanced Types – Simple Pointers - Debugging and Optimization – In-line Assembly.

C Programming Tool chain In Linux

C preprocessor - Stages of Compilation - Introduction to GCC - Debugging with GDB – TheMake utility - GNU Configure and Build System - GNU Binary utilities - Profiling - using *gprof*-Memory Leak Detection with valgrind- Introduction to GNU C Library

Embedded C And Embedded OS

Adding Structure to 'C' Code: Object oriented programming with C, Header files for Project and Port, Examples. Meeting Real-time constraints: Creating hardware delays - Need for timeout mechanism - Creating loop timeouts - Creating hardware timeouts. Creating embedded operating system: Basis of a simple embedded OS, Introduction to sEOS, Using Timer 0 and Timer 1, Portability issue, Alternative system architecture, Important design considerations when using sEOS.

Time-Driven Multi-State Architecture and Hardware

Multi-State systems and function sequences: Implementing multi-state (Timed) system -Implementing a Multistate (Input/Timed) system. Using the Serial Interface: RS232 - The BasicRS-232 Protocol - Asynchronous data transmission and baud rates - Flow control – Software architecture - Using on-chip UART for RS-232 communication - Memory requirements – Theserial menu architecture - Examples. Case study: Intruder alarm system.

Embedded Java

Introduction to Embedded Java and J2ME – Smart Card basics – Java card technology overview – Java card objects – Java card applets – working with APDUs – Web Technology for Embedded Systems.

Text book(s):
1.	Steve Oualline, 'Practical C Programming 3rd Edition', O'Reilly Media, Inc, 2006.
Reference(s):
1.	Stephen Kochan, 'Programming in C', 3 rd Edition, Sams Publishing, 2009.
2.	Michael J Pont, 'Embedded C', Pearson Education, 2007.
3.	Zhiqun Chen, 'Java Card Technology for Smart Cards: Architecture and Programmer's Guide', Addison-Wesley Professional, 2000.

Semester VIII bjective(s)	Hours / We L T 3 0 • To get knowle and Power sup	40 EC E4 ek P 0 edge about	d Commur Elective IV 2 Electron Total hrs 45	1	Design	Maximur	n Marks		
VIII bjective(s)	L T 3 0 • To get knowle and Power sup	ek P 0 edge about	2 Electron Total hrs	ic Product Credit			n Marks		
VIII bjective(s)	L T 3 0 • To get knowle and Power sup	ek P 0 edge about	Total hrs	Credit			n Marks		
VIII bjective(s)	L T 3 0 • To get knowle and Power sup	P 0 edge about	hrs		~		n Marks		
bjective(s)	3 0 To get knowle and Power sup	0 0 0		C			T ()		
bjective(s)	To get knowle and Power sup	dge about	45		CA	ES	Total		
	and Power sup			3	50	50	100		
	•		usage of	electronic	devices in	Communi	cation Engineering		
	 Understanding 	•							
	-	 Understanding the various types of power supplies and to design it 							
	To acquire the basic knowledge of PCB and RF systems								
4	At the end of the course, the students will be able to								
	1. Design power supply using transistors								
	2. Design SMPS and power supply using SCRs								
	3. Describe shielding and grounding techniques and fundamentals of DAS								
	4. Discuss analog to digital converters and its types								
Course	5. Describe basic concepts of RF networks								
Dutcomes	6. Design filte				s				
	•			••					
	 Describe the fundamentals of RF amplifiers Design amplifiers for radio frequency applications 								
	 Design amplifiers for radio frequency applications Discuss the general layout, rules and parameters for low frequency circuit PCBs 								
		-							
		e general la f PCBs	iyout, rules	and param	eters for n	gn frequer	ncy circuit PCBs		

Design of Power Supplies

DC power supply using transistors and SCRs - Design of crowbar and fold back protection circuits - Switched mode power supplies - Forward- fly back- buck and boost converters - Design of transformers and control circuits for SMPS.

Design of Data Acquisition System

Low level signals Amplification - Principles of Grounding - Shielding and Guarding techniques - A/D converters: Dual slope, quad slope and high speed - Microprocessors Compatible A/D converters - Logarithmic A/D converters- Sample and Hold circuit

RF Design Methodology

Behavior of RF passive components - Chip components and circuit board considerations - Review of transmission lines, Impedance and admittance transformation, Parallel and series connection of networks - ABCD and scattering parameters - RF filter - Basic resonator and filter configurations - Butterworth and Chebyshev filters - Implementation of micro strip filter and Band pass filter - cascading of band pass filter elements.

RF Transistor Amplifier Design

Amplifier classes of operation and biasing networks - Amplifier power gain, Unilateral design(S12 =0) - Simple input and output matching networks - Bilateral design - Stability circle - conditional stability- Simultaneous conjugate matching for unconditionally stable transistors - Broadband amplifiers - High power amplifiers - Multistage amplifiers.

Design of Printed Circuited Boards

Technology of printed circuit boards (PCB), General layout - rules and parameters - PCB design rules for Digital - High Frequency, Analog, Power Electronics and Microwave circuits - Computer Aided design of PCBs.

Text book(s):	
1.	Reinfold Ludwig and Pavel Bretchko, RF Circuit Design - Theory and Applications, Pearson
	Education, Asia publication, New Delhi, 2011.
2.	Sydney Soclof, Applications of Analog Integrated Circuits, PHI, 2004.
Reference(s):	
1.	Walter C Bosshart, Printed circuit Boards – Design and Technology, Tata McGraw-Hill, 2003.
2.	Keith H Billings, Handbook of Switched Mode Supplies, McGraw-Hill, Third Edition 2010.
3.	Michael Jaacob, Applications and Design with Analog Integrated Circuits, PHI, 2000.
4.	D M Pozar, Microwave Engineering, John Wiley, 2012.

K.S. Rangasamy College of Technology – Autonomous									
	B.E. Electronics and Communication Engineering								
	Elective IV								
		4	0 EC E43	Virtual Inst	rumentati	on			
Semester		Hours / We	ek	Total	Credit		Maximum Marks		
	L	Т	Р	hrs	С	CA	ES	Total	
VIII	3	0	0	45	3	50	50	100	
	•	To understand the concepts of Virtual Instrumentation.							
Objective(s)	•	To study the fundamentals of DAQ Hardware and Software.							
	•	To impart knowledge on Lab VIEW.							
	At the end of the course, the students will be able to								
	1.	1. Learn the basic programming concepts in LabVIEW							
Course	2.	Develop programs by using graphical environment							
outcome(s)	3.	Learn the different data acquisition system concepts							
	4.			of different			ques for VI		
	5.	Develop re	eal time ap	plications b	y using Lat	VIEW			

Fundamentals of Virtual Instrumentation

LabVIEW – graphical user interfaces- controls and Indicators – 'G' programming –data types –data flow programming –Editing Debugging and Running a Virtual Instrument –Graphical programming palettes and Tools – Front panel objects.

Graphical Programming Environment in VI

FOR Loops, WHILE loops, Shift Registers, CASE structure, formula nodes-Sequence structures- Arrays and Clusters- Array operations – Bundle, Unbundle – Bundle/Unbundle by name, graphs and charts – string and file I/O – High level and Low level file I/Os.

Interfacing DAQ System With PC

Basics of DAQ Hardware and Software – Concepts of Data Acquisition and terminology – Installing Hardware, Installing drivers -Configuring the Hardware – addressing the hardware in LabVIEW- Digital and Analog I/O function – Buffered I/O..

Simple Programming in VI

Simple programs in VI- Advanced concepts in LabVIEW- TCP/IP VI's, Synchronization – other elements of Virtual Instrumentation – Bus extensions – PXI - Computer based instruments.

Analysis Tools and Simple Applications In VI

Fourier transform - Power spectrum - Filtering tools – CRO emulation –Audio signal processing using Signal processing toolkit-Virtual instrumentation application in Biomedical, Process Control and Mechatronics.

Text book(s):
1.	Jovitha Jerome, Virtual Instrumentation using LabVIEW, PHI, 2010
2.	Garry M. Johnson, LabVIEW Graphical Programming, Tata McGraw Hill, 1996.
Reference(s	s):
1.	Labview Basics I and II Manual, National Instruments
2.	Barry Paton, Sensor, Transducers and LabVIEW, PHI, 2000.
3.	Lisa K Wlls, LabVIEW for Everyone,PHI,1996

	K.	S. Rangas	amy Colle	ege of Tecl	nnology –	Autonom	ous		
B.E. Electronics and Communication Engineering									
Elective IV									
40 EC E44 Optoelectronic Devices Semester Hours / Week Total Credit Maximum Marks									
Semester	L H	ours / Wee	P	Total hrs	Credit C	CA	ES	n Marks Total	
VIII	3	0	F0	45	3	50	50	100	
				id state phy					
Objective(s)	 To learn the basics of display devices. To learn the operation of optical modulators and detectors To enrich the idea of optoelectronic integrated circuits 								
Course outcomes	1. E 2. C 3. E 4. A 5. E 6. C 7. E 8. C	Explain the Discuss the Explain the Analyze the Explain the Describe th Explain the Discuss abo	concept of basics of operation threshold working pl e working working pl out optical	-	theory ohysics display devi of laser nermal dete quantum d DE modulate	ces ectors etector ors			
		 Explain about optoelectronic integrated circuits Explain the concept of light wave propagation through guided wave devices 							
lements of Ligh					F. F. Sauc		3		

Elements of Light and Solid State Physics

Wave nature of light, Polarization, Interference, Diffraction, Quantum mechanics and band theory, Band structure and carrier effective masses, Scattering and carrier mobilities, Semiconductors statistics, Carrier recombination.

Display Devices and Lasers

Introduction, Photo Luminescence, Cathode Luminescence, Electro Luminescence, Injection Luminescence, LED, Plasma Display, Liquid Crystal Displays, Numeric Displays, Laser Emission, Absorption, Radiation, Population Inversion, Optical Feedback, Threshold condition, Laser Modes.

Optical Detection Devices

Photo detector, Thermal detector, Photo Devices, Photo Conductors, Junction Photo diodes, High speed diodes, Metal-Semiconductor-Metal (MSM) diodes, Solar Cells, CCD sensors.

Optoelectronic Modulators and Switches

Electro-optic modulators, Franz-Keldysh effect, Quantum confined Stark effect in quantum well semiconductors, Electro-absorption modulators, electro-refraction devices .Optical, Switching and Logic Devices.

Optoelectronic Integrated Circuits

Introduction, hybrid and Monolithic Integration, Application of Opto Electronic Integrated Circuits, Integrated transmitters and Receivers, Guided wave devices.

Text book(s):	
---------------	--

1.	Pallab Bhattacharya 'Semiconductor Opto Electronic Devices', Prentice Hall of India Pvt., Ltd., New Delhi, 2006.
2.	Jasprit Singh, 'Opto Electronics – As Introduction to Materials and Devices', McGraw-Hill International Edition, 1998.
Referen	ce(s):
1.	S C Gupta, Opto Electronic Devices and Systems, Prentice Hall of India, 2005.

1.	S C Gupta, Opto Electronic Devices and Systems, Prentice Hall of India, 2005.
2.	J. Wilson and J.Haukes, 'Opto Electronics – An Introduction', Prentice Hall, 1995

	K	.S. Rangas	amy Colle	ege of Tech	nnology –	Autonom	ous		
				d Commu					
				Elective IV	1				
			40 E	C E45 Avi	onics				
Semester	Н	ours / We	ek	Total	Credit		Maximum	Marks	
	L	Т	Р	hrs	С	CA	ES	Total	
VIII	3	0	0	45	3	50	50	100	
	•	To introduce the hardware required for aircraft							
Objective(s)	To introduce communication and navigation techniques used in aircrafts								
	To introduce autopilot and cockpit display related concepts								
	At the end of the course, the students will be able to								
	1. Describe the concepts of aircraft axis sensor systems.								
	2. Describe the avionics architecture and data buses.								
	3. Describe the concepts of radio navigation.								
Course	4. Di	4. Discuss the different types of navigation.							
Outcomes	5. Discuss the inertial navigation systems.								
Outcomes	6. Discuss the satellite navigation systems.								
	7. De	escribe the	air data qu	antities alti	tude, speed	d, tempera	iture.		
	8. De	escribe the	basic princ	ciples of aut	opilot mod	e.			
	9. Di	scuss the e	lectronic d	lisplays.					
	10. De	escribe the	different di	isplay techr	ologies us	ed in avior	nics.		

Introduction

Introduction to aircraft – Axes system – Parts, importance and role of Avionics – systems which interface directly with pilot – Aircraft state sensor systems – Navigation systems – External world sensor systems – task automation systems. Avionics architecture evolution. Avionics Data buses - MIL STD 1553, ARINC 429, ARINC 629.

Radio Navigation

Types of Radio Navigation – ADF, DME, VOR, LORAN, DECCA, OMEGA. ILS, MLS

Inertial and Satellite Navigation Systems

Inertial sensors – Gyroscopes, Accelerometers, Inertial navigation systems – Block diagram, Platform and strap down INS. Satellite Navigation - GPS

Air Data Systems and Autopilot

Air data quantities – Altitude, Airspeed, Mach no., Vertical speed, Total Air temperature, Stall warning, Altitude warning. Autopilot – basic principles – longitudinal and lateral autopilot.

Aircraft Displays

Display technologies – LED, LCD, CRT, Flat Panel Display. Primary Flight parameter displays - Head Up Display, Helmet Mounted Display, Night vision goggles, Head Down Display, MFD, MFK, Virtual cockpit.

Text book	(s):
1.	Albert Helfrick. D, 'Principles of Avionics', 8th Edition, Avionics communications Inc., 2013.
2.	Myron Kayton and Walter R. Fried, 'Avionics Navigation Systems', 2 nd Edition, John Wiley & Sons, 1997.
Reference	(s):
1.	Collinson, R.P.G, 'Introduction to Avionics', 2 nd Edition, Chapman and Hall, 1996.
2.	Middleton, D.H, 'Avionics Systems', Longman Scientific and Technical, Longman Group UK Ltd, England, 1989.
3.	Spitzer, C.R. 'Digital Avionics Systems', Prentice Hall, Englewood Cliffs, N.J., USA 1993.
4.	Pallet, E.H.J, 'Aircraft Instruments and Integrated Systems', Longman Scientific and Technical Series, 1992.
5.	Spitzer, C.R, 'The Avionics Handbook', CRC Press, 2000.

					Autonomous		
	B.E	. Electronics	and Commun		ngineering		
	40		Elective IV				
Semester	40 Hours / V		otronics and V	Credit	-	aximum Mark	· · · · · · · · · · · · · · · · · · ·
Semester		P	Total hrs	Credit	CA	ES	S Total
VIII	3 0	0 P	45	3	50	<u> </u>	100
Objective(s)	 To understand the fundamentals of automotives To develop the knowledge of automotive sensors To introduce the different fuel injection and ignition systems To enhance the knowledge on different vehicle systems To understand the importance of vehicle intelligence system 						
Course Outcomes	 Analyze Gain kno Describe Acquire I Gain kno Gain kno Learn ab Learn ab Acquire t 	but the engine he performan wledge about the advantage nowledge on wledge about but Electric ve but hybrid veh ne knowledge	components ce of Brakes a the temperatu es and applica fuel injection s ignition systen hicles icles to design visio	nd steerin re and pre tions of sr ystem n on based a	ng system essure sensors		system

Automotive Fundamentals

The engine-components-Drive train-Starting & charging systems operation-Ignition system-Suspension Systemsbrakes-ABS-Steering system.

Automotive Sensors

Temperature sensor-gas sensor-knock sensor-pressure sensor-flow sensor-torque sensor-crash sensor-Speed sensor and acceleration sensor-micro sensor-smart sensor-operation, types, characteristics, advantages and their applications.

Fuel Injection and Ignition System

Introduction -fuel system components-electronic fuel system-fuel injection-types-throttle body versus port injection-electronic control fuel injection-operation-different types-fuel injectors-idle speed control-continuous injection system-high pressure diesel fuel injection-MPFI system-Electronic ignition system-operation-types-Electronic spark timing control.

Electric Vehicles and Hybrid Vehicles

Introduction-Electric Vehicle development- system layout- basic system components-Electric battery-solar cells-rapid charging system-motor drive system-fuel cell Electric vehicle-hybrid vehicle-series Hybrid Vehicle-parallel Hybrid Vehicle-CNG Electric hybrid vehicle.

Vehicle Intelligence

Introduction-basic structure-vision based autonomous road vehicles-architecture for dynamic vision systemfeatures-applications-A visual control system using image processing and fuzzy theory-An application of mobile robot vision to a vehicle information system.-object detection, collision warning and Avoidance system- low tire pressure warning system.

Text	book(s):
1.	William B.Ribbens, 'Understanding Automotive Electronics', 7 th Edition, Elsevier Science, 2012.
Refe	rence(s):
1.	Jack Erjavec, Robert Scharff, 'Automotive Technology', 6th Edition, Delmar publications, 2014.
2.	Ichiro Masaki, 'Vision-based Vehicle Guidance', Springer Verlag, 2012.
3.	Jay Webster, 'Class Room Manual For Automotive Service and System', Delmer Publications Inc, 2012.
4.	Ronald K.Jurgen, 'Electric and Hybrid-electric vehicles', SAE International, 2010.
5.	Ronald K.Jurgen, 'Sensors and Transducers', 2 nd Edition, SAE International, 2003.
6.	Ron Hodkinson, John Fenton, 'Light Weight Electric/Hybrid Vehicle Design', Reed Educational and Professional Publishing Ltd, 2001.

						Autonomous			
		D.C. I	lectronics	and Commun Elective IV		ngineering			
		4	10 EC E47 F	Principles of M		naging			
Semester	Hours / Week			Total hrs	Credit	Maximum Marks			
	L	Т	Р	Total hrs	С	CA	ES	Total	
VIII	3	0	0	45	3	50	50	100	
				cs of image ad	•				
Objective(s)	 To learn mathematical preliminaries for image reconstruction. 								
	 To understand the concepts of various imaging modalities and image quality. 								
	At the end of the course, the students will be able to								
	1. Learn the fundamentals of image acquisition								
	2. Develop knowledge about radiography techniques								
	Understand the concepts of two dimensional image reconstruction from projections								
Course	Understand the concepts of three dimensional and iterative image reconstructions								
Outcomes	Discuss the principles of fluoroscopy and computed tomography								
Cutoonico	6. Analyse image noise, distortion and artifacts								
	Discuss the fundamentals of magnetic resonance								
	8.	Explain the	contrast ag	ents used in d	ifferent im	aging modalitie	s		
	9.	Discuss the	e principles o	of ultrasound ir	naging				
						entation of neuro	o magnetic im	aging	

Acquisition of Images

Introduction to Imaging Techniques - Single crystal scintillation camera - Principles of scintillation camera operation - multiple crystal scintillation camera- solid state camera - rectilinear scanner- Emission computed Tomography- Radiography: Digital Radiography.

Mathematical Preliminaries for Image Reconstructions

Image Reconstruction from Projections in Two dimensions - Mathematical Preliminaries for Two and Three dimensional Image Reconstructions- Radon Transform- Projection Theorem-central slice Theorem- Sinogram – Two Dimensional Projection Reconstruction - Three Dimensional Projection Reconstruction - Iterative Reconstruction Techniques- Fourier Reconstruction.

Fluoroscopy, CT, Images Quality

Digital fluoroscopy - Automatic Brightness control cinefluorography - Principles of computed Tomographic Imaging - Reconstruction algorithms – Scan motions- X-ray sources Influences of Images quality: Unsharpness - contrast- Image Noise-,Image distortion -Artifacts.

Magnetic Resonance Imaging and Spectroscopy

Fundamentals of Magnetic Resonance overview - Pulse sequences - spatial encoding of magnetic Resonance Imaging signal - Motion suppression Techniques - Contrast Agents - tissue contrast in MRI - MR Angiography, spectroscopy - chemical shift Imaging.

Ultra Sound, Neuro Magnetic Imaging

Ultra sound:Presentation modes -Time required to obtain Images - System components, signal processing - dynamic Range - Ultrasound Image Artifacts - Quality control, Origin of Doppler shift - Limitations of Doppler systems. Neuro magnetic Imaging: Background - Models and Image Reconstruction - Instrumentation.

Text	book(s):
1.	William R. Hendee, E. Russell Ritenour, 'Medical Imaging Physics', A John Wiley & sons, Inc., Publication, Fourth Edition, 2002.(Units I,III,IV,V)
2.	Zang-Hee Cho, Joie P. Jones and Manbir Singh, 'Foundations of Medical Imaging', John Wiley and sons Inc.,1993.(Units II &V)
Refe	erence(s):
1.	Avinash C. Kak, Malcolm Slaney, 'Principles of Computerized Tomographic Imaging', IEEE Press, New york, 1998.

	K			ege of Tech				
		B.E. Elect	ronics an	d Commur		ngineering	J	
				Elective V				
40 EC E51 Real Time Digital Signal Processing Design								
Semester	H	lours / Wee		Total	Credit		Maximur	m Marks
	L	Т	Р	hrs	С	CA	ES	Total
VIII	3	0	0	45	3	50	50	100
	The obje	ctive of this	course is	to provide i	ndepth kno	owledge or	า	
	•	Digital Sign	al Process	or basics				
Objective(s)	•	Third generation DSP Architecture and programming skills						
Objective(S)	Advanced DSP architectures and some applications.							
	At the e	nd of the c	ourse, the	e students	will be abl	e to		
	1. Understand the concept of real time digital signal processing.							
	2.	2. Understand the various software development tool and hardware platform for DSP						
	applications.							
	3. Analyse the time-varying adaptive filters with changing characteristics in DSP							
	applications.							
Course	4.	4. Investigate different methods for the generation of digital signals and their						
Outcomes		application	S		-		-	-
	5. Understand speech coding techniques for transmission or storage in digital media							
	and decoding the signal with the best perceptual quality.							
	6. Design and implementation of speech enhancement algorithms to enhance the							
		speech co	rupted by	background	d noises.		-	
	7.	Understand	the funda	mental cond	cept of ima	ge process	sing metho	ds.
traduction to P	Las Time	Dimital Cim	Droco					

Introduction to Real Time Digital Signal Processing

Basic Elements of Real-Time DSP Systems - Analog Interface - DSP Hardware - DSP System Design - Introduction to DSP Development Tools.

Adaptive Filtering

Introduction to Random Processes - Adaptive Filters - Performance Analysis - Implementation Considerations - Practical Applications: Adaptive Linear Prediction, Noise Cancelation, Channel Equalization.

Digital Signal Generators

Sinewave Generators - Noise Generators - Practical Applications: Siren Generators, White Gaussian Noise, Dual-Tone Multifrequency Tone Generator and Comfort Noise in Voice Communication Systems.

Speech Coding and Enhancement Techniques

Introduction to Speech-Coding - Overview of CELP Vocoders - Overview of Some Popular CODECs - Voice over Internet Protocol Applications - Introduction to Noise Reduction Techniques - Spectral Subtraction Techniques - Voice Activity Detection - Combination of Acoustic Echo Cancelation with NR - Voice Enhancement and Automatic Level Control.

Introduction to Digital Image Processing

Digital Images and Systems - RGB Color Spaces and Color Filter Array Interpolation - Color Spaces - Color Balance and Correction - Image Histogram - Image Filtering - Image Filtering Using Fast Convolution.

Text book(s):	
1.	Sen M Kuo, Bob H Lee and Wenshun Tian, 'Real-Time Digital Signal Processing Implementations and Applications', John Wiley & Sons Ltd, 2006.
Reference(s):	
1.	Behrouz Farhang-Boroujeny, 'Adaptive Filters: Theory and Applications', Wiley, 2013.
2.	Pejman Mowlaee, Josef Kulmer, Johannes Stahl, Florian Mayer, 'Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications', Wiley, 3 rd Edition, 2013.
3.	Rafael C Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson Education, 3 rd Edition, 2015

		B.E. Elect	tronics ar	nd Commu	nication En	gineering	7	
				Elective \				
		40 E0	C E52 Wa	velets and	Its Applica	tions		
Semester	Hours / Week			Total	Credit		Maximum	Marks
	L	Т	Р	hrs	С	CA	ES	Total
VIII	3	0	0	45	3	50	50	100
Objective(s)	To learn the properties of Fourier transform and STFT, To analyse the CWT and DWT learn the various application of wavelets.					VT and DWT, 1		
Course Outcomes	1. U 2. A 3. U 4. U 5. C 6. C 7. U 8. L	 learn the various application of wavelets. At the end of the course, the students will be able to Understand the properties of Fourier transform Analyse the short time Fourier transform Understand the concept of CWT Understand the properties of various scaling functions and their wavelets. Describe the basic concepts of multirate systems Develop the two channel filter bank Understand the concepts of DWT Learn the concepts of multi wavelets 						

Fourier Analysis

Fourier basis & Fourier Transform-failure of Fourier Transform-Need for Time-Frequency Analysis-Heisenberg's Uncertainty principle – Short time Fourier transform(STFT)-short comings of STFT- Need for Wavelets

Continuous Time Wavelet Transform and Multi-Resolution Analysis

Wavelet basis– Continuous time Wavelet Transform (CWT)–need for scaling function–Multi-Resolution Analysis (MRA)–important wavelets : Haar ,Mexican hat, Meyer, Shannon, Daubechies.

Introduction to Multirate Systems

Decimation and Interpolation in Time domain-Decimation and Interpolation in Frequency domain–Multi rate systems for a rational factor.

Filter Banks and Discrete Wavelet Transform

Two channel filter bank–Perfect Reconstruction (PR) condition–relationship between filter banks and wavelet basis–DWT–Filter banks for Daubechies wavelet function.

Special Topics (Only Introductory Level)

Multi wavelets, Multidimensional wavelets- wavelet packet transform.

Applications

Feature extraction using wavelet coefficients, Image compression, Wavelet based denoising.

Text book(s):	
1	Jaideva C Goswami and Andrew K Chan, 'Fundamentals of Wavelets–Theory, Algorithms and Applications', John Wiley & Sons, Inc., Singapore, 2011.
2	Soman K P and Ramachandran K I,' In sight into wavelets from Theory to practice', Prentice Hall, NewDelhi,2010.
Reference(s):	
1	Sidney Burrus C, 'Introduction to Wavelets and Wavelets Transforms', Prentice Hall, New Delhi, 2002.
2	Stephane G Mallat, 'A Wavelet Tour of Signal Processing', Academic Press, 2009.
3	Raghuveer M Rao and Ajit S Bopardikar,' Wavelet Transforms: Introduction to Theory & Applications', Pearson Education Asia, NewDelhi,2003

	B.E. E	Electronics and	Communication	Engineerin	g			
		E	ective V					
40 EC E53 Multimedia Compression and Communication								
Semester	Hours / Wee	k Total h	Credit		Maximum M	arks		
	L T	P	C C	CA	ES	Total		
VIII	3 0	0 45	3	50	50	100		
Objective(s)	 To introduce the concept of multimedia system To outline the formal procedure for digital audio processing To introduce the concept of text and image compression To introduce the concept of multimedia networking At the end of the course, the students will be able to 							
Course Outcomes	 Explain th Discuss th Explain th Explain th Explain th Explain at Explain at 	e basic concepts he components of e audio compres e video compres pout text compre pout image comp bout VOIP challe	of multimedia sy multimedia and sion techniques sion of moving pi ssion ression	/stem their charact	eristics			
	8. Explain th 9. Describe	e architecture of the concepts of m e services in mul	VOIP ultimedia netwo		oplication			

Multimedia Components

Introduction -Multimedia skills -Multimedia components and their characteristics -Text, sound, images, graphics, animation, video, hardware.

Audio and Video Compression

Audio compression–DPCM-Adaptive PCM –adaptive predictive coding-linear Predictive coding-code excited LPC-perpetual coding Video compression –principles-H.261-H.263-MPEG 1, 2, and 4.

Text and Image Compression

Compression principles-source encoders and destination encoders-lossless and Lossy compression-entropy encoding-source encoding-text compression –static Huffman coding dynamic coding –arithmetic coding – Lempel ziv-welsh Compression-image compression.

VOIP Technology

Basics of IP transport, VoIP challenges, H.323/ SIP –Network Architecture, Protocols, Call establishment and release, VoIP and SS7, Quality of Service-CODEC Methods-VOIP applicability.

Multimedia Networking

Multimedia networking -Applications-streamed stored and audio-making the best Effort service-protocols for real time interactive Applications-distributing multimedia-beyond best effort service-secluding and policing Mechanisms-integrated services-differentiated Services-RSVP.

Text boo	K(S):
1.	Fred Halshall 'Multimedia communication -Applications, Networks, Protocols and Standards', Pearson Education, 2007.
Referen	ce(s):
1.	Tay Vaughan, 'Multimedia: Making it work', 7th Edition, TMH 2008 98
2.	Kurose and W.Ross 'Computer Networking 'a Top Down Approach', Pearson Education, 2005
3.	Marcus Goncalves 'Voice over IP Networks', McGraw Hill, 1999.
4.	KR.Rao,Z S Bojkovic, D A Milovanovic, 'Multimedia Communication Systems: Techniques,Standards, and Networks', Pearson Education, 2007.
5.	R. Steimnetz, K. Nahrstedt, 'Multimedia Computing, Communications and Applications', Pearson Education.
6.	Ranjan Parekh, 'Principles of Multimedia', TMH, 2007.

K.S. Rangasamy College of Technology – Autonomous								
	B.E. Electronics and Communication Engineering							
			40 EC E54	Speech P	rocessing			
Semester	Но	Hours / Week			Total Credit			n Marks
	L	Т	Р	hrs	С	CA	ES	Total
VIII	3	0	0	45	3	50	50	100
Objective(s)	 To introduce speech production and related parameters of speech. To show the computation and use of techniques such as short time Fourier transform, linear predictive coefficients and other coefficients in the analysis of speech. To understand different speech modeling procedures such as Markov and their implementation issues. 							
Course Outcomes	At the end of the course, the students will be able to 1. Describe and Analyse the modeling of speech signal. 2. Understand the basic concept of speech signal fundamentals. 3. Analyse linear predictive coding technique. 4. Categories linear predictive problems in various domains. 5. Choose an appropriate statistical speech model for a given application. 6. Design a speech recognition system. 7. Learn different speech synthesis techniques. 8. Describe the present status and application of speech synthesis.							

Basic Concepts

Speech Fundamentals: Articulatory Phonetics – Production and Classification of Speech Sounds; Acoustic Phonetics – Acoustics of speech production; Review of Digital Signal Processing concepts; Short-Time Fourier Transform, Filter-Bank and LPC Methods.

Speech Analysis

Features, Feature Extraction and Pattern Comparison Techniques: Speech distortion measures– mathematical and perceptual – Log–Spectral Distance, Cepstral Distances, Weighted Cepstral Distances and Filtering, Likelihood Distortions, Spectral Distortion using a Warped Frequency Scale, LPC, PLP and MFCC Coefficients, Time Alignment and Normalization – Dynamic Time Warping, Multiple Time – Alignment Paths.

Speech Modeling

Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Implementation issues.

Speech Recognition

Large Vocabulary Continuous Speech Recognition: Architecture of large vocabulary continuous speech recognition system – acoustics and language models – n-grams, context dependent sub-word units; Applications and present status.

Speech Synthesis

Text-to-Speech Synthesis: Concatenative and waveform synthesis methods, sub-word units for TTS, intelligibility and naturalness – role of prosody, Applications and present status.

Text book(s):
1.	Lawrence Rabiner and Biing-Hwang Juang, 'Fundamentals of Speech Recognition', Pearson Education, 2003.
2.	Daniel Jurafsky and James H Martin, 'Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition', Pearson Education, 2002.
3.	Frederick Jelinek, 'Statistical Methods of Speech Recognition', MIT Press, 1997.
Reference(s	a):
1.	Steven W. Smith, 'The Scientist and Engineers Guide to Digital Signal Processing', California Technical Publishing, 1997.
2.	Thomas F Quatieri, 'Discrete-Time Speech Signal Processing – Principles and Practice', Pearson Education, 2004.
3.	Claudio Becchetti and Lucio Prina Ricotti, 'Speech Recognition', John Wiley and Sons, 1999.
4.	Ben Gold and Nelson Morgan, 'Speech and Audio Signal Processing, Processing and Perception of Speech and Music', Wiley- India Edition, 2006.

		B.E. Elect	ronics an	d Commu		ngineering	1		
				Elective V					
	4	40 EC E55 1	felecomm	unication	Switching	Techniqu	es		
Semester	ŀ	lours / Wee	k	Total	Credit		Maximum	Marks	
	L	Т	Р	hrs	С	CA	ES	Total	
VIII	3	0	0	45	3	50	50	100	
	•	To study the	e concepts	of multiple	xing, digita	I hierarchy	and digital	switching.	
Objective(s)	To understand the need for network synchronization and its issues, ISDN,								
	DSL/ADSL and statistical modeling of telephone traffic.								
	At the end of the course, the students will be able to								
	1. Understand the concepts of multiplexing and line coding techniques in digital								
	transmission								
	Describe the function, structure and application of SONET/SDH.								
	3. Describe the function and application of various digital switching techniques.								
Course	4. Analyse digital switching in analog environment.								
Outcomes	5. Analyse network synchronization considering all parameters.								
outoones	6. Describe synchronization, control and management of various networks								
	7. Describe the basic architecture, frame structure of ISDN and interface of ISDN								
	8. Analyse DLCS with minimum hardware requirement								
	9. Understand the concept of traffic analysis in a probabilistic frame work								
		•	he various	s technique	s of traffic s	systems ar	nd their servi	ce times in a	
		Network							

Multiplexing

Transmission Systems, FDM Multiplexing and modulation, Time Division Multiplexing, Digital Transmission and Multiplexing: Pulse Transmission, Line Coding, Binary N-Zero Substitution, Digital Biphase, Differential Encoding, Time Division Multiplexing, Time Division Multiplex Loops and Rings.

SONET/SDH: SONET Multiplexing Overview, SONET Frame Formats, SONET Operations, Administration and Maintenance, Payload Framing and Frequency Justification, Virtual Tributaries, DS3 Payload Mapping, E4 Payload Mapping, SONET Optical Standards, SONET Networks.

SONET Rings: Unidirectional Path-Switched Ring, Bidirectional Line-Switched Ring.

Digital Switching

Switching Functions, Space Division Switching, Time Division Switching, two-dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environment. Elements of SSN07 signaling.

Network Synchronization Control and Management

Timing: Timing Recovery: Phase-Locked Loop, Clock Instability, Jitter Measurements, Systematic Jitter. Timing Inaccuracies: Slips, Asynchronous Multiplexing, Network Synchronization, U.S Network Synchronization, Network Control, Network Management.

Digital Subscriber Access

ISDN: ISDN Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscriber Loops: Asymmetric Digital Subscriber Line, VDSL. Digital Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fiber Coax Systems and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satellite Services.

Traffic Engineering and Analysis

Traffic Characterization: Arrival Distributions, Holding Time Distributions, Network traffic load and parameters-Grade of service and blocking probability-Incoming traffic and service time Characterization, Loss Systems, Delay Systems: Exponential service Times, Constant Service Times, Finite Queues.

Text book(s):
1.	John.C. Bellamy, 'Digital Telephony', John Wiley & Sons, 3 rd Edition, 2009.
Reference(s	s):
1.	Viswanathan.T., 'Telecommunication Switching System and Networks', Prentice Hall of India Ltd., 2006.
2.	Flood J.E., 'Telecommunications Switching Traffic and Networks', Pearson Education Ltd, 2007.

	K			ege of Tecl d Commu	hnology – hication Er			
				Elective V		.g	,	
		4	0 EC E56	Green Cor	nmunicatio	on		
Semester	H	Hours / Week		Total	Credit		Maximu	n Marks
	L	Т	Р	hrs	С	CA	ES	Total
VIII	3	0	0	45	3	50	50	100
Objective(s)	 To familiarize different concepts and basic principles of green communication strategies To help the learners to design a future architecture for green communication and networking To give exposure to implement green communication by overcoming technical challenges and in measurement of energy gain for future opportunities 							
Course Outcomes	At the end of the course, the students will be able to 1. Analyze the location based services and energy scavenging systems 2. Describe the energy optimization and coding schemes in wireless network 3. Illustration of energy conservation of WLAN and mobile Ad Hoc network 4. Explain the different level of energy optimization techniques 5. Analyzes of design issues in EM energy harvesting schemes 6. Understand energy scavenging techniques for communication devices 7. Understand the mixed signal and low power techniques and its comparison 8. Illustration of energy constraints and energy harvesting 9. Analyze energy consumption of WSN 10. Describe RF energy harvesting and management							

Energy Management for Location-Based Services on Mobile Devices, Energy Efficient Supply of Mobile Devices, Green Radio network- PHY and MAC layer optimization for energy-harvesting wireless networks - Green modulation and coding schemes in energy-constrained wireless networks

Energy Conservation on Various Applications

QoE-Based Energy Conservation for VoIP Applications in WLAN, Minimum Energy Multi-criteria Relay Selection in Mobile Ad Hoc

Networks; Energy Optimization Techniques for Wireless Sensor Networks

Energy Harvesting Systems

Design Issues in EM Energy Harvesting Systems, Energy Scavenging for Magnetically Coupled Communication Devices-Case study

Techniques on Energy Harvesting Systems

Mixed-Signal, Low-Power Techniques in Energy Harvesting Systems, Toward Modeling Support for Low-Power and Harvesting Wireless Sensors for Realistic Simulation of Intelligent Energy-Aware Middleware

Energy Harvesting and Management On WSNS

Energy Consumption Profile for Energy Harvested WSNs, Radio Frequency Energy Harvesting and Management for Wireless Sensor Networks

Text book(s	
1.	Green Mobile Devices and Networks: Energy Optimization and Scavenging Techniques, H. Venkataraman, Gabriel-miroMuntean- CRC Press 2012.
2.	Green Radio Communication Networks, Ekram Hossain, Vijay K. Bhargava, Gerhard P. Fettweis Cambridge University Press, 30-Jun-2012.
Reference(s	s):
1.	Green Communications: Theoretical Fundamentals, Algorithms and Applications, Jinsong Wu, Sundeep Rangan, Hong gang Zhang- September 20, 2012 by CRC Press.
2.	Green Communications and Networking, F. Richard Yu, Xi Zhang, Victor C.M. Leung - December 7, 2012 by CRC Press.
3.	Green IT Strategies and Applications: Using Environmental Intelligence, Bhuvan Unhelkar, June 22, 2011 by CRC Press.

K.S. Rangasamy College of Technology – Autonomous									
	B.E. Electronics and Communication Engineering								
				Elective V					
		40	EC E57 Ne	eural and F	uzzy Syst	ems			
Semester	F	lours / We	ek	Total	Credit	Maximum Marks			
	L	Т	Р	hrs	С	CA	ES	Total	
VIII	3	0	0	45	3	50	50	100	
Objective(a)	To make the students to understand Fuzzy logic and Neural Network concepts.								
Objective(s)	To equip the students with the latest application of soft computing								
At the end of the course, the students will be able to									
	1. Understand the basic concepts of feed forward neural networks								
	2. Analyze the various feedback networks.								
	Comprehend the various types of unsupervised networks								
Course	4. Describe the associative memories and self-organizing maps								
Outcomes	5. Understand the concept of fuzziness involved in various systems and fuzzy set								
	theory.								
	6. Comprehend the fuzzy measures, fuzzy relations and fuzzy functions.								
	7.	Describe th	ne fuzzy inf	ference sys	tems and r	nodels			
	8.								

Introduction to Neural Networks

Biological neural - Neural processing - Supervised and unsupervised learning - Neural network learning rules. Single layer perception - discrete and continuous perception - multi layer feed forward network –Back propagation Networks - feedback networks

Unsupervised Networks

Unsupervised Learning – Competitive Learning Networks – Kohonen self organising networks – Learning Vector Quantization – Hebbian Learning – Hopfield Network –Content Addressable Nature – Binary Hopfield Network .

Associative memories and SOM

Bidirectional Associative Memory – Principle Component Analysis. Auto associative memories -Bidirectional Associative memory (BAM) - Self Organization Maps (SOM)

Fuzzy Logic

Fuzzy sets - Fuzzy Rules: Extension Principle, fuzzy measures - fuzzy relations - fuzzy functions.

Fuzzy Systems and Applications

Representation of fuzzy knowledge - fuzzy inference systems- Mamdani Model – Sugeno Model – Tsukamoto Model – Fuzzy decision making – Multi Objective Decision Making – Fuzzy Classification–Fuzzy Control Methods.

Text book(s	3):
1.	C T Jang, J S R Sun and E Mizutani, Neuro Fuzzy and Soft Computing, Pearson Education, 2009.
2.	David E Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education India, 2006.
Reference(s):
1.	Laurene Fausett, Fundamentals of Neural Networks, PHI,1994
2.	Timothy J.Ross: Fuzzy Logic with Engineering Applications, 3 rd Edition, John Wiley & sons, 2010.
3.	S.Rajasekaran and G.A.Vijayalakshmi Pai, Neural networks, Fuzzy logic and Genetic algorithms, PHI Learning Pvt. Ltd, 2003.
4.	George J.Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, PHI ,1995