K.S.Rangasamy College of Technology

(Autonomous Institution)

Curriculum & Syllabus

of

B.E. Mechatronics Engineering

(For the batch admitted in 2018–2019)

R 2018

Accredited by NAAC with 'A++' Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

VISION

To become a pioneer in producing competent Mechatronics Engineers, researchers and entrepreneurs through quality education

MISSION

- To produce competent and ethically bound Mechatronics professionals by imparting the technical knowledge and skills through quality teaching learning process
- To build an environment that is favourable for employability skills through collaborations with academia and industry
- To groom the students to focus on higher studies, research, entrepreneurship and be committed to the societal welfare and quality of life by creating an effective ecosystem

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Core competencies: Our graduates apply engineering knowledge to solve problems in Mechatronics and relevant fields.
- **PEO2:** Employability: Our graduates demonstrate technical and professional skills to ethically address the industrial and societal needs.
- **PEO3:** Higher Studies, Research and Entrepreneurship: Our graduates pursue higher studies, research and entrepreneurship in diverse fields.

PROGRAM OUTCOMES (POs)

- PO1: **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2: **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3: **Design /development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5: **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- PO6: **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7: **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9: **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10: **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11: **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12: **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMMEOUTCOMES (POs)

The B.E. Mechatronics Engineering Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme					Pr	ogramı	ne Out	comes				
Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO 1	3	3	3	3	2	2	2	2	3	2	3	2
PEO 2	3	3	3	2	2	2	3	3	3	2	3	3
PEO 3	3	3	3	2	2	2	2	2	3	2	3	2

Contributions: 1- low, 2- medium, 3- high

MAPPING: MECHATRONICS ENGINEEIRNG (UG)

Year	Sem.	Course Name						ı	20					
Tear	Seili.	Course Name	1	2	3	4	5	6	7	8	9	10	11	12
		Communication Skills I					2			2	2.8	3	2	3
		Calculus and Differential Equations	3	3	2.8	2.4	2.4							2
		Applied Chemistry	2.2	1.75	2	2.6	2.4	2.6	2	1		1		1
	I	Engineering Mechanics	3	2	2	3								2
		Basic Electrical Engineering	2.2	1.8	1.7	2	2	2.5	2	1.7		2		2
		Chemistry Laboratory	2.8	2.8	2.8	2.4		1	1.5			1		1.5
		Engineering Practices Laboratory	3	2.4	2.4	3		2.4		3	3	3	3	2.4
I	1	Communication Skills II					2			2	3	3	2.4	3
		Laplace Transform and Complex Variables	3	3	2.4	2.2								2
		Applied Physics	3	3	2.2	2.2	2			2		2.6		2.6
		Programming for Problem Solving	3	2	3		3				3	3	2	2
	II	Engineering Drawing	3	2	3		3				3	3	2	2
		Constitution of India								2	2	1		2
		Engineering Physics Laboratory	3	3	2.4	2				2	3	3	2	3
		Programming for Problem Solving Laboratory	3	2	3		3				3	3	2	2
		Partial Differential Equations and Statistics	3	3	3	2.6	2.6							2
		Analog Devices and Digital Circuits	3	3	2.8	3	3	3	2	3	3	2.7	3	3
		Strength of Materials	4.8	4.4	4	1.3								
		Thermodynamics	3	2.8	2.6		2.5							2.5
	III	Manufacturing Technology	3	2.8	2.6		2.5							2.5
		Environmental Science	2.6	2.4	2.6	2.6	2.2	2.8	3	3	2.8	2.8	2.5	2
		Manufacturing Technology Laboratory	3	2.8	2.8	3		3	3	3		2.5		2.5
l 11		Analog Devices and Digital Circuits Laboratory	3	2.8	2.8	2.8	2.8	2.6		3	2	3	2	2.4
		Career Competency Development I	1	1	1	1	1	2	1	2	3	3	2	3
		Industrial Drives and Control	3	3	2.8	3	3	3		2	2		2	2
		Fluid Mechanics and Fluid Machines	3	3	2.8	3	3			3				2.9
		Theory of Machines	3	3	2.8	2	3			3		3		2.8
	IV	Hydraulic and Pneumatic Control	3	2	2.8		3	3	2					
		Applied Materials Technology	3	2	2			3	2					2
		Essence of Indian Traditional Knowledge							2	1				
		Industrial Drives and Control Laboratory	3	2.8	3	3	3	2	2	2	2	2	2	2

		Applied Mechanics Laboratory	3	1.4	1.4	1.2	2		2					1
		Career Competency Development II	2	1.6	1.5	1.4	1.2	1.8	1	1	1.8	3	2	3
		Microprocessors and Microcontrollers	3	2.6	2.4	2	2.6	2	2	3	2	3	2	2
		System Design and Control	3	3	2.8	2.6	2	2	3				3	2.6
		Sensors and Instrumentation	3	3	3	2.7	2.7	2		2.4	2	3	3	2
	V	Machine Design	3	3	3	2.6				3				3
		Microprocessors and Microcontrollers Laboratory	3	2.8	2.8	2	3		3	3	3			1.6
		Metrology and Dynamics Laboratory	2	2	3	1								2
Ш		Career Competency Development III	3	2	2	2	3	2	1	2	3	2.8	2.5	3
""		Programmable Automation Controllers	3	3	2.5	2	2.8	3	3	2.5	3	3	3	2
		Computer Aided Design and Manufacturing	3	2.2	2	2	2	2	2	3		2	1	
		Robotics Engineering	3	2.6	2.4	2	2.6	2.4	2	3	3	3	3	2
	VI	Start-ups and Entrepreneurship	2.8	2.6	3	2.4	2.2	2.5	1.7	1.75	1.3	2	2.2	2.4
		Robotics and Machine vision laboratory	2.4	2.6	2	2	3	2	2.5	2	2	3	2.5	2.5
		Computer Aided Manufacturing Laboratory	3	2.6	2.8		3				2			2
		Career Competency Development IV	3	2.4	2	2.4	2.4	1.5	1	2	3	2.6	2.6	3
		Industrial Automation Protocols	3	2.4	2.6	2	2.6	3	2	3				3
		Embedded System	3	2.2	2.5	2.2	3		3	2	2.5	3	2	2
		Autonomous Vehicle	3	2.7	2.4	2	2							2
	VII	Research Skill Development -I	3	3					3	3	3	3	3	3
	VII	Industrial Automation and Control Laboratory	3	3					3	3	3	3	3	3
IV		Embedded System Laboratory	3	2.8	2	2.4	3	2	3	3			2.5	2.5
		Project Work-Phase I	3	3	3	3	3	3	3	3	3	3	3	3
		Career Competency Development V	3	2.4	2	2.4	2.5	1.5	1	2	3	2.6	2.6	3
		Total Quality Management	3	2.5			2.5	2.6	2.5	3	2.5	2.8		3
	VIII	Research Skill Development -II							3	3	3	3	3	3
		Project Work -Phase II	3	3	3	3	3	3	3	3	3	3	3	3

SEMESTER I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 EN 001	Communication Skills I	HS	2	1	1	0	2
2.	50 MA 001	Calculus and Differential Equations	BS	4	3	1	0	4
3.	50 CH 001	Applied Chemistry	BS	3	3	0	0	3
4.	50 ME 003	Engineering Mechanics	ES	4	3	1	0	4
5.	50 EE 001	Basic Electrical Engineering	ES	3	3	0	0	3
		PRACTICALS						
6.	50 CH 0P1	Chemistry Laboratory	BS	4	0	0	4	2
7.	50 ME 0P1	Engineering Practices Laboratory	ES	4	0	0	4	2
			Total	24	13	3	8	20

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
		THEORY						
1.	50 EN 002	Communication Skills II	HS	2	1	1	0	2
2.	50 MA 002	Laplace Transform and Complex Variables	BS	4	3	1	0	4
3.	50 PH 001	Applied Physics	BS	3	3	0	0	3
4.	50 CS 001	Programming for Problem Solving	ES	3	3	0	0	3
5.	50 ME 001	Engineering Drawing	ES	6	2	0	4	4
6.	50 MY 001	Constitution of India	MY	2	2	0	0	0
		PRACTICALS						
7.	50 PH 0P1	Engineering Physics Laboratory	BS	4	0	0	4	2
8.	50 CS 0P1	Programming for Problem Solving Laboratory	ES	4	0	0	4	2
			Total	28	14	02	12	20

SEMESTER III

OLINEOTEIX III									
S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	
		THEORY							
1.	50 MA 003	Partial Differential Equations and Statistics	BS	4	3	1	0	4	
2.	50 MC302	Analog Devices and Digital Circuits	PC	3	3	0	0	3	
3.	50 ME 004	Strength of Materials	PC	4	3	1	0	4	
4.	50 ME 006	Thermodynamics	PC	4	3	1	0	4	
5.	50 MC303	Manufacturing Technology	PC	3	3	0	0	3	
6.	50 MY 002	Environmental Science	MY	2	2	0	0	0	
		PRACTICALS							
7.	50 MC 3P1	Manufacturing Technology Laboratory	PC	4	0	0	4	2	
8.	50 MC 3P2	Analog Devices and Digital Circuits Laboratory	PC	4	0	0	4	2	
9.	50 TP 0P1	Career Competency Development I	EEC	2	0	0	2	0	
			Total	30	17	3	10	22	

SEMESTER IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
		THEORY						
1.	50 MC 401	Industrial Drives and Control	PC	3	3	0	0	3
2.	50 ME 005	Fluid Mechanics and Fluid Machines	PC	4	3	1	0	4
3.	50 MC 402	Theory of Machines	PC	4	3	1	0	4
4.	50 MC 403	Hydraulic and Pneumatic Control	PC	5	3	0	2	4
5.	50 MC 404	Applied Materials Technology	PC	3	3	0	0	3
6.	50 MY 006	Essence of Indian Traditional Knowledge	MY	2	2	0	0	0
		PRACTICALS						
7.	50 MC 4P1	Industrial Drives and Control Laboratory	PC	4	0	0	4	2
8.	50 MC 4P2	Applied Mechanics Laboratory	PC	4	0	0	4	2
9.	50 TP 0P2	Career Competency Development II	EEC	2	0	0	2	0
			Total	31	17	2	12	22

SEMESTER V

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
		THEORY						
1.	50 MC 501	Microprocessors and Microcontrollers	PC	3	3	0	0	3
2.	50 MC 502	System Design and Control	PC	4	3	1	0	4
3.	50 MC 503	Sensors and Instrumentation	PC	3	3	0	0	3
4.	50 MC 504	Machine Design	PC	4	3	1	0	4
5.	50 MC E1*	Elective -I	PE	3	3	0	0	3
6.	50 MC L1*	Open Elective-I	OE	3	3	0	0	3
		PRACTICALS						
7.	50 MC5P1	Microprocessors and Microcontrollers Laboratory	PC	4	0	0	4	2
8.	50 MC 5P2	Metrology and Dynamics Laboratory	PC	4	0	0	4	2
9.	50 TP 0P3	Career Competency Development III	EEC	2	0	0	2	0
			Total	30	18	2	10	24

SEMESTER VI

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
		THEORY						
1.	50 MC 601	Programmable Automation Controllers	PC	4	3	1	0	4
2.	50 MC 602	Computer Aided Design and Manufacturing	PC	3	3	0	0	3
3.	50 MC 603	Robotics Engineering	PC	3	3	0	0	3
4.	50 MC E2*	Elective -II	PE	3	3	0	0	3
5.	50 MC E3*	Elective -III	PE	3	3	0	0	3
6.	50 MC L2*	Open Elective-II	OE	3	3	0	0	3
7.	50 MY 014	Start-ups and Entrepreneurship	MY	2	2	0	0	0
		PRACTICALS						
8.	50 MC 6P1	Robotics and Machine Vision Laboratory	PC	4	0	0	4	2
9.	50 MC 6P2	Computer Aided Manufacturing Laboratory	PC	4	0	0	4	2
10.	50 TP 0P4	Career Competency Development IV	EEC	2	0	0	2	0
			Total	31	20	1	10	23

SEMESTER VII

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 MC 701	Industrial Automation Protocols	PC	3	3	0	0	3
2.	50 MC 702	Embedded System	PC	3	3	0	0	3
3.	50 MC 703	Autonomous Vehicle	PC	3	3	0	0	3
4.	50 MC E4*	Elective -IV	PE	3	3	0	0	3
5.	50 MC E5*	Elective -V	PE	3	3	0	0	3
6.	50 MC L3*	Open Elective-III	OE	3	3	0	0	3
7.	50 AC 001	Research Skill Development -I	AC	1	1	0	0	0
		PRACTICALS						
8.	50 MC 7P1	Industrial Automation and Control Laboratory	PC	4	0	0	4	2
9.	50 MC 7P2	Embedded System Laboratory	PC	4	0	0	4	2
10.	50 MC 7P3	Project Work-Phase I	EEC	4	0	0	4	2
11.	50 TP 0P5	Career Competency Development V	EEC	2	0	0	2	0
			Total	33	19	0	14	24

SEMESTER VIII

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 HS 003	Total Quality Management	HS	3	3	0	0	3
2.	50 AC 002	Research Skill Development -II	AC	1	1	0	0	0
		PRACTICALS						
3.	50 MC 8P1	Project Work -Phase II	EEC	16	0	0	16	8
4.	50 TP 0P6	Internship ^{\$}	EEC	0	0	0	4	3\$
			Total	20	4	0	16	11
\$	Extra credits	s will be offered as additional credits depend	ing on the du	ration of th	ne int	erns	hip	

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 166

Note: HS- Humanities and Social Sciences including Management Courses, BS- Basic Science Courses, ES-Engineering Science Courses, PC-Professional Core Courses, PE-Professional Elective Courses, OE- Open Elective Courses, EEC-Employability Enhancement Courses, AC-Audit Courses, MY- Mandatory Courses

HUMANITIES AND SOCIAL SCIENCES (HS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 EN 001	Communication Skills I	HS	2	1	1	0	2
2.	50 EN 002	Communication Skills II	HS	2	1	1	0	2
3.	50 HS 003	Total Quality Management	HS	3	3	0	0	3

BASIC SCIENCE (BS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 MA 001	Calculus and Differential Equations	BS	4	3	1	0	4
2.	50 CH 001	Applied Chemistry	BS	3	3	0	0	3
3.	50 CH 0P1	Chemistry Laboratory	BS	4	0	0	4	2
4.	50 MA 002	Laplace Transform and Complex Variables	BS	4	3	1	0	4
5.	50 PH 001	Applied Physics	BS	3	3	0	0	3
6.	50 PH 0P1	Engineering Physics Laboratory	BS	4	0	0	4	2
7.	50 MA 003	Partial Differential Equations and Statistics	BS	4	3	1	0	4

ENGINEERING SCIENCES (ES)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 ME 003	Engineering Mechanics	ES	4	3	1	0	4
2.	50 EE 001	Basic Electrical Engineering	ES	3	3	0	0	3
3.	50 ME 0P1	Engineering Practices Laboratory	ES	4	0	0	4	2
4.	50 CS 001	Programming for Problem Solving	ES	3	3	0	0	3
5.	50 ME 001	Engineering Drawing	ES	6	2	0	4	4
6.	50 CS 0P1	Programming for Problem Solving Laboratory	ES	4	0	0	4	2

PROFESSIONAL CORE (PC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 MC 302	Analog Devices and Digital Circuits	PC	3	3	0	0	3
2.	50 ME 004	Strength of Materials	PC	4	3	1	0	4
3.	50 MC303	Manufacturing Technology	PC	3	3	0	0	3
4.	50 MC 3P1	Manufacturing Technology Laboratory	PC	4	0	0	4	2
5.	50 MC 3P2	Analog Devices and Digital Circuits Laboratory	PC	4	0	0	4	2
6.	50 ME 006	Thermodynamics	PC	4	3	1	0	4
7.	50 MC 401	Industrial drives and control	PC	3	3	0	0	3
8.	50 ME 005	Fluid Mechanics and Fluid Machines	PC	4	3	1	0	4
9.	50 MC 402	Theory of Machines	PC	4	3	1	0	4
10.	50 MC 403	Hydraulic and Pneumatic control	PC	5	3	0	2	4
11.	50 MC 404	Applied Materials Technology	PC	3	3	0	0	3
12.	50 MC 4P1	Industrial Drives and Control Laboratory	PC	4	0	0	4	2
13.	50 MC 4P2	Applied Mechanics Laboratory	PC	4	0	0	4	2
14.	50 MC 501	Microprocessors and Microcontrollers	PC	3	3	0	0	3
15.	50 MC 502	System Design and Control	PC	4	3	1	0	4
16.	50 MC 503	Sensors and Instrumentation	PC	3	3	0	0	3
17.	50 MC 504	Machine Design	PC	4	3	1	0	4
18.	50 MC5P1	Microprocessors and Microcontrollers Laboratory	PC	4	0	0	4	2
19.	50 MC 5P2	Metrology and Dynamics Laboratory	PC	4	0	0	4	2
20.	50 MC 601	Programmable Automation Controllers	PC	4	3	1	0	4

21.	50 MC 602	Computer Aided Design and Manufacturing	PC	3	3	0	0	3
22.	50 MC 603	Robotics Engineering	PC	3	3	0	0	3
23.	50 MC 6P1	Robotics and Machine Vision Laboratory	PC	4	0	0	4	2
24.	50 MC 6P2	Computer Aided Manufacturing Laboratory	PC	4	0	0	4	2
25.	50 MC 701	Industrial Automation Protocols	PC	3	3	0	0	3
26.	50 MC 702	Embedded System	PC	3	3	0	0	3
27.	50 MC 703	Autonomous Vehicle	PC	3	3	0	0	3
28.	50 MC 7P1	Industrial Automation and Control Laboratory	PC	4	0	0	4	2
29.	50 MC 7P2	Embedded System Laboratory	PC	4	0	0	4	2

PROFESSIONAL ELECTIVES (PE)

SEMESTER V, ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 MC E11	Wireless Sensor Networks	PE	3	3	0	0	3
2.	50 MC E12	Automobile Technology	PE	3	3	0	0	3
3.	50 MC E13	Virtual Instrumentation and Applications	PE	3	3	0	0	3
4.	50 MC E14	Composite Materials	PE	3	3	0	0	3
5.	50 HS 004	Principles of Management	PE	3	3	0	0	3

SEMESTER VI, ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	٦	Т	P	С
1.	50 MC E21	Supply Chain Management	PE	3	3	0	0	3
2.	50 MC E22	Additive Manufacturing	PE	3	3	0	0	3
3.	50 MC E23	Design of Transmission Systems	PE	3	3	0	0	3
4.	50 MC E24	Industrial Design and Applied Ergonomics	PE	3	3	0	0	3
5.	50 MC E25	Virtual Reality and Haptics	PE	3	3	0	0	3

SEMESTER VI, ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 MC E31	Operations Research	PE	3	3	0	0	3
2.	50 MC E32	Design of Material Handling Equipments	PE	3	3	0	0	3
3.	50 MC E33	Finite Element Analysis	PE	3	3	0	0	3
4.	50 MC E34	MEMS and NEMS	PE	3	3	0	0	3
5.	50 MC E35	Product Design and Costing	PE	3	3	0	0	3

SEMESTER VII, ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 MC E45	Drone Technology	PE	3	3	0	0	3
2.	50 MC E42	Vehicle Intelligence	PE	3	3	0	0	3
3.	50 MC E43	New and Renewable Energy Sources	PE	3	3	0	0	3
4.	50 MC E44	Machine Learning and Condition Monitoring	PE	3	3	0	0	3
5.	51PTT01	Creo for Design	PE	4	2	0	2	3

SEMESTER VII, ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	P	С
1.	51 PT T02	Creo for Production Engineering	PE	4	2	0	2	3
2.	50 MC E51	Unconventional Machining Processes	PE	3	3	0	0	3

3.	50 MC E52	Non Destructive Testing Methods	PE	3	3	0	0	3
4.	50 HS001	Engineering Economics and Financial Accounting	PE	3	3	0	0	3
5.	51 MC E53	Fundamentals of Arduino	PE	4	2	0	2	3

OPEN ELECTIVES I / II / III / IV(OE)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 MC L01	Industrial Safety Engineering	OE	3	3	0	0	3
2.	50 MC L02	Industrial Toxicology	OE	3	3	0	0	3
3.	50 MC L03	Programmable Logic Controllers	OE	3	3	0	0	3
4.	50 MC L04	Virtual Instrumentation	OE	3	3	0	0	3
5.	50 MC L05	Robotics and Automation	OE	3	3	0	0	3

SEMESTER VII & SEMESTER VIII, AUDIT COURSES (AC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 AC 001	Research Skill Development -I	AC	1	1	0	0	0
2.	50 AC 002	Research Skill Development -II	AC	1	1	0	0	0

MANDATORY COURSES (II/III/IVMY)

S.No	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 MY 001	Constitution of India	MY	2	2	0	0	-
2.	50 MY 002	Environmental Science	MY	2	2	0	0	-
3.	50 MY 006	Essence of Indian Traditional Knowledge	MY	2	2	0	0	-
4.	50 MY 014	Start-ups and Entrepreneurship	MY	2	2	0	0	-

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 TP 0P1	Career Competency Development I	EEC	2	0	0	2	-
2.	50 TP 0P2	Career Competency Development II	EEC	2	0	0	2	-
3.	50 TP 0P3	Career Competency Development III	EEC	2	0	0	2	-
4.	50 TP 0P4	Career Competency Development IV	EEC	2	0	0	2	-
5.	50 TP 0P5	Career Competency Development V	EEC	2	0	0	2	-
6.	50 MC 7P3	Project Work-Phase I	EEC	4	0	0	4	2
7.	50 TP 0P6	Internship ^{\$}	EEC	0	0	0	4	3
8.	50 MC 8P1	Project Work -Phase II	EEC	16	0	0	16	8

SUMMARY

S.No.	Catagory			Cre	dits Pe	r Semes	ster			Total	Percentage
3.NO.	Category		II	III	IV	V	VI	VII	VIII	Credits	%
1.	HS	2	2	-	-	-	-	-	3	07	4.21
2.	BS	9	9	4	-	-	-	-	-	22	13.25
3.	ES	9	9	-	-	-	-	-	-	18	10.84
4.	PC	-	-	18	22	18	14	13	-	85	51.20
5.	PE	-	-	-	-	3	6	6	-	15	9.03
6.	OE	-	-	-	-	3	3	3	-	09	5.42
7.	EEC	-	-	-	-	-	-	2	8	10	6.02
8.	MY	-	MYI	MY II	MY III	-	MY IV	-	-	-	-
9.	AC							AC I	AC II	-	-
	Total	20	20	22	22	24	23	24	11	166	100

	K.S.Ranga	samy Co	llege of	Technolog	y – Autono	mous		R2018		
		50 EN	001 – Co	mmunicati	on Skills I					
		C	ommon	to all Bran	ches					
Samastar	Hours/	Week		Total	Credit		Maximu	m Marks		
Semester I Objective(s) Course Outcomes	L	Т	Р	Hours	С	CA	ES	Total		
I	1	1	0	30	2	50	50	100		
Objective(s)	 in different act To help learner To help learner related situation To equip stude To facilitate 	To help learners improve their vocabulary and to enable them to use words appropriately in different academic and professional contexts To help learners develop strategies that could be adopted while reading texts To help learners acquire the ability to speak effectively in English in real life and career related situations To equip students with effective speaking and listening skills in English To facilitate learners to enhance their writing skills with coherence and appropriate format effectively								
	infer meanings Able to select effective oral p Skim & Scan & vocabulary s Generate ide details in writir	literacy to sof unfart, compil presentat the textuskills as from ng	nools to coniliar worke & syntion all conter	develop listeds hesize infor ht & infer m to develop	ening skills rmation using eanings of coherent	ng comm unfamilia content	unication r words to and supp	strategies for an develop reading port with relevant competent loud		

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Listening

Listening to Short Audios – Watching Short Videos - answering MCQs and Vocabulary Check- Listening to Short Comprehension Passages – Guided Listening – Listening to songs and cognizing the lyrics. [4]

Speaking

Brainstorming – Group Discussion (unstructured) – Self Introduction - Just a Minute (JaM) - Short Narratives – Cue Cards – Picture Cards – Conversational Practices (Preliminary). [4]

Reading

Silent Reading – Scanning and Skimming - Reading short and Medium Passages – Cognition of Theme and Inferential Meaning - Academic and Functional Vocabulary List (350 words) – Word Power Check - Loud Reading – Modulation and Pronunciation Check. [4]

Writing

Functional Vocabulary and Word Power – Data Interpretation - Paragraph Writing – Letter Writing –Email Writing – Conversational Fill Ups. [3]

vvritin	ig – Conversational Fill Ups. [3]								
	Total Hours: 15 + 15 (Tutorial) = 30 hours								
Text	Books								
1.	M.Ashraf Rizvi, 'Effective Technical Communication', 2 nd Edition, McGraw Hill Education (India) Private Limited, Chennai, 2018								
2.	Norman Lewis, 'Word Power Made Easy - The Complete Handbook for Building a Superior Vocabulary Book', Penguin Random House India, 2020								
Refer	References:								
1.	Paul Emmerson and Nick Hamilton ,'Five Minute Activities for Business English', Cambridge University Press, N.York, 2005								
2.	Arthur Brookes and Peter Grundy ,' Beginning to Write: Writing Activities for Elementary and Intermediate Learners', Cambridge University Press, N.York, 2003								
3.	Michael McCarthy and Felicity O Dell , 'English Vocabulary in Use: Upper Intermediate', Cambridge University Press, N.York, 2012								
4.	https://learningenglish.britishcouncil.org/en/listening								

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
50 EN 001 & Communication Skills I	CO1					2			2	3	3	2	3	2	2	
	CO2								2	3	3	2	3	2	2	
	CO3					2			2	3	3	2	3	2	2	
	CO4					2			2	3	3	2	3	2	2	
	CO5								2	2	3	2	3	1	1	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	<u> </u>	K.S.Rangasa	<u> </u>					R2018
			<u> </u>	ıs and Diffei				
			Commo	n to All Brar	nches			
Semester		Hours / Weel	<	Total	Credit	М	ks	
Semester	L	Т	Р	hrs	C	CA	ES	Total
l	3	1	0	60	4	50	50	100
Objective(s)	 tradition The second Matrix of eng This an improve science 	goal of this cons of traditions of traditions of traditions of the enging and the enging are deals of the enging of the engine e	enal calculus esigned to paleering problem one of the pole with topics and the unders oner discipline	rovide the balems mather owerful tools such as singlestanding of ses.	asic tools of natically and to handle properties of the contraction of	calculus ma obtaining so actical probl nd multivaria neering, ecc	inly for the polutions. ems arising in the calculus on the calculus and the calculus on the calculus and the calculus on the calculus and the	ourpose of in the field and plays
Course Outcomes	At the en 1 Apply reduce 2 Deter 3 Analy 4 Solve	d of the count Cayley - Ha equadratic formine the circum ze the Jacob the linear arate definite a	rrse, the stu milton theore orm into cand le of curvatu ian methods ad simultane	dents will be em to find involuced form. are, evolute a and the con ous differenti	e able to erse matrix and envelope strained manal al equations	and transfori of the curve kima and mil	mation techn	

The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Matrices

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values and Eigen vectors – Cayley-Hamilton theorem (without proof) – Orthogonal transformation of a symmetric matrix to diagonal form – Reduction of quadratic form to canonical form by orthogonal transformation - Nature of quadratic form.

Differential Calculus

Curvature – radius of curvature (Cartesian and polar co-ordinates) – Centre of curvature – Circle of curvature – Involute and evolute – envelope.

Functions of Several Variables

Partial differentiation – Homogeneous functions and Euler's theorem – Jacobians – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Constrained maxima and minima : Lagrange's Method of Undetermined Multipliers. [09]

Differential Equations

Linear differential equations of second and higher order with constant co-efficient - R.H.S is $e^{\square x}$, $\sin \square x$, $\cos \square x$, x^n $n \square 0$, $e^{\square x} \sin \square x$, $e^{\square x} \cos \square x$, $e^{\square x} x^n x^n \sin \square x$ and $x^n \cos \square x$ — Differential equations with variable co-efficients : Cauchy's and Legendre's form of linear equation — Method of variation of parameters—Simultaneous first-order linear equations with constant co-efficients. [09]

Integral Calculus

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of Strational functions - Improper integrals. [10]

Total Hours: 45 + 15(Tutorial) = 60 hours

Text book(s)::

- Grewal B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. Web site: https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html
- 2 Veerarajan.T., "Engineering Mathematics", for Semesters I and II, Tata McGraw Hill Publishing Co., New

Reference Pos/MCT

	Delhi., 2010.
Refe	rence(s):
1	Kreyszig Erwin, "Advanced Engineering Mathematics", 10 th Edition, John Wiley and Sons (Asia) Limited, New Delhi, 2016.
2	Integral Equations, calculus of variations and its applications- Dr. P. N. Agrawal, Dr. D. N. Pandey, NPTEL online video courses.
3	Matrix Analysis with Applications - Dr. S. K. Gupta Dr. Sanjeev Kumar, Matrix Solvers -prof.Somnath Roy NPTEL online video courses.
4	Dr.P.Kandasamy, Dr.K.Thilagavathy, Dr.K.Gunavathy, "Engineering Mathematics-II", S.Chand & Company Ltd, New Delhi.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO		
COURSE NAME	3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
	CO1	3	3	3	3	3							2	3		
50 MA001 & Calculus and Differential	CO2	3	3	2	2	2							2	3		
	CO3	3	3	3	2	2							2	3		
Equations	CO4	3	3	3	3	2							2	3		
	CO5	3	3	3	2	3							2	3		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.	S.Rangasan	ny College o	f Technology	y – Autonom	ous		R2018						
				50 CH 001	Applied Che	emistry									
				Commo	n to All Bran	ches									
Semester		ı	Hours / Weel	(Total	Credit	M	laximum Marl	m Marks						
Semester		L	Т	Р	hrs	С	CA	ES	Total						
I		3	0	0	45	3	50	50	100						
	•	To ratio	onalize the p	eriodic prope	rties such as	ionization po	tential, electro	on affinity, ox	idation						
		state, e	electro negat	ivity, atomic a	and molecular	orbitals									
	•	To analyze the thermodynamic functions, concept of cells and corrosion of metals and its control													
Objective(s)		methods													
	•	To help the learners to analyze the hardness of water and its removal													
	•	To end	low with an o	verview of sp	ectroscopy p	rinciples and	its applicatio	ns							
	•	To red	call the basic	s of stereoch	emistry and re	eaction mech	anism								
	At t	he end	of the cours	e, the stude	nt will be abl	le to:									
			•	odic propertie	s, variation of	forbitals, inte	ractions and	orbitals with	energy						
		level dia	0												
Course					tions, cell pot		orrosion with	its control me	easures						
Outcomes					of water and										
			•		magnetic spe	ectrum used f	or exciting di	fferent molec	ular energy						
			•	ctroscopic te	•										
	5.	Review	of stereoche	mistry and ty	pes of chemi	cal reactions	with their me	chanism							

Periodic properties

Effective nuclear charge - atomic and ionic sizes - ionization energies - electron affinity - electro negativity - polarizability - oxidation states - penetration of orbitals- variations of s, p, d and f orbital energies of atoms - electronic configurations, ionic, dipolar and Vander- waals interactions. Hard Soft Acids and Bases (HSAB).

Molecular orbitals of diatomic molecules - plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbital of butadiene and benzene. [09]

Chemical equilibria and corrosion

Thermodynamic functions - energy - entropy - enthalpy- free energy - Gibbs-Helmholtz equation - Van 't Hoff isotherm. Cell potentials - Nernst equation - applications - EMF series - applications - Poteniometric and Conductometric titrations.

Corrosion - types of corrosion - chemical and electrochemical corrosion - mechanism - Factors influencing corrosion - Corrosion control methods (impressed current and sacrificial anode methods) - Corrosion inhibitors. [09]

Water chemistry

Sources - Water quality parameters - impurities in water and their effects. Hardness - Estimation of hardness - effect of hard water in various Industries-Softening of water- external treatment-zeolite process- ion-exchange process-internal treatment-carbonate, phosphate and calgon Conditioning-Desalination- reverse osmosis - electrodialysis. Boiler troubles - methods of prevention.

Analytical techniques and applications

Absorption laws - Ultra Violet spectroscopy (UV) - Principle - Instrumentation (Block diagram) - applications. Infra-

Red spectroscopy (IR)- Instrumentation (Block diagram) - selection rule - types of fundamental vibrations applications. Nuclear Magnetic Resonance spectroscopy (NMR) - Principle - selection rule - Instrumentation (Block diagram) - chemical shift - factors influencing the chemical shift -applications. Atomic Absorption Spectroscopy (AAS) - Principle - Instrumentation (Block diagram) -applications.

Concepts in Organic chemistry

Structural isomerism- types - Stereoisomerism - geometrical (Maleic and Fumaric acids) - optical isomerism (Lactic and Tartaric acids) - symmetry - chirality- enantiomers - diastereomers - optical activity - absolute configurations. Introduction to reactions - substitution - addition - oxidation - reduction - cyclization and ring openings - mechanism.

	Total Hours: 45								
Text	book(s):								
1	Jain. P.C. and Monica Jain, "Engineering Chemistry", Dhanpatrai Publishing Co. New Delhi, 14th edition, 2015.								
2	Dr. S.Vairam and Dr. Suba Ramesh, "Engineering Chemistry", Wiley India Private Limited, 2 nd edition,								
	January 2013.								
Refe	Reference(s):								
4	Puri B. R., Sharma L.R., and Pathania M.S., "Principles of Physical Chemistry", Vishal Publishing Company,								
	Delhi, 2017.								
2	Dara. S.S, "A Text Book Of Engineering Chemistry", S Chand & Co. Ltd., 2014.								
3	Bahl B.S. and Arun Bahl, "Advanced Organic Chemistry", S.Chand, New Delhi, 2014.								
4	Sharma B K. Instrumental Methods of Chemical Analysis, Goel Publishing House Meerut, 23 th edition; 2014.								

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО		PO											PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
50 CH 001 & Applied Chemistry	CO1	2			2	2								2	1	
	CO2	3	2	2	2	2	2	2	1		1		1	1	1	
	CO3	3	3	3	3	2	3	2	1				1	2	1	
	CO4	1	1	2	3	3	2						1		•	
	CO5	2	1	1	3	3	2									

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	-	K.S.Rangasa	my College	of Technolo	gy – Autono	mous		R2018
		5	0 ME 003 – E	Engineering	Mechanics			
			Commo	n to all bran	ches			
Semester		Hours / Weel	<	Total	Credit	M	laximum Mai	rks
Semester	L	Т	Р	hrs	С	CA	ES	Total
1/11	3	1	0	60	4	50	50	100
Objective(s)	equilible To lea To ide To im	arn a process orium in two a arn the equilibentify the propert basic conderstand the officers.	nd three dim rium of rigid l erties of surfa cept of dyna	ensions. bodies such a aces and soli mics of partic	as frames, tru ds by using c les.	sses, beams lifferent theor	em.	:cnanicai
Course Outcomes	 Use so Apply Calcu Analys Draw 	of the course calar and vector basic knowled late the prope se and solve passes and solve passes and solve passes at the course of the course	or analytical to dge of scient rties of surfa problems on and bening	echniques for a ific concepts ces and solid kinematics ar moment diag	analysing force to solve real- is using vario and kinetics. rams, analys	world probler us theorems.	ns.	

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Basics and Statics of Particles

Introduction -Units and Dimensions-Laws of Mechanics-Principle of Transmissibility-Lame's theorem, Parallelogram and triangular Law of forces-Vectors-Vectorial representation of forces and moments.

Vector operations

Addition, subtraction, dot product, cross Product-Coplanar Forces-Resolution and Composition of forces-Equilibrium of a particle-Forces in Space-Equilibrium of a particle in Space-Equivalent systems of Forces-Single equivalent

Equilibrium of Rigid Bodies

Free body diagram-Types of supports and their reactions-requirements of stable equilibrium-Static determinacy, Moments and Couples-Moment of a force about a point and about an axis-Vectorial representation of moments and couples-Varignon's Theorem-Equilibrium of Rigid bodies in two dimensions.

Trusses: Introduction, axial members, calculation of forces on truss members using method of Joints-Method of sections. [12]

Properties of Surfaces and Solids

Determination of Areas and Volumes-Centroid, Moment of Inertia of plane area (Rectangle, circle, triangle using Integration Method; T section, I section, Angle section, Hollow section using standard formula) - Parallel axis theorem and perpendicular axis theorem- Polar moment of inertia -Mass moment of inertia of thin rectangular section - Relation between area moment of inertia and mass moment of inertia.

Dynamics of Particles

Displacement, Velocity, acceleration and their relationship—Relative motion -Projectile motion in horizontal plane—Newton's law—Work Energy Equation – Impulse and Momentum. [12]

Elements of Rigid Body Dynamics, Friction and Beams

Translation and Rotation of Rigid Bodies: Velocity and acceleration-General Plane motion: Crank and Connecting rod mechanism.

Friction

Frictional force—Laws of Coloumb friction—Simple contact friction—Ladder Friction-Rolling resistance—Ratio of tension in belt.

Transverse bending on beams

Types of beams: Supports and loads – Shear force and bending moment in beams – Cantilever, simply supported and overhanging beams. [12]

Total Hours: 45 + 15 (Tutorial) = 60

Text book(s):

- 1. Rajasekaran, S., Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt. Ltd., 3rd Edition, 2017.
- 2. Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers", Statics and Dynamics, McGraw-Hill International, 11th Edition, 2016.

Reference(s):

- 1. Jayakumar, V. and Kumar, M, "Engineering Mechanics", PHI Learning Private Ltd, New Delhi, 2012
- 2. Hibbeller, R.C., "Engineering Mechanics", Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd.,
- 3. Bansal R.K," Engineering Mechanics" Laxmi Publications (P) Ltd, 2011.
- 4. Irving H. Shames, Engineering Mechanics: Statics and Dynamics", Pearson Education Asia Pvt. Ltd, 4thEdition, 2003.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3										3	3	
50 ME 000 8	CO2	3	3	3										3	3	
50 ME 003 & Engineering Mechanics	CO3	3	3	3		3			3					3	3	
Linginicening Miconariles	CO4	3	3	3		3			3					3	3	
	CO5	3	3	2										3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K	.S.Rangasar	ny College o	of Technolog	y – Autonor	nous		R2018
		50 I	EE 001 - Bas	sic Electrical	Engineering	9		
			Commo	n to all bran	ches			
Semester		Hours / Wee	k	Total	Credit	Ma	aximum Mar	ks
Selliestel	L	Т	Р	hrs	С	CA	ES	Total
1	3	0	0	45	3	50	50	100
İ	To und	derstand and	determine th	e electrical qu	antity in DC	and AC circu	its.	
	• To un	derstand the	working pri	inciple of ele	ctrical mach	ines by app	lying Farada	y's laws of
	electro	magnetic ind	uction.					
	To kno	ow the source	s of electric	power genera	ition and exp	lain the work	ing principles	of different
Objective(s)	types	of power plan	t.					
	• To un	derstand the	various com	ponents of lo	ow voltage e	lectrical insta	allation and b	pasic house
	wiring.							
	 To imp 	plement the p	rinciples of	energy conse	rvation and	understand t	ne need of e	earthing and
	safety	measures.						
	At the end	of the cours	se, the stude	ents will be a	ble to			
				ctric circuits e				
Course			uction and w	vorking of D0	C and AC e	lectrical mad	hines and id	dentify their
Outcomes	applica							
				s types of pov				
	4. Recog	nize the signi	ficance of va	rious compon	ents of low v	oltage electri	cal installatio	ns.

Africal Chairman Ros/MCT

5. Demonstrate the various types of wiring used in domestic and to know safety measures.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

DC and AC Circuits - Electrical circuit elements (R, L and C), Voltage and current sources - Kirchhoff's current and voltage laws - Serial and parallel circuits - Analysis of simple circuits with DC excitation. Representation of sinusoidal waveforms, Peak and RMS values, Phasor representation, Real power, Reactive power, Apparent power, Power factor. Analysis of singlephase AC circuits consisting of R, L, C, RL, RC, RLC combinations. [12] **DC Machines -** Construction, Types and Operation, Simple Problems - Applications. [06]

AC Machines - Faraday's laws of electromagnetic induction - Transformers: Construction, Working principle, Types, Losses in transformers, Regulation, Efficiency and applications.

Generation of rotating magnetic fields - Three phase induction motor: Construction, working principle, Characteristics, Starting - Single phase induction motor: Construction, working principle and applications - Synchronous generators: Construction, Working principle and applications. [08]

Electrical Power Generation Systems - Sources of electrical energy: Renewable and nonrenewable - Principles and schematic diagram of Hydroelectric power plant, Thermal power plant, Nuclear power plant, Solar PV system and Wind energy conversion systems. [05]

Electrical Installations and House Wiring - Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB - Types of Batteries, Important Characteristics for Batteries - UPS.

Single phase and three phase systems: Three phase balanced circuits, Phase sequence, voltage and current relations in star and delta connections - Basic house wiring tools and components - Domestic wiring: Service mains, meter board, distribution board, energy meter. Different types of wiring: staircase, fluorescent lamp and ceiling fan.

Electrical Energy Conservation & Safety - Elementary calculations for energy consumption - BEE Standards - Electrical energy conservation - Methods. Electric shock, Precautions against shock, Objectives of earthing, Types of earthing - Basic electrical safety measures at home and industry. [06]

Total Hours: 45

Text book(s):	Text	book	(s)) :
---------------	-------------	------	-----	------------

- 1 D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2017.
- 2 D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2017.

Reference(s):

- 1 L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 2 E. Hughes, "Electrical and Electronics Technology", Pearson, 2016.
- 3 V. D.Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 2015.
- 4 Vincent Del Toro, Electrical Engineering Fundamentals Prentice Hall, 2006.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO						Р	0						PS	so
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2			2								2	2
50 FF 004 8 Davis	CO2	3	2			2		2						2	2
50 EE 001 & Basic Electrical Engineering	CO3	2	2	1	2	2	3	2	2					2	1
Liectifical Engineering	CO4	1	1	2		2		2	1					2	1
	CO5	2	2	2		2	2	2	2		2		2	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.9	S.Rangasan	ny College o	of Technolog	gy – Autono	mous		R2018						
	50 CH 0P1- Chemistry Laboratory													
	Common to all branches													
Semester		Hours / Wee	k	Total	Credit	Ma	aximum Mar	ks						
Semester	L	Т	Р	hrs	С	CA	ES	Total						
I	0	0	4	60	2	60	40	100						

To test the knowledge of theoretical concepts. To develop the experimental skills of the learners. To facilitate data interpretation. Objective(s) To enable the learners to get hands-on experience on the principles discussed in theory sessions. To expose the learners to various industrial and environmental applications. At the end of the course, the student will learn about 1. Estimate the amount of hardness, alkalinity, chloride ion and dissolved oxygen in water sample 2. Estimate the amount of barium chloride and mixture of acids by conductometry Course 3. Estimate the amount of ferrous ion by potentiometry Outcomes 4. Estimate the amount of acid by pH metry and apply the knowledge of pH determination for health drinks, beverages, soil, effluent and other biological samples 5. Estimate the amount of ferrous ion by spectrophotometry 6. Determine the percentage of corrosion by weight loss method

- 1. Estimation of hardness of water by EDTA method.
- 2. Estimation of alkalinity of water sample.
- 3. Estimation of chloride content in water sample (Argentometric method).
- 4. Determination of dissolved oxygen in boiler feed water (Winkler's method).
- 5. Estimation of barium chloride by conductometric precipitation titration.
- 6. Estimation of mixture of acids by conductometric titration.
- 7. Estimation of ferrous ion by potentiometric titration.
- 8. Estimation of HCl, beverages and other biological samples by pH meter.
- 9. Estimation of iron content by spectrophotometry method.
- 10. Determination of corrosion rate and inhibitor efficiency by weight loss method.

Total Hours: 60 Text book(s): Dr. S.Vairam and Dr. Suba Ramesh, "Engineering Chemistry", Wiley India Private Limited, Delhi, 2nd edition, January 2013. S.S. Dara, "A Text Book on Experiments and Calculations Engineering", S.Chand & Co., Ltd., 2nd 2 edition, 2003 Reference(s): Mendham. J, Denney. R.C, Barnes. J.D, and Thomas. N.J.K, "Vogel's Text Book of Quantitative Chemical Analysis", Pearson Education, 6th edition, 2009. O P Vermani, and A K Narula, "Applied Chemistry: Theory And Practice, New Age International (P) Ltd., 2 Publishers, 2nd edition, January 2020 Gary D. Christian, "Analytical Chemistry", John Wiley & Sons, 6th edition, 2007. 3 Chatwal Anand, "Instrumental Methods of Chemical Analysis", Himalaya Publications, 5th Edition, 2019. 4 Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	<u></u>						Р	0						PS	SO
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	3		1	2			1		2	2	2
50 OLL OD4 6 OL	CO2	3	3	3	2						1		1	1	1
50 CH 0P1 & Chemistry Laboratory	CO3	3	3	3	2						1		1	1	1
Laboratory	CO4	3	3	3	3			1			1				
	CO5	2	2	2	2						1		2	2	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.	S. Rangasa	amy College	of Technol	ogy – Autor	nomous		R2018								
		50 ME (P1 – Engin	eering Prac	tices Labora	atory										
			Commo	n to all brar	nches											
Semester		Hours / Wee	k	Total	Credit	M	aximum Mar	ks								
Semester	L	L T P hrs C CA ES Total														
I	0	0 0 4 60 2 60 40 100														
Objective(s)	To ideTo proshop.	ntify the han ovide hands	d tools and i on experie	nce in Fittin	ces. g, Carpentry wiring and e		_	g and lathe								

	To offer real time activity on plumbing connections in domestic applications.
	At the end of the course, the student will be able to
	1. Perform facing, plain turning, drilling.
Course	2. Make a model of fitting and carpentry: Square, Dovetail and Cross lap joints.
Outcomes	3. Fabricate the models of sheet metal and welding joints.
	4. Construct and demonstrate electrical and electronic wiring circuit.
	5. Construct the water pipe line in plumbing shop.

Machine shop

Safety aspects in machine shop, Study of Lathe and Radial drilling machine, Turning, Facing and Drilling.

Fitting and Carpentry

Safety aspects in Fitting and Carpentry, Study of tools and equipments, Preparation of models- Square, Dove tail joint, Cross Lap.

Sheet Metal and Welding

Safety aspects in Sheet metal and Welding, Study of tools and equipments, Sheet metal models - Scoope, Cone, Tray, Preparation weld joints -Lap, butt, T-joints. Study of Gas Welding and Equipments.

Electrical Wiring & Electronics

Safety aspects of Electrical wiring, Study of Electrical Materials and wiring components, Wiring circuit for a lamp using single and stair case switches. Wiring circuit for fluorescent lamps, Basic electronic circuit.

Plumbing

Study of plumbing tools, assembly of G.I. pipes/ PVC and pipe fittings, Cutting of threads in G.I.Pipes/PVC by thread cutting dies.

Smithy, Plastic moulding and Glass cutting

Safety aspects in smithy, plastic moulding and glass cutting, Study of tools and equipments

Lab Manual :

1. "Engineering Practices Lab Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O							PSO	
COURSE NAME	3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3		3	3	3	3	3			3	3	
50 ME 0P1 &	CO2	3	2	2	3		2	2	3	3	3			3	2	
Engineering Practices	CO3	3	3	3	3		3	3	3	3	3			3	3	
Laboratory	CO4	3	2	2	3		2	2	3	3	3			3	2	
	CO5	3	2	2	3		2	2	3	3	3			3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	ŀ	K.S.Rangasa	my College	of Technolog	gy – Autonor	nous		R2018							
		5	0 EN 002 – C	Communicati	on Skills II										
			Comm	on to all Bra	nches										
Semester		Hours / Weel	<	Total	Credit	M	aximum Mark	(S							
	L	Т	Р	hrs	С	CA	ES	Total							
II	1	1 1 0 30 2 50 50 100 To help learners improve their vocabulary and enable them to use words appropriately in different													
Objective(s)	 acaden To help To help related Improve 	nic and profest to learners devolute to learners accommodations. The listening, objective to learners accommodations.	ssional conte velop strategi quire the abil oservational s		be adopted vand write effe	vhile reading ctively in Eng	texts.								

At the end of the course, the student will be able to

- 1. Identify speaker's purpose and tone, comprehend relationship between ideas and respond to the listening content
- 2. Use communication strategies, vocabulary and appropriate grammatical structures for effective oral interactions
- 3. Make inferences and predictions, develop reading speed, build academic vocabulary by utilizing digital literacy tools on textual comprehension
- 4. Use a variety of accurate sentence structures with functional vocabulary, apply the conventions of academic writing and use peer and teacher feedback for effective writing.
- 5. Demonstrate proficiency in communication skills in academic and professional contexts

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Advanced English Listening Module

Extended Listening to Podcasts – Listen and Watch Video Clips - answering Inferential Multiple Choice Questions and Vocabulary Check- Listening to Lengthy Discourses – Structured Listening – Listening to Songs and Cognizing the Lyrics-Listening to popular speeches, news briefs and stories.

Oral Communication

Course

Outcomes

Debates – Group Discussion (Structured) and rotate roles – Elevator Speech – Prepared Talk – Extempore – Brief Technical presentations- Spin-a-Yarn – Short Film reviews – talk on silent videos – Dialogues and Role plays (Intermediate & Higher Level) – Interviews

Critical Reading Process

Silent Reading – Scanning and Skimming - Reading comprehension with logical reasoning questions – Cognition of Theme and Inferential Meaning – advanced Academic and Functional Vocabulary List (1000 words) – word webs and semantic threads - Loud Reading – Modulation and Pronunciation Check – Mind maps – Note making – Deep Reading Skills.

Academic Writing Practices

Sentence Equivalence and Text completion tasks – Data Interpretation - Essay Writing – Letter Writing – Business Emails – Conversational Fill Ups-Rewordify (select a text and simplify/enhance the language)- Reports on events.

Total Hours: 15 + 15 (Tutorial) = 30 hours

Text Books:

- M.Ashraf Rizvi, 'Effective Technical Communication', 2nd Edition, McGraw Hill Education (India) Private Limited, Chennai, 2018
- 2. Norman Lewis, 'Word Power Made Easy The Complete Handbook for Building a Superior Vocabulary Book', Penguin Random House India, 2020

Reference(s):

- Paul Emmerson and Nick Hamilton , 'Five Minute Activities for Business English', Cambridge University Press, N.York, 2005
- 2. Ruth Wainry B, 'Stories: Narrative Activities for The Language Classroom', Cambridge University Press, N.York, 2005
- 3. Stuart Edman, 'English Vocabulary in Use: Upper Intermediate', Cambridge University Press, N.Y, 2006
- 4. https://www.khanacademy.org/test-prep/sat/sat-reading-writing-practice

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						P\$	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1					2			2	3	3	2	3	2	
	CO2								2	3	3	2	3	2	2
50 EN 002 -	CO3					2			2	3	3	2	3	2	2
Communication Skills II	CO4					2			2	3	3	3	3	2	2
	CO5					2			2	3	3	3	3	1	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018												
50 MA 002 - Laplace Transform and Complex Variables												
	Common to All Branches											
Semester	I	Hours / Week		Total	Credit		Maximum M	arks				
Semester	Г	Т	Р	hrs	С	CA	ES	Total				
II 3 2 0 60 4 50 50 100												

Multiple integration is used to solve problems involving volume and surface area. Vector calculus can be widely used for modeling the various of physics. Introduce the fundamental ideas of the functions of complex variables and developing a clear understanding of the fundamental concepts of complex analysis such as analytic function and Objective(s) complex integral. Identify and construct complex - differentiable function. Laplace Transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines. At the end of the course, the students will be able to 1. (i) Evaluate double and triple integrals. (ii) Understand the concept of Beta and Gamma functions. 2. Apply the concept of vector calculus to verify Green's, Stoke's and Gauss divergence Course theorems. Outcomes 3. Construct analytic function and bilinear transformation. 4. Expand the functions as Taylor's and Laurent's series and evaluate the complex integrals. Apply Laplace transform techniques for solving differential equations.

The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Multiple Integrals

Double integration – Cartesian and polar coordinates – Change of order of integration – Area between two curves – Area as double integral – Triple integration in Cartesian coordinates. Beta and Gamma functions: Relationship between Beta and Gamma functions – Properties – Problems. [09]

Vector Calculus

Introduction - gradient of a scalar point function - directional derivative - angle of intersection of two surfaces – divergence and curl(excluding vector identities) - solenoidal and irrotational vectors - Green's theorem in the plane - Gauss divergence theorem -Stokes' theorem(without proof)- verification of the above theorems and evaluation of integrals using them.

Analytic Functions

Analytic functions – Necessary conditions (Cauchy–Riemann equations)- Polar form of Cauchy–Riemann equations – Sufficient conditions (without proof) – Properties of analytic functions – Harmonic function –Harmonic conjugate – Construction of analytic functions– Conformal mapping: w = z + a, az, 1/z-Bilinear transformation. [09]

Complex Integration

Cauchy's Integral theorem (without proof) – Cauchy's integral formula – Taylor's and Laurent's series (without proof) Classification of singularities – Cauchy's residue theorem – Contour integration – Circular and semi-circular contours (excluding poles on real axis).

Laplace Transforms

Conditions for existence – Transform of elementary functions – Basic properties – Shifting theorems- Derivatives and integrals of transforms — Transform of unit step function – Dirac's delta function- Initial and final value theorem – Transform of periodic functions. Inverse Laplace transform – Convolution theorem(excluding proof) – Solution of second order ordinary differential equation with constant co-efficients – simultaneous equations of first order with constant co-efficients.

	Total Hours: 45 + 15(Tutorial) = 60 hours
Text	book(s)::
1.	Grewal B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publishers, Delhi, 2014. Website: https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html
2.	Kreyszig Erwin, "Advanced Engineering Mathematics", 10 th Edition, John Wiley and Sons (Asia) Limited, New Delhi, 2016.
Refe	rence(s):
1.	Bali.N.P and Dr.Manish Goyal,"A text book of Engineering Mathematics",8 th edition,Laxmi Publications (P) Ltd, 2011
2.	Veerarajan.T., "Engineering Mathematics", for Semesters I and II, Tata McGraw Hill Publishing Co., New Delhi., 2010.
3.	Dr.P.Kandasamy Dr.K.Thilagavathy Dr.K.Gunavathy, "Engineering Mathematics -II", S.Chand & Company
	Ltd, New Delhi.
4.	SWAYAM online video courses.(www.swayamprabha.gov.in)

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						P	0						PS	30
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MA 002 & Laplace	CO1	3	3	3	2	3							2	3	

Africa PosMCT

Transform and Complex	CO2	3	3	2	2	3				2	3	
Variables	CO3	3	3	3	2	2				2	3	
	CO4	3	3	2	2	3				2	3	
	CO5	3	3	2	3	3				2	3	

Note: 3 - Strong Contribution: 2 - Average Contribution: 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018													
	50 PH 001 Applied Physics												
	B.E. Mechatronics Engineering												
Semester		Hours/w	eek		Credit	Max	imum marl	ks					
Semester	L	T	Р	Total hrs	С	CA	ES	Total					
II	3	0	0	45	3	50	50	100					
Objectives	 Analyze the crystal parameters to investigate crystal structures, crystal growth techniques and to classify the type of the defect present in the crystal To enrich the understanding of various types of materials and their applications in engineering and technology. To enable the students to correlate the theoretical principles with application oriented studies in electrostatics. To impart knowledge on the concepts of magnetostatics, magnetic flux density, classifications of magnetic materials and its applications. To introduce advanced materials and nano technology for engineering applications 												
Course Outcomes	At the end o 1. Explain the 2. Solve the methods. 3. Gain the k 4. Expand th	f the course, e basics of cr engineering nowledge on	the studer ystals and of problems I electrostati on magneto	nt will be ablidifferent crystlike plastic dices and dielectors static bound	le to cal growth tect leformation, ctric materials dary condition	hniques. slip and twinni	ng by mate	· ·					

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Crystal Physics

Introduction-Fundamental terms of crystallography-Bravais lattice-SC, FCC, BCC, HCP crystals-Miller indices-Relation between inter planer distance and inter atomic distance-Crystal defects-Crystal growth techniques- solution, melts (Bridgman and Czochralski) and vapour growth techniques.

Properties of Matter and Materials Testing

Properties of matter: Hooke's Law - Stress -Strain Diagram - Elastic Moduli - Relation between elastic constants -Poisson's Ratio - Expression for bending moment and depression - Cantilever - Expression for Young's modulus by Non uniform bending and its experimental determination.

Materials testing: Mechanism of plastic deformation- slip and twinning - types of fracture - Vickers Hardness test fatigue andcreeptest. [09]

Electrostatics

Maxwell's equation for electrostatics - E due to straight conductors, circular loop, infinite sheet of current- electric field intensity (D) - Electric potential - dielectrics - dielectric polarization -internal field - Clausius- Mossotti equation dielectric strength – Dielectric loss- Break down mechanism-applications. [09]

Magnetostatics

Maxwell's equation for magnetostatics - B in straight conductors, circular loop, infinite sheet of current - Lorentz force, magnetic field intensity (H) - Biot-Savart's Law - Ampere's Circuit Law - Magnetic flux density (B) - magnetic materials - Classification - properties-Domain theory of ferromagnetism- Hysteresis- Hard and Soft magnetic materials-Ferrites: structure, preparation and applications-Applications.

Advanced Materials and Nanotechnology

New Engineering Materials: Metallic glasses - preparation, properties and applications - Shape memory alloys (SMA) - characteristics, properties of NiTi alloy applications - advantages and disadvantages of SMA

Nano Materials: Properties- Top-down process: Ball Milling method - Bottom-up process: Vapour Phase Deposition method- Carbon Nano Tube (CNT): Properties, preparation by electric arc method, Applications. [09]

Total Hours: 45

Text book(s)::

- 1. V.Rajendran, "Engineering Physics", Tata McGraw Hill, New Delhi (2011)
- Brijlal and N.Subramanian, Electricity and magnetism,6th Edition, Agra, Ratan & Prakash (2006)

Reference (s):

- W.H.Hayt and A.John Buck, "Engineering electromagnetics", 6th Edition Tata McGraw Hill, New Delhi. (2014) David J Griffith, "Introduction to Electrodynamics", 2nd Edition, Newdelhi, Prentice Hall of India Pvt.Ltd. (1997)
- K.A.Gagadhar & Ramanathan and P.M.,Khanna, "Electromagnetic field theory", 5th Edition, Publishers.

New Delhi. 2013.

Dattuprasad and Ramanlal Joshi, (2016) "Engineering Physics" Tata McGraw hill Education.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60		PO											PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
	CO1	3	3	2	2	2			2		3		3	3	2	
	CO2	3	3	2	2	2			2		3		3	3		
50 PH 001 & Applied Physics	CO3	3	3	2	2	2			2		2		2	2		
1 1193103	CO4	3	3	2	2	2			2		2		2	2		
	CO5	3	3	3	3	2			2		3		3	3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018													
	50 CS 001 - Programming for Problem Solving												
	Common to all Branches												
Semester		Hours / Wee	<	Total	Credit	M	aximum Mar	ks					
Semester	L	Т	Р	hrs	С	CA	ES	Total					
1/11	3	0	0	45	3	50	50	100					
	_	 To learn the evolution of computers and examines the most fundamental element of the C language 											
Objective(s)	• To exa	amine the exe			-	-	_	4					
		derstand the	•			•							
		oly the knowle nance the kno	•					~ ~					
	At the end	d of the cour	se, the stud	dent will be	able to:								
		he evolution, ypes and exp	•	representation	on of problen	n and recogr	nize the cond	epts of					
Course	2. Annot	ate the conce hing, looping	pt of consol	•	•	es and exam	nine the exec	ution of					
Outcomes		nize the con		•	•	class specif	ies and point	ers with its					
1		rehend basic ocessor	concepts of	f structures, ι	unions, user	defined data	types and						
Note: Hours		ret the file co											

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Introduction to Computer and Programming

Introduction to Computers - Evolution of computers - Generations of computers and Programming Languages—Introduction to components of a computer system -Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart—Pseudocode with examples. From algorithms to programs—variables (with data types)— Type Qualifiers - Constants — Operators —expressions and precedence [09]

I/O, Branching, Loops and Arrays

Console I/O - Unformatted and Formatted Console I/O - Conditional Branching and Loops -Writing and evaluation of conditionals and consequent branching -Iteration and loops - Arrays (1-D, 2-D), Character arrays and Strings [09]

Functions and Pointers

Functions: Scope of a Function – Library Functions and User defined functions - Function Prototypes – Function Categorization - Function Arguments - Arguments to main function - The return Statement - Recursion - Passing Arrays to Functions— Storage class Specifiers.Introduction to Pointer Variables - The Pointer Operators - Pointer Expressions - Pointers and Arrays - Generating a Pointer to an Array - Indexing Pointers— Dynamic memory allocation [09]

Structures, Unions, Enumerations, Typedef and Preprocessors

Structures - Arrays of Structures- Arrays and Structures within Structures - Passing Structures to Functions - Structure Pointers - Unions - BitFields - Enumerations - typedef - The preprocessor and comments.

[09]

File

File: Streams –Reading and Writing Characters - Reading and Writing Strings -,File System functions Random Access Files

Total Hours: 45

Text book(s):

1 Herbert Schildt, "The Complete Reference C", Fourth Edition, Tata McGraw Hill Edition, 2010.

2 Byron Gottfried, "Programming with C", Third Edition, McGraw Hill Education, 2014.

Reference(s):

1 E.Balagurusamy, "Programming in ANSI C", Seventh Edition, Tata McGraw Hill Edition, New Delhi, 2016.

2 Brian W. Kernighan and Dennis M. Ritchie, "C Programming Language", Prentice-Hall.

3 Reema Thareja, "Computer Fundamentals and Programming in C", Second Edition, Oxford Higher Education, 2016.

4 K N King, "C Programming: A Modern Approach", Second Edition, W.W.Norton, New York, 2008.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	3		3				3	3	2	2	1	
50 CS 001 &	CO2	3	2	3		3				3	3	2	2	2	
Programming for	CO3	3	2	3		3				3	3	2	2	2	
Problem Solving	CO4	3	2	3		3				3	3	2	2	2	
	CO5	3	2	3		3				3	3	2	2	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
	50 ME 001 - Engineering Drawing												
	Common to Civil, MECH, MCT & TXT												
Somostor	Semester Hours / Week Total Credit Maximum Marks												
Semester	L	T	Р	hrs	С	CA	ES	Total					
1/11	2 0 4 90 4 50 50 100												
	 To acquire various concepts like dimensioning, conventions and standards. To impart the graphic skills for converting pictorial views of solids in to orthographic views. 												
						s of solids in	to orthograp	hic views.					
Objective(s)		arn the conce											
	To un	derstand the	section of s	olids and dev	elopment of	surfaces.							
	 To lea 	arn the conce	pt of isomet	ric projection									
	At the en	d of the cou	rse, the stu	dent will be	able to								
	 Use the second of th	ne drafting in	struments a	nd construct	the conic se	ctions							
Course	2. Conve	ert the pictori	al views of s	olids in to or	thographic v	iews							
Outcomes	3. Draw	the projectio	ns of regular	solids and f	loor plans								
	4. Draw the true shape of sections and develop the lateral surfaces of right solids												
	5. Sketc	h the three d	imensional v	view of solids	for given or	thographic v	iews.						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Engineering Drawing and Plane Curves

Use of drawing instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning – Drawing sheet layouts - Title block – Line types – Scales: plain, diagonal and vernier scales. Construction of ellipse, parabola and hyperbola (Eccentricity method) - Construction of rectangular hyperbola - Construction of cycloids, epicycloids and hypocycloids. [7+12]

Orthographic Projection

Introduction to orthographic projections – Planes of projection – Projection of points and lines inclined to both planes – Projection of planes (Inclined to one plane and parallel to other – Inclined to both planes) - Conversions of pictorial views to orthographic views. [6+12]

Projection of Solids and Floor plan

Projections of simple solids: prism, pyramid, cylinder and cone (Axis of solid inclined to both HP and VP) - Floor plans: windows, doors and fixtures such as water closet (WC), bath sink, shower etc. [5+12]

Sections of solids and Development of surfaces

Sections of solids: Prism, Cylinder, Pyramid, Cone – Auxiliary Views - Draw the sectional orthographic views of geometrical solids, objects from industry - Development of surfaces of Right solids – Prism, Pyramid, Cylinder and Cone. [6+12]

Isometric Projection

Principles of isometric projection – Isometric scale – Isometric projections of simple solids: Prism, pyramid, cylinder and cone - Isometric projections of frustum and truncated solids - Combination of two solid objects in simple vertical positions. [6+12]

Text book(s):

1. Bhatt N.D., "Engineering Drawing", Charotar Publishing House Pvt. Ltd., 53rd Edition, Gujarat, 2014.

2. Basant Agarwal and C.M.Agarwal., "Engineering Drawing", McGraw Hill Education, 2013.

Reference(s):

1. Shah M.B., Rana B.C., and V.K.Jadon., "Engineering Drawing", Pearson Education, 2011.

2. Natarajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2014.

3. Venugopal K., "Engineering Graphics", New Age International (P) Limited, 2014.

4. Dhawan, R.K., "A Text Book of Engineering Drawing" 3rd Revised Edition, S.Chand Publishing, New Delhi, 2012.

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
	CO1	3	2	3		3				3	3	2	2	3	3	
EO ME 001 8	CO2	3	2	3		3				3	3	2	2	3	3	
50 ME 001 &	CO3	3	2	3		3				3	3	2	2	3	3	
Engineering Drawing	CO4	3	2	3		3				3	3	2	2	3	3	
	CO5	3	2	3		3				3	3	2	2	3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
	50 MY 001 - Constitution of India												
	Common to all Branches												
Semester Hours / Week Total Credit Maximum Marks													
Semester	L T P hrs C CA ES Total												
I	I 2 0 0 30 - 100 - 100												
Objectives	 pers To a role earl To a in 19 To g 	know the premise spective. address the grow and entitlement by years of Indian address the role of 917 and its impaction knowledge of acquire knowledge	th of Indian of to civil and e nationalism. of socialism i ct on the inition bill passin	opinion rega conomic rigl in India after al drafting of g	rding moder nts as well a the comme the Indian (n Indian inte s the emergon ncement of t Constitution.	llectuals' col ence of natio	nstitutional onhood in the					

At the end of the course the students will be able to:

- 1. Discuss the growth of the demand for civil rights in India for the bulk of fns before the arrival of Gandhi in Indian politics.
- 2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- 4. Discuss the passage of the Hindu Code Bill of 1956.
- Explain the functions of Election Commission

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

History of Making of the Indian Constitution

History - Drafting Committee, (Composition & Working)

[05]

Philosophy of the Indian Constitution

Preamble - Salient Features

Course

Outcomes

[05]

Contours of Constitutional Rights & Duties

Fundamental Rights - Right to Equality - Right to Freedom - Right against Exploitation -Right to Freedom of Religion - Cultural and Educational Rights - Right to Constitutional Remedies - Directive Principles of State Policy - Fundamental Duties.

Organs of Governance

Parliament - Composition - Qualifications and Disgualifications - Powers and Functions Executive - President -Governor - Council of Ministers - Judiciary, Appointment and Transfer of Judges, Qualifications - Powers and Functions. [05]

Local Administration

District's Administration head: Role and Importance, - Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation - Pachayati raj: Introduction, PRI: ZilaPachayat - Elected officials and their roles, CEO ZilaPachayat: Position and role- Block level: Organizational Hierarchy (Different departments) - Village level: Role of Elected and Appointed officials - Importance of grass root democracy. [05]

Election Commission

Election Commission: Role and Functioning- Chief Election Commissioner and Election Commissioners- State Election Commission: Role and Functioning- Institute and Bodies for the welfare of SC/ST/OBC and women.

		Total Hours: 30
Tex	kt book(s):	
1.	The Constitution of India, 1950 (Bare Act), Government Publication	
2.	S.N, Busi, Ambedkar, B.R., "Framing of Indian Constitution", 1st Edition, 2015.	
Ref	erence(s):	
1.	Basu, D D., "Introduction to the Constitution of India", Lexis Nexis, 2015.	
2.	M.P Jain, "Indian Constitution Law", 7th Edition, Lexis Nexis, 2014.	
3.	S R Bhansali, Textbook on The Constitution of India, Universal Publishers, 2015	
4.	M P Jain, Outlines of Indian Legal and Constitutional History, Lexisnexis, 2014	

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО						P	Ō						PS	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MY 001 &	CO1														
	CO2														
	CO3														
	CO4														
	CO5														

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R20 ^o												
50 PH 0P1 Engineering Physics Laboratory												
Common to - MECH, MCT, TXT, FT, BT, NST, CIVIL												
Semester	Hours/week	Total Hrs	Credit	Maximum marks								

	L	T	Р	60	С	CA	ES	Total
II	0	0	4	00	2	60	40	100
Objectives	Physics the Demonstration in Optics and To enable studies.	eory. Ite an ability Ite an ability Ite an ability Ite and easurem Ite and electronicy Ithe studer	y to make ents experiments s. its to corre	physics to test	al measurer basic under theoretical	ments and u	nderstand hysics cor	the limits of accepts applied ation oriented tilization
	At the end of	the course,	Students v	vill able	to			
	1. Know the	•				. ,	,	
Course	•	•	•	•	•	surface of a li	. ,	
Outcomes						h grating and	fiber option	cable (7-8)
		ielectric con						
LIGT OF EVE		e knowledge	of semico	nductor	<u>photovoltaic</u>	solar cells.(10	0)	

LIST OF EXPERIMENTS

- 1. Determination of Young's modulus of a steel bar by uniform bending method.
- 2. Determination of Young's modulus of a cantilever (Pin & Microscope method).
- 3. Determination of rigidity modulus of a wire by torsional pendulum.
- 4. Comparison of co-efficient of viscosity of two different liquids by Poiseuille's method.
- 5. Co-efficient of viscosity of highly viscous liquids.
- 6. Comparison of surface tension of two different liquids by capillary rise method.
- 7. Determination of NA, acceptance angle, and wave length of a given laser by using optical fiber.
- 8. Determination of wavelength of mercury spectral lines spectrometer grating.
- 9. Determination of dielectric constant.
- 10. V-I characteristics of solar cell.

Total Hours= 60

Lab Manual

"Physics Lab Manual", Department of Physics, KSRCT

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PS	so
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	2	2				2	3	3	2	3	2	2
50 PH 0P1 &	CO2	3	3	2	2				2	3	3	2	3	2	
Engineering Physics	CO3	3	3	3	2				2	3	3	2	3	2	
Laboratory	CO4	3	3	2	2				2	3	3	2	3		2
	CO5	3	3	3	2				2	3	3	2	3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangas	amy College	of Technol	ogy – Autor	nomous		R2018						
	50 C	CS 0P1 - F	Programmin	g for Proble	m Solving L	aboratory								
			Common t	o All Brancl	nes	T								
Semester	Н	ours/Week		Total hrs	Credit	М	aximum N	Marks						
	L	Т	Р		С	CA	ES	Total						
II	0	0	4	60	2	60	40	100						
Objective(s)	 To enable the students to apply the concepts of C to solve simple problems To use selection and iterative statements in C programs To apply the knowledge of library functions in C programming To implement the concepts of arrays, functions, structures and pointers in C To implement the file handling operations through C 													
Course Outcomes	 To implement the file handling operations through C At the end of the course the students will be able to Apply how to read, display basic information and use selection and iterative statements Demonstrate C program to manage collection of related data Design and Implement different ways of passing arguments to functions, Recursion and implement pointers concepts 													
	defined da	ata types a	nd preproces ram to store	ssor directive	S	J								

LIST OF EXPERIMENTS

- 1 Implementation of Simple computational problems using various formulas.
- 2 Implementation of Problems involving Selection statements.
- 3 Implementation of Iterative problems e.g., sum of series.
- 4 Implementation of 1D Array manipulation.
- 5 Implementation of 2D Array manipulation.
- 6 Implementation of String operations.
- 7 Implementation of Simple functions and different ways of passing arguments to functions and Recursive Functions.
- 8 Implementation of Pointers
- 9 Implementation of structures and Union.
- 10 Implementation of Bit Fields, Typedef and Enumeration.
- 11 Implementation of Preprocessor directives.
- 12 Implementation of File operations.

Lab Manual

Lab Manual "Programming for Problem Solving Laboratory" Department of CSE, KSRCT.

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0						PS	SO
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 CS 0P1 &	CO1	3	2	3		3				3	3	2	2	1	
	CO2	3	2	3		3				3	3	2	2	2	
Programming for Problem Solving	CO3	3	2	3		3				3	3	2	2	2	
Laboratory	CO4	3	2	3		3				3	3	2	2	2	
	CO5	3	2	3		3				3	3	2	2	2	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K		amy College					R2018
			3 - Partial D					
	Com	mon to Me	chanical En	gineering a	nd Mechatr	onics Engir	neering	
Semester		Hours / We	ek	Total	Credit	ſ	Maximum M	1arks
Semester	L	T	Р	hrs	С	CA	ES	Total
III	3	2	0	60	4	50	50	100
Objective(s)	To uTo a waveTo p life pTo c	nderstand F ppreciate phe and heat ed rovide an un problems are lesign and a	derstanding analyzed.	representation cance of four interest of the statistical exp	on of periodic er series tech cal methods a periments	signals. nniques in so	lving one di	mensional by which real
Course Outcomes	1. i] Fo ii) ap dif 2. i] Ob ii) Ur 3. i] kn non-ii) un sta 4. Calc regra 5. i] Te	rmulate partiply the appiremential equation the Founderstand the own about the zero velocity derstand the ate condition ulate and a ession.	nations with corrier series extended notions of he procedure to the proced	equations and to solve onstant coeff pansion for the last pansion for the last pansion the solution find the solution for the solution find the solution fin	nd solve the stagrange's licients. The periodic further series a lution of one olution of one of tendency, read \$\int_2^2\text{distribution}\$	inear equation inction. Ind harmonic dimensional edimensional measures of utions.	analysis wave equat I heat equa dispersion,	ve linear partial tion with zero or tion with steady correlation and

The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Partial Differential Equations

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Non-linear

partial differential equations of first order [Type I - IV] - Solution of partial differential equations of first order -Lagrange's linear equations - Linear partial differential equations with constant coefficients

Fourier Series

Dirichlet's conditions - Fourier series - Odd and even functions - Half range Fourier series - Root mean square value of a function – Parseval's identity – Harmonic analysis. [80]

Boundary value problems

Classification of second order quasi - linear partial differential equations - Solution of one-dimensional wave equation - Solution of one-dimensional heat equation - Problems.

Basic Statistics

Measures of central tendency: Mean, Median and Mode- measures of dispersion: Range, Quartile deviation and Standard deviation -measures of skewness: Bowley's co-efficient of skewness - Pearson's co-efficient of skewness moments - kurtosis - correlation - rank correlation - regression.

Testing of hypothesis and Design of experiments

Small sample tests based on t, F and �²distributions – Contingency table [Test for Independency] – Goodness of fit – One way classification – Completely randomized design – RBD – Two way classification – Latin square design.

Total Hours: 45 + 15[Tutorial] = 60 hours

Text book[s]:

- Grewal B.S. "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. Web site: https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html
- 2 Gupta, S.C., and Kapur, J.N., "Fundamentals of Mathematical Statistics", Sultan Chand, Ninth edition, New Delhi, 1996.

Reference(s):

- Veerarajan T., "Probability, Statistics and Random process", 3rd Edition, Tata Mc-Graw Hill Publications, New Delhi, 2008.
- Bali N.P and Manish Goyal, "A Text book of Engineering Mathematics", 9th Edition, Lakshmi Publications 2 Pvt Ltd, New Delhi, 2014.
- Mathematical methods and its applications , Dr. P. N. Agrawal, Dr. S. K. Gupta, NPTEL online video courses
- Basic statistics nptel nptel.ac.in/courses/105103140/2

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО						Р	O						PS	so
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	3	3							2	3	
50 MA 003 & Partial	CO2	3	3	3	3	3							2	3	
Differential Equations	CO3	3	3	3	3	2							2	3	
and Statistics	CO4	3	3	3	2	2							2	3	
	CO5	3	3	3	2	3							2	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Ranga	samy Colle	ge of Tech	nology – A	utonomous	3	R2018							
		50 M	C 302 - An	alog Device	es and Digi	tal Circuits	i								
			B.E. M	echatronics	Engineeri	ng									
Semester		Hours / Wee	ek	Total	Credit		Maximum	Marks							
Semester	L	Т	Р	hrs	С	CA	ES	Total							
III	3	0	0	45	3	50	50	100							
		To procure the fundamental knowledge in semiconductor diodes and applications To impart the fundamental knowledge in the areas of transistors and amplifiers.													
Objectives	• To e	To equip learners with Boolean algebra and design of combinational logic circuits. To acquaint learners with fundamentals and design of sequential circuits													
	• To e		ners with the					mbinational							
	At the er	nd of the co	urse, the s	tudents wi	II be able to) :									
	1. Dem	onstrate the	characteris	tics of Sem	iconductor [Diodes									
Course	2. Desc	ribe the cha	racteristics	of transisto	r and amplif	iers									
Outcomes	3. Pract	tice the Boo	lean technic	ques and de	sign combir	national circ	uits.								
				ntial circuit u											
	5. Cons	truct combi	national log	ic functions	using Progr	ammable L	ogic Device	S							
Semiconduc	ctor Diode	s and Appl	ications		•			_							

Semiconductor Diodes and Applications

Intrinsic and Extrinsic semiconductors - drift and diffusion current -formation of PN junction - VI characteristics

of diode – static and dynamic resistance. Zener diode – photo diode – light emitting diode – laser diode – optocoupler- Clipper and Clamper - voltage regulator and multipliers. [09]

Transistor and Operational Amplifiers

Construction & operation of BJT - Transistor characteristics - CE, CB and CC configuration - Construction & operation of JFET and MOSFET - FET characteristics - Ideal Op-Amp characteristics - Open loop , Closed loop configurations - Inverting & non-inverting amplifier - voltage follower - Summing amplifier- Comparators - Schmitt Trigger - Instrumentation Amplifier.

Boolean Algebra and Combinational Circuits

Boolean postulates and laws - Minimization of Boolean expressions - Karnaugh map minimization - Quine-McCluskey method of minimization.

Combinational circuits: Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – BCD adder – Multiplexer – Demultiplexer – Encoder – Decoder – Parity checker – parity generators – Code converters – Magnitude Comparator. [10]

Sequential Circuits

Latches, Flip-flops – SR, JK, D, T and Master-Slave – Characteristic Equation – Edge triggering – Level Triggering – Realization of one flip flop using other flip flops –Synchronous and Asynchronous Up/Down counters – Modulo–n counter, Registers – shift registers – Universal shift registers. [09]

Memory and Programmable Logic Devices

Classification of memories: ROM – PROM – EPROM – EEPROM – RAM – Write operation – Read operation – Static RAM Cell - Dynamic RAM cell – Programmable Logic Devices – Programmable Logic Array (PLA) – Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) – Implementation of combinational logic circuits using PROM, PLA and PAL.

Total hours: 45

Text book(s)::

- Thomas L. Floyd, "Electronic Devices", Prentice Hall of India Pvt. Ltd., Pearson Education Pvt. Ltd., New Delhi, 10th Edition, 2017.
- 2 Satish K Karna, "Digital Electronics", Vikas Publishing House Pvt. Ltd, New Delhi, 2nd Edition, 2017

Reference(s):

- 1 David A.Bell, "Electronic Devices and Circuits", Oxford University Press, New Delhi, 5th Edition 2013.
- Salivahanan S and Arivazhagan S, "Digital Circuits and Design", Vikas Publishing House Pvt. Ltd, New Delhi, 4th Edition, 2013.
- Bishnu Charan Sarkar and Suvra Sarkar, "Analog Electronics Devices and Circuits", Damodar Group, West Bengal, 2019.
- B.L. Theraja, A.K. Theraja, "A Text Book of Electrical Technology, Electronic Devices and Circuits", S. Chand Reprint, 2013

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PS	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3										2	2
50 MC 302 & Analog	CO2	3	3	2			3							2	2
Devices and Digital	CO3	3	3	3	3	3			3	3	3			3	2
Circuits	CO4	3	3	3	3	3			3	3	3	3	3	3	2
	CO5	3	3	3	3	3		2			2		3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rang	asamy Coll	ege of Tech	nnology – <i>F</i>	Autonomou	S	R2018					
50 ME 004 - Strength of Materials													
Common to MECH & MCT													
Somostor		Hours / We	ek	Total bro	Credit		Maximum	Marks					
Semester L T P Total hrs C CA ES Total													
III	3 1 0 60 4 50 50 100												

Objective(s)

- To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads.
- To calculate the elastic deformation occurring in various simple geometries for different types of loading
- The main objective of the course will be to show how to determine the deflection of various beams.
- Understand the concept of buckling and be able to solve the problems related to isolated bars.
- Understanding the adequacy of mechanical and structural elements under different loads is essential for the design and safe evaluation of any kind of structure.

At the end of the course, the student will be able to

Course Outcomes

- 1. Estimate the stress intensity and deformation in solid bodies subjected to various types of loading and compute the principal stresses and strains by analytical and graphical methods.
- 2. Apply the concepts of shear force and bending moment diagrams in design of machine elements.
- 3. Estimate the slope and deflection in determinate beams
- 4. Compute the deflection and stress developed in shaft and springs.
- 5. Calculate the stresses, strains and deformation of the thin, thick cylindrical and spherical vessels.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Stress, strain and deformation of solids

Deformation in solids- Hooke's law, stress and strain- tension, compression and shear stresses- thermal stresses-elastic constants and their relations- volumetric, linear and shear strains- principal stresses and principal planes- Mohr's circle. [09]

Transverse bending on beams

Beams and types transverse loading on beams- shear force and bend moment diagrams-Types of beam supports, simply supported and over-hanging beams, cantilevers. Theory of bending of beams, bending stress distribution and neutral axis, shear stress distribution, point and distributed loads. [09]

Deflection of Beams

Deflection of a beam using double integration method, computation of slopes and deflection in beams, Maxwell's reciprocal theorems. [09]

Torsion

Torsion, stresses and deformation in circular and hollow shafts, stepped shafts, deflection of shafts fixed at both ends, stresses and deflection of leaf and helical springs. [09]

Thin, Thick Cylinders, Spheres and Columns

Axial and hoop stresses in cylinders subjected to internal pressure, deformation of thick and thin cylinders, deformation in spherical shells subjected to internal pressure. Columns - Euler's theory, slenderness ratio, Rankine formula.

Total Hours: 45 + 15(Tutorial) = 60

Text book(s):

- 1. Egor P. Popov, Engineering Mechanics of Solids, Prentice Hall of India, New Delhi, 2015.
- Rajput R K., "A Textbook of Strength of Materials (Mechanics of Solids)" 7th edition, S Chand and Company 2. Ltd., New Delhi, 2018.

Reference(s):

- 1. Subramanian, R., "Strength of Materials", Oxford University Press, 2007.
- 2. Rattan, S.S., "Strength of Materials", 2nd Edition, Tata Mc Graw Hill Publishing Co. Ltd., New Delhi 2011.
- 3. James M. Gere and Timoshenko, "Mechanics of Materials", CBS Publisher, New Delhi, 6th Edition, 2012.
- Beer, F., Johnston, E.R., and Dewolf, J.T., "Mechanics of Materials", Tata Mc Graw Hill Publishing Co. Ltd., New Delhi 2011.

Pre-requisite: Basic Knowledge of Engineering Mechanics –Statics and Dynamics MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	Ó						PS	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	2										2	2
50 ME 004 & Strength of	CO2	3	3	3										3	2
Materials	CO3	3	3	3										2	3
	CO4	3	3	2										2	2

Reference Position

CO5 3 3 3 3 3 3 3 2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Raı	ngasamy Col	lege of Techi	nology – Aut	onomous		R2018						
			50 ME 00	6 - Thermod	ynamics									
				on to MECH	& MCT									
Semester		Hours / Week		Total hrs	Credit	Maximum I		(S						
Semester	L	Т	Р	Total IIIS	С	CA	ES	Total						
III	3	1	0	60	4	50	50	100						
		To evaluate the properties of changes in open, closed and isolated systems.												
Objective(s)		To apply the concept of thermodynamics laws to various practical applications such as heat												
	_	engines, heat pump and refrigeration systems. To analyze the performance of steam power cycles.												
						t:								
		rive the mather derstand the pr		•		rties.								
		of the course												
		ribe the basic	•			ermodynamic	s and apply t	ne concents						
		st law of therm				cimoaynamio	o and apply th	ic concepts						
Course		te the concept				at engine, ref	rigeration & a	ir-						
Outcomes	cond	litioning cycles	and discuss t	he concept of	increase in e	entropy.								
		ognize the beha	avior of pure s	ubstances an	d the perform	nance of Rank	kine cycle with	n reheat and						
	_	nerative cycle.												
		cribe the conce												
		pressibility and relations.	apply the diff	rerential equa	tions for ener	gy, waxweli's	equations an	a specific						
		relations. ognize the pres	ance of moist	ure in atmosp	hara its prop	pertips and als	o understand	l the						
		cation of psych			nere, its prop	ocitics allu als	o unuerstano	ı ıı ı c						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Basic Concepts and First Law

Basic concepts - concept of continuum, macroscopic approach, Thermodynamic systems - closed, open and isolated Property, state, path and process, quasistatic process, work, modes of work. Zeroth law of thermodynamics, concept of temperature and heat. Concept of ideal and real gases. First Law of Thermodynamics- Concepts of Internal Energy, Specific Heat Capacities, Enthalpy. Energy Balance for Closed and Open Systems, Energy Balance for Steady-Flow Systems. Steady-Flow Engineering Devices. Energy Balance for Unsteady Flow.

Second Law and Availability

Thermal energy reservoirs, heat engines energy conversion, Kelvin's and Clausius statements of second law, the Carnot cycle, the Carnot Theorem, the thermodynamic temperature scale, the Carnot heat engine, efficiency, the Carnot refrigerator and heat pump, COP. Clausius inequality, concept of entropy, principle of increase of entropy, perpetual-motion machines, Exergy– simple problems. [12]

Properties of Pure Substance and Steam Power Cycles

Properties of pure substances - Phase rule, P-V, P-T, T-V, T-S, H-S diagrams, PVT surfaces. Thermodynamic properties of steam. Calculations of work done and heat transfer in non- flow and flow processes. Vapour and combined power cycles, including the Carnot vapor cycle, Rankine cycle: the ideal cycle for vapor power, the ideal reheat and regenerative and the second-law analysis of vapour power cycles. [12]

Thermodynamic Relations

Gas mixtures –Equation of state, Avogadro's Law, Vander Waal's equation of state, Compressibility factor, compressibility chart. Dalton's law of partial pressure. Exact differentials, TdS relations, Maxwell's relations. Clausius Clapeyron equations, Joule – Thomson coefficient.

Psychrometry

Psychrometry and psychrometric chart, property calculations of air vapour mixtures. Psychrometric process – Sensible heating / cooling - cooling and dehumidification - heating and humidification - adiabatic mixing, evaporative cooling.

Note: Use of standard steam tables, Mollier diagram & Psychometric chart are permitted for examination.

Total Hours: 45 + 15(Tutorial) = 60

Text book(s):

- Cengel, Y. A., "Thermodynamics An Engineering Approach", 8th Edition, Tata McGraw Hill Pub., New Delhi, 2015.
- 2. Nag. P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw-Hill Publications, New Delhi, 2017.

Reference(s):

- 1. Moran, M. J. and Shapiro, H. N., "Fundamentals of Engineering Thermodynamics", 8th Edition, John Wiley and Sons, 2014.

 Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., "Fundamentals of Thermodynamics", 6th Edition, John
- 2. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., "Fundamentals of Thermodynamics", 6th Edition, John Wiley and Sons, 2003.
- 3. Holman, J.P., "Thermodynamics", 4th Edition, McGraw-Hill Publications, 1995.
- 4 Rajput, R.K., "A Textbook of Engineering Thermodynamics, 4th Edition, Laxmi Publications, 2010.

Pre-requisite: Mathematics

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 ME 000 9	CO1	3	3	3		3								3	1
	CO2	3	3	2		2								2	1
50 ME 006 & Thermodynamics	CO3	3	3	3									2	1	3
Thermodynamics	CO4	3	2	2										3	2
	CO5	3	3	3									3	3	1

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC 303 – Manufacturing Technology												
						У							
	B.E. Mechatronics Engineering												
Semester	H	ours / Week		Total	Credit	N	arks						
Semester	L	T	Р	Hrs	С	CA	ES	Total					
III	3	0	0	45	3	50	50	100					
Objectives	techniqu To impa To endo To unde allied ma To gain a	techniques. To impart the fundamental knowledge in the area of metal joining. To endow with an overview of metal forming processes. To understand the working of standard machine tools such as lathe, drilling, milling and allied machines. To gain adequate knowledge in the area of gear making and non conventional machining											
Course Outcomes	13 Outline the various methods involved in forming processes												

Metal Casting Processes

Introduction to casting process - Pattern: materials, types, allowances - Moulding: green sand moulding, moulding sand and its properties - Cores: types and making - Casting: sand mould casting, investment casting, die casting and continuous casting - Melting furnaces: Cupola and induction furnaces - Casting defects: causes and remedies - Non-destructive testing: liquid penetrate test, x-ray diffraction and ultrasonic test. [09]

Metal Joining Processes

Introduction to welding process - Principle of arc and gas welding - Tools and equipments - Filler and flux materials - Flame types - Weld defects - Safety in welding - Other welding processes: Resistance welding, ultrasonic welding, gas tungsten arc welding and gas metal arc welding - Electron beam welding and Laser beam welding - Brazing and soldering [09]

Forming Processes

Introduction to hot and cold working - Forging: open and close die forging, upsetting - Rolling: high roll mills and shape rolling - Extrusion: forward and backward, tube extrusion - Drawing of wires, Rods and tubes - Sheet metal work: Shearing, bending and drawing operations - Stretch forming –Introduction of HERF methods [09]

Machining Processes

Cutting tool: materials, properties, Cutting fluids - Basic machine tools: centre lathe, radial drilling machine, universal milling machine and shaping machine-Constructional features, operations, work and tool holding devices - Grinding: surface and centreless grinding.

Gear Manufacturing and Micromachining

Introduction to gears - Gear tooth terminology - Methods of gear manufacturing: gear forming and gear generating- Gear finishing processes - Micromachining: Introduction to micromachining processes - Ultrosonic micromachining, Electrodischarge micromachining, Electron beam micromachining, Laser beam micromachining, Electrochemical micromachining. [09]

	Total Hours: 45
Text	book(s):
1	J. P. Kaushish, Manufacturing Processes, Prentice Hall of India Learning Private Limited, New Delhi, 2 nd Edition,2010.
2.	Rajput, R.K., "A Textbook of Manufacturing Technology", Laxmi publications Ltd, New Delhi, 2014.
Refe	erence(s):
1.	Hajra Choudhury S.K, "Elemets of workshop Technology, Vol I and II", Media Promotors, Bombay Edition 2011.
2.	P. N. Rao, "Manufacturing Technology - Vol I and II", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2018.
3.	V.K.Jain, "Introduction to Micromachining". Narosha Publishing House, New Delhi, 2014.
4.	P. K. Mishra, "Non-Conventional Machining", Narosha Publishing House, New Delhi, 2014.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO	
COURSE NAME	Ö	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 303 & Manufacturing Technology	CO1	3	3	3		3								2	2
	CO2	3	3	2		2								2	2
	CO3	3	3	3									2	2	2
	CO4	3	2	2										3	2
	CO5	3	3	3									3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rangasam				omous		R2018					
		50	MY 002 - E	nvironment	al Science								
			Commor	to All Bran	nches								
Semester		Hours / Week		Total	Credit	I.	arks						
Semester	L	T	Р	Hrs	С	CA	ES	Total					
II	2	2 0 0 30 - 100 - 100											
Objectives	• To	 To help the learners to analyze the importance of ecosystem and biodiversity. To familiarize the learners with the impacts of pollution and control. To enlighten the learners about waste and disaster management. To endow with an overview of food resources, human health, population, awareness. To recognize the social responsibility in environmental issues. 											
			•										
Course Outcomes	 Ana Enl Awa 	 Enlighten of solid waste and disaster management. Awareness about food resources, population and health issues. 											

Environmental Studies, Ecosystem and Biodiversity

Environmental studies - Scope and multidisciplinary nature - Need for public awareness - Ecosystem - Structure and function. Biodiversity - Values of biodiversity - Endangered and endemic species - Hot spots - India a mega biodiversity nation - Threats - Conservation - In-situ and ex-situ - Case studies. [06]

Environmental Pollution

Pollution - Air, water, soil, noise and nuclear - sources, effects and control measures - Impacts of mining - Environment protection act- Case studies. [06]

Waste and Disaster Management

Waste - Solid waste - e-waste - sources, effects and control measures. Disaster management - Earth quakes - Landslides - Floods - Cyclones - Tsunami - Disaster preparedness - Case studies. [05]

Food Resources, Human Population And Health

World food problems - over grazing and desertification - effects of modern agriculture. Population - Population explosion and its impacts - HIV/AIDS - Cancer- Role of IT in environment and human health - Case studies.

Social Issues and the Environment

Unsustainable to sustainable development - Use of alternate energy sources - Rain water harvesting - Water shed management - Deforestation - Green house effect - Global warming - Climate change - Acid rain - Ozone

layer depletion - Waste land reclamation. Consumerism and waste products - Role of an individual in conservation of natural resources - Case studies. Total Hours: 30 Text book(s): Anubha Kaushik and C P Kaushik, "Perspectives in Environmental Studies", New Age International 1 Publishers, New Delhi, 6th edition, January 2018. Tyler Miller, G, "Environmental Science", Cengage Publications, Delhi, 16th edition, 2018. Reference(s): Gilbert M.Masters and Wendell P. Ela, "Environmental Engineering And Science", PHI Learning Private 1. Limited, New Delhi, 3rd Edition, 2013. Rajagopalan. R, "Environmental Studies" Oxford University Press, New Delhi, 2nd Edition, 2012. 2. Deeksha Dave and Katewa. S.S, "Environmental Studies", Cengage Publications, Delhi, , 2nd Edition , 3.

Cunningham, W.P. and Saigo, B.W. Environment Science, Mcgraw-Hill, USA. 9th edition, 2007. Pre-requisite: **Nil**

4.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО											PSO		
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	1	2	1	1	2	3	3	3	3		2	2	3
	CO2	3	3	3	3	2	3	3	3	3	3	2	2	2	3
50 MY 002 & Environmental Science	CO3	3	3	3	3	2	3	3	3	3	3	2	2	2	3
Liviloriii Cillai Ocience	CO4	2	2	2	3	3	3	3	3	2	2	3	2	2	3
	CO5	3	3	3	3	3	3	3	3	3	3	3	2	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S	.Rangasam	y College o	f Technolo	gy – Autono	mous		R2018					
					nology Lab								
			3.E. Mecha	tronics Eng	gineering	-							
Semester	H	ours / Week		Total	Credit	Maximum Marks							
Semester	L	Т	Р	hrs	С	CA	ES	Total					
III	0	0	4	60	2	60	40	100					
	To enha	tools.											
	To analyze the machine setup and different operation techniques of machine tools.												
Objectives	To gain the knowledge of various method to perform the operation using machine tools.												
	Demons	tration and s	tudy of the	milling and s	shaping mac	hines.	J						
		The material section will be a second of the section of the section of the second with the second with the second section of the section of the second section of the section o											
	Processes.												
	At the end o		e. the stude	ents will be	able to								
			•		nal and inter	nal), facing	and thread	cutting					
		n (internal ar	•	• •		,, 3		3					
0	2. Develop	the knowled	lge of eccer	tric turning,	taper turning	g and knurli	ng operation	ns.					
Course	Make the	e operations	using drillin	g machine a	and operation	ns performe	ed using sha	ping					
Outcomes	machine												
	4. Develop	a spur gear	using millin	g machine a	and machinin	g spur/ heli	cal gear usir	ng gear					
	hobbling	machine.											
	5. Perform	the operatio	n of given w	orkpiece us	ing shaper a	ind grinding	machine.						

- 1. Machining a work piece by facing, plain turning operations using a lathe.
- 2. Machining a work piece by internal and external thread cutting operations using a lathe.
- 3. Machining a work piece by eccentric turning operations using a lathe.
- 4. Machining a work piece by taper turning and knurling operation using a lathe.
- 5. Performing a work piece by drilling reaming and tapping operations using a drilling machine.
- 6. Machining a work piece by hexagonal component using shaping machine.
- 7. Machining a work piece by spur gear using milling machine.
- 8. Generating a work piece by spur/helical gear using gear hobbing machine.
- 9. Machining a work piece by dove tail and key way using shaping machine.
- 10. Grinding a work piece by flat and cylindrical surfaces using grinding machine.

Text book(s):

Chairman,BoS/MCT

Total Hours: 60

1	E.PaulDegarmo, J.T.Black, Ronald A.Kohser, "Materials and process in Manufacturing" Prentice – Hall of India (p) Ltd., New Delhi.2005.
2	Roy A. Lindberg, "Processes and Materials of Manufacture", Prentice Hall of India Learning. Ltd., New Delhi, 2015.
Refe	erence(s):
1.	Hajra Choudhury S.K, "Elemets of workshop Technology, Vol I and II", Media Promotors, Bombay Edition 2011.
2.	P. N. Rao, "Manufacturing Technology - Vol I and II", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2018
3.	Rajput, R.K., "A Textbook of Manufacturing Technology", Laxmi publications Ltd, New Delhi, 2014.
4.	Phillip F. Ostwald and Jairo Munoz, "Manufacturing Processes and Systems", Wiley India, Bangalore, 2008

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO	
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 3P1 &	CO1	3	3	3			3						3	2	2
	CO2	3	3	3			3		3				2	2	2
Manufacturing	CO3	3	3	2	3						3			2	2
Technology Laboratory	CO4	3	2	3			3				2			3	3
	CO5	3	3	3				3						2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangasar	ny College	of Technolo	gy – Auton	omous		R2018				
	5	0 MC 3P2- A				Laborator	y					
B.E. Mechatronics Engineering												
Semester	Н	lours / Week		Total	Credit	N	ırks					
Semester	L	T	Р	hrs	С	CA	ES	Total				
III	0	0 0 4 60 2 60 40 100										
Objectives	performTo EvalTo expldesign	performance of rectifier circuit using filter To Evaluate frequency response and understand the behavior of amplifier circuits To explore a basic knowledge of bit manipulation and Develop the ability to analyze and design digital electronic circuits										
	 To illust 	trate the diffe	rent digital	electronic cir	cuits and the	eir applicatio	n in practice					
Course Outcomes	param 2. Identify 3. Unders 4. Constr	e the charac	operating redamentals of some	emiconductor egions and a of digital electoricuits and v	or devices and malyze the control of the circuit verify their further	characteristic t and their ap unctionalities	es of BJT oplication in	·				

LIST OF EXPERIMENTS

- 1. Study the VI Characteristics of PN junction diode and Zener diode
- 2. Study the ripple and regulation characteristics of full wave rectifier with and without capacitor filter.
- 3. Construct the clipper and clamper circuit using PN junction diode
- 4. Determination of Input and Output Characteristics of BJT
- 5. Construct differential amplifier circuit using BJT and obtain CMRR value
- 6. Design and verify the operation of 4-bit Magnitude Comparator using IC 7485.
- 7. Design and implementation of 4 bit binary Adder/ Subtractor using IC 7483
- 8. Design and implementation of Multiplexer and De-multiplexer using IC 741XX
- 9. Construction and verification of 4 bit ripple counter and Mod-10 Ripple counters
- 10. Design and study the operation of a 3-bit synchronous up/down counter

Total Hours: 60

Lab Manual

"Analog Devices and Digital Circuits Lab Manual", Department of Mechatronics Engineering, KSRCT

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						Р	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	3	3	3	2			2	3		3	3	2
50 MC 3P2 & Analog	CO2	3	3	3	2	3	3			2	3		3	3	2
Devices and Digital	CO3	3	3	2	3	3	3			2	3		2	2	2
Circuits Laboratory	CO4	3	3	3	3	2	3		3	2	3	2	2	3	2
	CO5	3	3	3	3	3	2			2	3		2	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K. S. Rangasamy College of Technology -	Auton	omo	us Re	gulation		R 2	2018
	Semeste				T	1		
Course	Course Name	Ηοι	ırs/W	eek	Credit		imum N	larks
Code	000.00 .100	L	Т	Р	С	CA	ES	Total
50TP0P1	Career Competency Development I	0	0	2	0	100	00	100
Course Objectives	 To help the learners to introduce the professionally To help learners to make various mode conducive way. 	ical st the intunctua emselves	ructui forma ition. ves a prese	res of ition, o	sentence draft letter	es and co	omprehe orrect us conve	end the sage of rsations
Course Outcomes	1. Reinforce the essential grammatical correspondessional contexts 2. Generate syntactical structures and infer to a Reorganize and compose the sequent appropriate usage of foreign words with context and the sequent appropriate their introduction and related to the sequent appropriate the seque	ectness the sential ir orrect to situ	manti nform spelli ationa	cs in thation, ng and al conv	ne reading letter dr d punctuat versations	p passage afts, and ion adeptly	es effect d interp	ively ret the ay
Unit – 1	Written Communication – Part 1							Hrs
and Preposition - U	n, pronoun, adjective (Comparative Forms), ' on - Change of Voice - Change of Speecl Jsing the Same Word as Different Parts of Spe tructor Manual, Word Power Made Easy Book	h - Sy eech -	nony	ms &	Antonym			8
Unit – 2	Written Communication - Part 2							
Jumbled Sente	entence Formation - Sentence Completion - ences, Letter Drafting (Formal Letters) - Reac ials: Instructor Manual, Word Power Made Ea	ding Co	ompre					6
Unit – 3	Written Communication - Part 3							
Spelling & Pur	ences, Letter Drafting (Formal Letters) - Fore actuation (Editing) tructor Manual, News Papers	ign La	ngua	ge Wo	ords used	in Englisł	า	4
Unit – 4	Oral Communication – Part 1							
-'Just A Minute	on - Situational Dialogues / Role Play (Teleph b' Sessions (JAM) tructor Manual, News Papers	nonic S	Skills)	- Ora	l Presenta	ations-Pre	epared	6
Unit – 5	Oral Communication – Part 2							_
Review	jects / Situations / People, Information Transfe tructor Manual, News Papers	er - Pio	cture	Talk -	News Pap	per and B	ook	6
	·						Total	30
Evaluation Cr	iteria		-		_	_		

S.No.	Particular	Test Portion	Marks
1	Evaluation 1 Written Test	50 Questions – 30Questions from Unit 1 & 2, 20 Questions from Unit 3, (External Evaluation)	50
2	Evaluation 2 Oral Communication 1	Self-Introduction, Role Play & Picture Talk from Unit-4 (External Evaluation by English and MBA Dept.)	30
3	Evaluation 3 Oral Communication 2	Book Review & Prepared Speech from Unit-5 (External Evaluation by English and MBA Dept.)	20
		Total	100

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand& Co Ltd., New Delhi.
- 2. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions from Unit 1, 2 and Unit 5 and 5 questions from Unit 3 and 4
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						P	o						PS	so
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1													3	3
50TP0P1-	CO2													3	3
Career Competency	CO3													3	3
Development I	CO4													3	3
	CO5													3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC 401- Industrial Drives and Control														
			50 N				rol								
				B.E. Mecha	atronics En	gineering									
Semester		Н	lours / Week		Total	Credit	M	laximum Ma	ırks						
Semester		L	Т	Р	hrs	С	CA	ES	Total						
IV		3	0	0	45	3	50	50	100						
	•	To loan the or decide of Eloculo Bitto dystems and their follows applications.													
	To impart the knowledge on control strategies of DC and AC motors.														
Objectives	To understand the operation of D.C motor speed control using converters and choppers.														
	•	To acqu	ire the know	edge of thyr	istor based	speed contro	ol methods o	f A.C motors	3.						
	•	To provi	de the know	edge on cor	nstruction, w	orking and d	ontrol strate	gies of spec	ial drives.						
	At	the end c	of the course	e, Students	will be able	to									
	1.	Underst	and the need	l of electrica	I drives and	their applica	tions in vario	ous industrie	S.						
Course	2.	Describe	e the speed	control and b	raking meth	ods of DC &	AC drives.								
Outcomes	3.	3													
	Apply the solid state speed control techniques in AC drives.														
	5.		and the princ	•	•			cations.							

Introduction of Electrical Drives

Basic Elements of a drive system – Types of Electrical Drives – Choice of electrical drives – Multiquadrant operation of drives – Heating and cooling curves – classes of duty – Selection of power rating for drive motors– Drive consideration for Textile mills, Steel rolling mills, Cement mills, Paper mills, Machine tools. [09] **Starting and speed Control of Drives**

Starting of DC Motors – Types of Braking – Conventional Speed Control of DC Motors: Armature Voltage Control, Field Flux Control, Ward Leornard Control. Starting of AC Motors – Types of Braking – Conventional Speed Control of Induction Motors: Stator Voltage Control, Stator Frequency Control, Rotor Resistance Control.

Solid State Speed Control of DC Drives

Single Phase and Three Phase Fully controlled Converter: Principle of operation and waveforms of single phase and three phase fully controlled converter fed DC drive – Choppers Fed DC Motor Drive – Applications.

[09]

Solid State Speed Control of AC Drives

Voltage/Frequency Control of induction motor, Voltage Source Inverter and Current Source Inverter-VSI fed

Three Phase Induction Motors–CSI Fed Three Phase Induction Motors-Static Rotor Resistance Control–Static Scherbius and static Kramer Drives block diagram and explanation–Applications. [09]

Special motor Drives

Stepper motors – Permanent magnet, Variable reluctance, Single and multi-stack configurations, Hybrid motor. Switched reluctance motors – AC & DC Servo motors – Brushless DC motors. [08]

	Total Hours: 45
Tex	t book(s):
1	Gopal.K.Dubey,"Fundamentals of Electrical Drives" Narosa Publishing House, 2 nd Edition, 2013.
2	Theraja,B.L and Theraja, A.K., "A text book of Electrical Technology–Volume II (AC & DC Machines)"S.Chand & Company Ltd., New Delhi, 2005.
Ref	erence(s):
1	Vedam Subrahmanyam, "Electric Drives Concepts and Applications" Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2001.
2	M.D.Singh and K.B. Khanchandani, "Power Electronics", Tata Mc Graw Hill Publishing Company Ltd.,New Delhi, 2008.
3	Shepherd Hullay & Liag, "Power Electronics & Motor Control", Cambridge University Press.
4	Partab. H., "Art and Science and Utilisation of Electrical Energy", Dhanpat Rai and Sons, 2017

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO.						Р	O						PS	SO
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	3	3	3		2	2			2	2	2
50 MO 404 0 La Latrial	CO2	3	3	3	3	3			2	2		2		2	3
50 MC 401 & Industrial Drives and Control	CO3	3	3	2	3	3	3		2				2	3	2
Drives and Control	CO4	3	3	3	3	3			2			2		3	2
	CO5	3	3	3	3	3			2			2		2	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous R20 ⁻															
	50 ME 005 - Fluid Mechanics and Fluid Machines														
Semester		Hours / Wee	k	Total hrs	Credit	Ma	aximum Mar	ks							
Semester	L	Т	Р	Totalfils	С	CA	ES	Total							
IV	3														
Objective(s)	 To learn about the properties of fluids, manometry and buoyancy To learn mass and momentum conservation laws for fluid flows. To understand the pressure and velocity variation in flow of fluids through pipes To acquire the importance of dimensional analysis. To analyze the flow in water pumps and turbines. 														
Course Outcomes	At the end of the course, the student will be able to 1. Explain and evaluate the various properties of fluids, manometry and buoyancy. 2. Estimate the mass and momentum conservation laws for fluid flows. 3. Evaluate the velocity and pressure variation in flow through pipes.														

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Fluid Properties and Fluid Statics

Units and Dimensions – Fluid Properties – Density, Specific gravity, Viscosity, Surface tension, capillarity, compressibility and bulk modulus - Fluid Statics - Pascal's law – Pressure measurements – Atmospheric, vacuum pressure and gauge pressure – simple and differential manometers - Buoyancy – Centre of buoyancy – meta center and meta center height. [10]

Fluid Kinematics and Fluid Dynamics

Types of fluid Flow – types of flow line – control volume - velocity field and acceleration - Continuity equation and momentum equation - stream and potential function – Euler's and Bernoulli's Equation and its applications.

Flow through circular conduits

Laminar flow through circular pipes - Hagen Poiseuille equation - Turbulent flow - Boundary layer concepts - Darcy Weisbach equation, friction factor, Moody's diagram -Loss of energy in pipes. [08]

Dimensional Analysis

Need for dimensional analysis – methods of dimensional analysis - Similitude – types of similitude – Dimensionless parameters – application of dimensionless parameters – Model analysis. [08]

Hydraulic Pumps and Turbines

Impact of jet – force exerted by a jet on moving plates. Classification – construction, working principles and design of Pelton wheel and Francis turbines – head, losses, work done and efficiency – specific speed – operation characteristics – Governing of turbines – Classification of pumps – centrifugal pump and reciprocating pump - working principle – discharge, work done and efficiencies- cavitation in pumps – Submersible pumps – Types and applications.

Total Hours: 45+15(Tutorial)=60

Text book(s):

- 1. R.K Rajput A Textbook of Fluid Mechanics and Hydraulic Machines S.Chand& company Ltd. 6th Edition 2015.
- Modi P. N and Seth S.M "Hydraulics and mechanics, including Hydraulic machines" standard book house, 2... Delhi 2017.

Reference(s):

- 1. Bansal, R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi, 9th Edition, 2017.
- 2. CengelYunus A. and Cimbala, John M., "Fluid Mechanics", Tata McGraw Hill, New Delhi, 3rd Edition, 2015.
- Ramamrutham.S. "Hydraulics Fluid Mechanics and Fluid Machines", 8th Edition, DhanpatRai Publishing company (P) Ltd, New Delhi, 2014.
- Ojha, C.S.P., <u>Chandramouli</u>, P.N. and <u>Berndtsson</u>, R., "Fluid Mechanics and Machinery", Oxford University Press, 2010

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PS	SO
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	2	3	3			3					3	2
50 ME 005 & Fluid	CO2	3	3	3	3	3			3					2	2
Mechanics and Fluid	CO3	3	3	3	3	3			3					3	3
Machines	CO4	3	3	3	3									2	2
	CO5	3	3	3	3	3			3					1	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

		K.S	S.Rangasan	ny College	of Technolo	ogy – Auton	omous		R2018
				50 MC 402	- Theory of	Machines			
				B.E. Mech	atronics En	gineering			
Semester		Н	ours / Week		Total	Credit	N	/laximum Ma	arks
Semester		L	Т	Р	hrs	С	CA	ES	Total
IV		3	1	0	60	4	50	50	100
	•	To learn	various mec	hanisms an	d find their v	elocity and a	cceleration.		
Objectives	•	To gener	ate the cam	profile for ra	adial cams	-			
	•	To under	stand the ba	sic concept	of toothed g	earing.			

To plot the turning moment diagram of crank rotation at various strokes. To understand the effects of vibration and importance of balancing in machine components At the end of the course the students will be able to 1. Acquaintance with basic mechanism and the layout of linkages in the assembly of system. 2. Design and analyze the velocity and acceleration of different mechanism and construct the cam profile for the given follower motion 3. Determine speed ratio for simple, compound and planetary gear systems 4. Understanding the process of providing continuous energy to the system when the energy source is discontinuous. 5. Identify the effects of vibration and balancing in machine components

Simple Mechanism

Introduction - Kinematic links, structure- comparison between machine and structure, joints, Kinematic pairs classification- types of constrained motion. Kinematic chain-classification- degrees of freedom - Kutzbach criterion, Gruebler's criterion - Grashof's law - Mechanism - Inversions of four bar and slider crank chain - Mechanical advantage - Description of straight line mechanisms: Peaucellier and Hart's mechanism. [12]

Kinematics Analysis of Linkages and Cam

Kinematic analysis of simple mechanism - Determination of velocity and acceleration by using Graphical method for four bar and slider crank mechanism. Classification of cams and follower - Radial cam nomenclature - Analysis of follower motions: uniform velocity, simple harmonic motion and uniform acceleration and retardation - Construction of cam profile for a radial cam. [12]

Gears and Gear Trains

Gear tooth profiles - gear tooth action - Interference and undercutting - requirement of minimum number of teeth in gears - Gear trains - Simple and compound gear trains - Determination of speed and torque in epicyclic gear trains. [12]

Turning Moments and Flywheels

Introduction, turning moment diagram for a single cylinder double acting steam engine - Turning moment diagram for a four stroke internal combustion engine - Fluctuation of energy- determination of maximum fluctuation energy - co-efficient of fluctuation of energy - Flywheel: co-efficient of fluctuation of speed - energy stored in a flywheel - Dimensions of the flywheel rim- Introduction to governors and gyroscope. [12]

Vibration and Balancing

Free, forced and damped vibrations of single degree of freedom systems, Critical speed of shaft logarithmic decrement - Force transmitted to supports. Static and dynamic balancing - balancing of revolving masses, single and multi-cylinder engines. Reciprocating masses - single cylinder engines. [12]

Total Hours: 60

Text book(s):

1 R S Khurmi and J K Gupta, "Theory of Machines", S.Chand and Company Ltd., New Delhi, 2017.

2 Sadhu Singh, "Theory of Machines", Pearson Education, 2012.

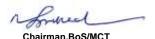
Reference(s):

1 S S Rattan, "Theory of Machines", Tata McGraw-Hill Education (India) Pvt. Ltd., 2016.

2 J S Rao and R V Dukkipati, "Mechanism and Machine Theory", Bohem press, 2007.

3 P L Ballaney, "Theory of Machines", Khanna Publishers, New Delhi, 2005.

4 J S Brar and R K Bansal, "A Text Book of Theory of Machines", Laxmi Publications (P) Ltd., 2020.


Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	co						Р	0						PS	SO
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3										3	2
50 MC 400 9 Theory of	CO2	3	3	3					3					2	2
50 MC 402 & Theory of Machines	CO3	3	3	3	2	3								3	3
Widoriiiioo	CO4	3	3	3							3			2	2
	CO5	3	3	2										1	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangasan	ny College	of Technolo	gy – Auton	omous		R2018				
50 MC 403 – Hydraulic and Pneumatic Control												
B.E. Mechatronics Engineering												
Compotor	Н	ours / Week		Total	Credit	N	/laximum Ma	ırks				
Semester L T P hrs C CA ES Total												

IV		3	0	2	60	4	50	50	100							
		pressurize	ed fluids.		ndamentals of eration of hyd	•			power using							
Objectives		To expose applicatio		echniques for	r choosing pu	mps, valves a	and pneumati	ics componen	ts for suitable							
		Have exposure to diagnose / troubleshoot hydraulic, pneumatic, electro pneumatic circuits.														
	•	To design the circuits using pneumatic / hydraulic components for a small scale industrial application.														
	At th	ne end of	the course t	he students v	will be able to)										
		At the end of the course the students will be able to 1. Explain the fundamental properties of fluids and understand the applications, advantages of fluid power system.														
_	2.	Identify th	e various pun	nps, valves, a	ctuators and i	ts working pri	nciples in hyd	raulic circuit.								
Course Outcomes				the constructi ce in pneumat		g principles o	f various com	pressors, pne	eumatic valves							
	4.	Design ar	nd develop the	e hydraulic an	d pneumatic o	circuit for vario	ous application	ns.								
	 Design and develop the hydraulic and pneumatic circuit for various applications. Know the significance of failures and trouble shooting, fluid power circuit for machine tool applications and software used in fluid power automation. 															

Fluid Power System

Introduction to fluid power - properties of fluids: Viscosity index, Oxidation index, Demulsibility, Lubricity, Rust prevention, Pour point, Flash point and Fire point, Types of hydraulic fluids - Advantages and drawbacks of fluid power - Applications of fluid power - Fluid power components and symbols- Pascal's law: Multiplication of Force - Analysis of simple hydraulic jack - Applications of Pascal's law: Hand operated hydraulic jack , Air to Hydraulic pressure Booster

Hydraulic Pumps, Actuator and Valves

Pumps Pumping theory - Pump classification - working principle of Gear pump, Vane pump, Screw pump - Hydraulic Actuators: Hydraulic motors – gear and vane motors, Hydraulic cylinders: single acting and double acting cylinders, Special type cylinders: rodless, tandem and telescopic - Hydraulic valves: Pressure Control Valve types, Direction control valve types, Flow control valve types, Counter balance valve. [09]

Pneumatic System

Properties of air-Compressors: Rotary compressor - Screw compressor, vane compressor - Piston Compressor: Single and Multi-Stage Compressor - Filter, Regulator and Lubricator Unit - Valves: Direction control valves, Two way, Three way, Four way valves - Pneumatic check valves - Flow control valve, Pneumatic shuttle valve - AND type valve - Quick exhaust valve. [09]

Design of Hydraulic and Pneumatic Circuits

Construction of Hydraulic circuits - Counter balance circuit - Fail safe circuit - Regenerative circuit - pressure intensifier circuits - Accumulator circuits. Construction of Pneumatic circuits: Cascade method - sequence circuit. Electro - pneumatic circuit - Basics of Fluidics. [09]

Industrial Automation

Fluid power circuit by using Relay diagram. Fluid power circuit for machine tool applications: Grinding, milling, drilling, Robot arm. Failure and troubleshooting of Fluid power system - Software used in Fluid power automation. [09]

Experiments:

- 1. Study about the basic Hydraulic and Pneumatic circuits.
- Design and develop Meter in & Meter out, Regenerative, Synchronizing, Sequential, Automatic Reciprocation circuits using hydraulic/pneumatic components
- 3. Simulation of basic hydraulics, electro pneumatic circuits using Automation studio software. [15]

Total Hours: 60

Text book(s):

Anthony Esposito, "Fluid Power with Applications", Pearson Education New Delhi, 2015.
Srinivasan R, "Hydraulic and Pneumatic Controls", 2nd Edition', Vijay Nicole Imprint (P) Ltd., Chennai, 2016.

Reference(s):

S. R. Majumdar, "Oil Hydraulics", Tata McGraw Hill Publishing Company Pvt Ltd. New Delhi, 2014.

S. R. Majumdar, "Pneumatic systems - Principles and Maintenance", Tata McGraw Hill Publishing Company Pvt Ltd. New Delhi, 2014.

Andrew Parr, Hydraulics and Pneumatics, Jaico Publishing House, 2015.

James L. Johnson, "Introduction to Fluid Power", Delmar Thomson Learning, 2013.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						P	o						PS	SO
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 403 & Hydraulic	CO1	3	2	2										2	2
and Pneumatic Control	CO2	3	2	3				2						2	2

CO3	3	2	3		3				3	2	
CO4	3	2	3	3					2	3	
CO5	3	2	3	3					3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R20 50 MC 404- Applied Materials Technology														
		E	B.E. Mech	natronics Er	gineering]									
Semester	Hour	s / Week		Total	Credit		Maximum Marks								
Semester	L	Т	Р	hours	С	CA	ES	Total							
IV	3	0	0	45	3	50	50	100							
	To impart knowledge on the structure and properties of alloys.														
	To understand heat treatment processes and hardening techniques.														
Objectives		To acquire knowledge in ferrous and non-ferrous materials.													
	 To impart 	To impart knowledge on Powder metallurgy processes and applications.													
	 To identity and select suitable characterization techniques for material testing. 														
	At the end of	the cours	e the stu	dents will b	e able to										
					ctures usir	ng iron carbi	de equilibrium dia	gram and							
	phase cha	•													
_					ering appli	cations and	case hardening p	rocess -							
Course	carburizin														
Outcomes			, .	dditions on f											
							gy for engineering	9							
		•		f different me				.e							
	 Utilize the mechanism of plastic deformation process, testing of mechanical properties and metallographic procedures. 														
	metallogra	priic proce	edules.												

Constitution of Alloys and Phase Diagrams

Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, types and construction of phase diagrams, Iron – Iron carbide equilibrium diagram, eutectic, peritectic, eutectoid and peritectoid reactions.

Heat Treatment

Definition – full annealing, stress relief and recrystallisation – normalising, hardening and tempering of steel, austempering, martempering - TTT diagrams -hardenability, jominy end quench test – case hardening, carburising, nitriding, cyaniding, flame and induction hardening. [10]

Ferrous and Non Ferrous Metals

Classification of steel and cast iron- effect of alloying additions on steel (Mn, Si, Cr, Mo, V, Ti & W) - stainless and tool steels – HSLA - gray, white, malleable - alloy cast irons - copper and copper alloys – aluminum and aluminum alloys – bearing alloys, Ni-based super alloys and titanium alloys. [09]

Non-Metallic Materials and Powder Metallurgy

Engineering ceramics – properties and <u>applications</u> of Al₂O₃, SiC - powder metallurgy process - steps involved-characteristics of metal powders - advantages and limitations, major applications: aerospace, nuclear, metal cutting and automobile industries. [09]

Mechanical Properties and Testing

Mechanism of plastic deformation - slip and twinning - types of fracture - Destructive testing: testing of materials under tension, compression and shear loads - hardness tests: Brinell, Vickers and Rockwell - impact test: Izod and Charpy - fatigue and creep test - metallography - preparation of specimen, metallurgical microscope and Scanning Electron Microscope. [09]

Total Hours: 45

Text	book(s):
1.	Khanna O.P, "A Text Book of Material Science and Metallurgy", Dhanpat Rai Publishers, 2016.
2.	Sidney H.Avner "Introduction to Physical Metallurgy" Tata McGraw-Hill Companies Inc., New Delhi, 2012
Refer	ence(s):
1	William D. Callister, "Material Science and Engineering: An Introduction", Wiley India Pvt Ltd, New Delhi,2012.
2	Raghavan.V., "Materials Science and Engineering: A First Course",5 th Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2009
3	George E. Dieter, "Mechanical Metallurgy", Tata McGraw-Hill Companies Inc., New Delhi, 2013
4	R Balasubramaniam, "Callister's Materials Science and Engineering", Second edition, Wiley,2014.
	De vanciaita, Nii

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО	PO												PS	80
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2											2	2
50 MO 404 0 A l' . l	CO2	3	2					2					2	2	3
50 MC 404 & Applied Materials Technology	CO3	3	2	2			3							2	3
iviaterials i echnology	CO4	3	2	2									2	2	2
	CO5	3	2											2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rangas	amy Colleg	e of Techno	ology – Auto	nomous		R2018						
		50 MY 006	Essence of	of Indian Tra	ditional Kn	owledge								
			Commo	on to all Bra	nches									
Semester	F	lours / Week		Total	Credit	N	Maximum Ma	arks						
Semester	L	Т	Р	hrs	С	CA	ES	Total						
IV	2	0	0	30	-	100	-	100						
	 To impart 	ting basic prin	ciples of tho	ught process,	reasoning ar	nd inferencing	g.							
	To gain	To gain knowledge on sustainability is at the core of Indian Traditional knowledge Systems												
	connecting society and nature.													
Objective(s)	To inculcate holistic life style of yogic science and wisdom capsulesin													
	• To know sanskrit literature are also important in modern society with rapid technological													
	advancer	ments and so	cietal disrupti	ions.										
	 To gain t 	he knowledg	e on Indian	artistic and it	s tradition									
	At the end	of the cours	e, the stud	ent will be a	ble to									
	1. Know n	nany festival	s have relig	ious origins	and entwine	e cultural and	d religious s	significance in						
Course		nal activities												
Outcomes				e seasonal cl										
Outcomes	3. Ability to do case studies on philosophical tradition													
		n Indian artits												
	5. Ability to	o conduct ex	hibition and	advertiseme	nt about artis	stic								

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for the examinations shall not depend on the number of hours indicated.

- Basic structure of Indian Knowledge System. 1.
- Modern Science and Indian Knowledge System. 2.
- 3. Yoga and Holistic Healthcare.
- 4. Case studies, Philosophical Tradition.
- 5. Indian Linguistic Tradition (Phonology, morphology, syntax and semantics), Indian Artistic Tradition.

Total Hours: 30

Text book(s):

- V.Sivaramakrishnan(Ed.),"Cultural Heritage of India Course Material", Bharatiya Vidya Bhavan, Mumbai, 1. 5thEdition,2014.
- G N Jha (Eng. Trans.), Ed. RN Jha, "Yoga-darshanamwithVyasa Bhashya", dyanidhi Prakashan, Delhi, 2. 2016.

Reference(s):

- RN Jha, "Science of Consciousness Psychotherapy and Yoga Practices", Vidyanidhi Prakashan, Delhi, 2016
- Sengupta, Nirmal, Traditional Knowledge in Modern India Preservation, Promotion, Ethical Access and 2. Benefit Sharing Mechanisms, Springer, 2014.
- 3. Kapil Kapoor, Textbook of "Knowledge Traditions and Practices of India", Ancient Scientific Publishing, 2015
- Kapoor Kapil, Indian Knowledge Systems: Vol. 2, Ancient Scientific Publishing, 2017 4.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО	PO											PSO		
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MY 006 & Essence	CO1														
of Indian Traditional	CO2														
Knowledge	CO3														

Chairman, BoS/MCT

[06]

[06]

[06]

[06]

[06]

CO4							
CO5							

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.	S.Rangasar	ny College	of Technolo	gy – Auton	omous		R2018						
			50 MC 4P	I- Industria	l Drives and	l Control La	boratory								
B.E. Mechatronics Engineering Hours / Wook Total Credit Maximum Marks															
Semester		Н	ours / Week		Total	Credit	N	laximum Ma	ırks						
Semester		L	Т	Р	hrs	С	CA	ES	Total						
IV		0 0 4 60 2 60 40 100													
	•	To dodano miomodgo doodd opedd comion of 20 diffeet													
	•														
Objectives	•	To provid	de the knowle	edge about	speed contro	ol of AC drive	es.								
	•	To deteri	mine the per	formance ch	naracteristics	of the giver	AC drives.								
	•	To acqui	re the knowle	edge of solid	d state speed	d control of A	AC & DC driv	es.							
	At		the course,												
	1.		d analyze the												
Course	2.		d analyze the						ons.						
Outcomes	3.		the performa												
	4.		ower electro												
	5.	Design p	ower electro	nics based	speed contro	ol systems fo	or Induction i	motor drives	١.						

- 1. Load characteristics of DC shunt motor and compound motor.
- 2. Load characteristics of DC series motor.
- 3. Load test on three-phase squirrel cage induction motor.
- 4. Load test on three-phase slip ring induction motor.
- 5. Load test on single phase induction motor.
- 6. Speed control of DC shunt motor.
- 7. Speed control of DC shunt motor using controlled rectifier.
- 8. Speed control of DC shunt motor using chopper.
- 9. Speed control of three-phase induction motor by V/F method.
- 10. Speed control of three phase induction motor (Voltage control).

Total Hours: 60

Text book(s):

1 Gopal.K.Dubey,"Fundamentals of Electrical Drives" Narosa Publishing House, 2nd Edition, 2013.

Reference(s):

Vedam Subrahmanyam, "Electric Drives Concepts and Applications" Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2001.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSC	
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	3	3	2	2	2	2	2	2	2	2	2
50 MC 4P1 & Industrial Drives and Control Laboratory	CO2	3	3	3	3	3	2	2	2	2	2	2	2	2	3
	CO3	3	3	3	3	3	2	2	2	2	2	2	2	2	3
	CO4	3	3	3	3	3	2	2	2	2	2	2	2	2	2
	CO5	3	2	3	3	3	2	2	2	2	2	2	2	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.	.Rangasam	y College o	f Technolo	gy – Auton	omous		R2018					
50 MC 4P2 - Applied Mechanics Laboratory													
B.E. Mechatronics Engineering													
Compotor	H	ours / Week		Total	Credit	I.	laximum Ma	ırks					
Semester	Semester L T P hrs C CA ES Total												
IV 0 0 4 60 2 60 40 100													

Objectives	 To conduct the experimental study on structural members using tension, compression, torsion, deflection and impact tests. To facilitates experimental knowledge about coefficient of discharge and friction factor. To emphasize the concept of Bernoulli's principle using orifice meter. To analyze the performance characteristics of turbines, To analyze the performance characteristics of pumps.
Course Outcomes	 At the end of the course, the students will be able to Understand the tensile and compressive behaviors of metals and springs. Understand the impact, deflection and torsional behaviors of mechanical members. Apply the Bernoulli's principle to estimate the rate of flow using orifice meter and determine the friction factor for various pipes. Analyze the performance characteristics of turbines Analyze the performance characteristics of pumps.

- 1. Determination of tensile behavior of given metals.
- 2. Determination of tensile and compressive behaviors of given helical springs.
- 3. Determination of impact strength of given metal specimen using Charpy and Izod testers.
- 4. Determination of deflection value on given simply supported beam.
- 5. Determination of torsional strength on mild steel rod.
- 6 Determination of coefficient of discharge of orifice meter.
- 7. Determination of friction factor for a given set of pipes.
- 8. Determination of Pelton wheel performance under various interval loads.
- 9. Determination of Kaplan turbine performance under various interval loads.
- 10. Determination of centrifugal pump performance under various interval loads.

Total Hours: 60

Text book(s):

1. Dr.R.K.Bansal,"A Textbook of Strength of Materials", Laxmi Publications (P) Itd., New Delhi, 2010.

2. Dr.R.K.Bansal,"A Textbook of Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi. 2010.

Refere	ence(s):
1.	R.Subramanian, "Strength of Materials", Oxford Publications, 2010.
2.	R.K.Rajput, "Strength of Materials", Laxmi Publications, 2010.
3.	Sadhu Singh, "Fluid Mechanics", Khanna Publishing House, Delhi.
4.	Modi and Seth. "Fluid Mechanics", Standard Publishers.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO		PO											P	so
COURSE NAME	•	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50.140.470.0.0.1	CO1	3	2	1	1	2		2					1	2	2
	CO2	3	2	2	2	2		2					1	2	2
50 MC 4P2 & Applied Mechanics Laboratory	CO3	3	1	2	1	2		2					1	2	3
Wednames Laboratory	CO4	3	1	1	1	2		2					1	2	3
	CO5	3	1	1	1	2		2					1	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.F	Rangasamy College of Technology - A	utono	mous	Regul	ation		F	R 2018
	Semes	ter IV					•	
Course Code	Course Name	Но	ours/W	/eek	Credit	Ма	ximum	Marks
		L	Т	Р	С	CA	ES	Total
50 TP 0P2	Career Competency Development II	0	0	2	0	100	00	100
Course Objectives	 To help the learners to paraphrase review texts in the academic and precisely for effective per themselves per themselve	rofess the rofess verba and the	ional c phone sional p I reaso e preli exams	ontexts ontexts oresent oning ar minary	ils of the ations and ability to level of a	langua o match	age an the em	d express

	to attend placement and competitive online exams											
		At the end of the course, the	student will be able to									
			ing in the reading passages, organize continuous writ	ting and								
		review texts both academica										
			the phonetic skills accurately for effective prese	ntations								
C	ourse	professionally.										
	tcomes		pts of verbal reasoning and relate for the concepts	to the								
			ive exams and employability									
		•	inary level of aptitude skills pertaining to competitive	exams								
		and company recruitments.										
			termediate level of aptitude skills pertaining to con	petitive								
11.14	4 187 144	exams and company recruitn	nents.	Hrs								
Unit – 1 Written Communication – Part 3												
Reading Comprehension Level 2 (Paraphrasing Poems) - Letter Drafting - Email Writing - Paragraph												
			Skimming and Scanning - Interpretation of Pictorial	İ								
	sentations			6								
			Correction - Jumbled Sentences - Synonyms &	İ								
		g the Same Word as Different Pa		İ								
		ctor Manual, Word power Made E	asy Book, News Papers									
Unit –	2 Oral	Communication – Part 3		Í								
			Introduction to the Sounds of English - Vowels,									
Diphth	ongs & Co	onsonants, Introduction to Stress	and Intonation - Extempore - News Paper and Book	4								
		cal Paper Presentation.		İ								
		tor Manual, News Papers		<u> </u>								
		Reasoning – Part 1		_								
			mily Tree - Blood Relations (Identifying relationships	8								
			uation Reaction Test - Statement & Conclusions	Í								
		or Manual, Verbal Reasoning by	R.S.Aggarwal									
Unit –		titative Aptitude – Part 1		6								
		s - Percentages - Profit and Loss	s - Simple & Compound Interest - Averages - Ratio,	b								
Proport				İ								
		or Manual, Aptitude Book										
Unit –		titative Aptitude – Part 2		İ								
			sterns - Mixtures and Allegations - Races - Problem									
		and Streams		6								
		es, Sudoku, Series Completion, F	Problem on Numbers	İ								
Materia	al: Instruct	or Manual, Aptitude Book										
			Total	30								
Evaluati	ion Criteri											
S.No.		Particular	Test Portion	Marks								
1	Evaluation	on 1 - Written Test	15 Questions Each from Unit 1, 3, 4 & 5 (External Evaluation)	50								
2	Evaluation	on 2 - Oral Communication	Extempore & Miming – Unit 2 (External Evaluation by English, MBA Dept.)	30								
3	Evaluation Presenta	on 3 - Technical Paper	Internal Evaluation by the Dept.	20								
	i resenta	uon	Total	100								
			Total									

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal&GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions from Unit 1, 3, 4 and Unit 5 and 5 questions from Unit 2.
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO	PO	PSO
---------------	----	----	-----

COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	1	2	1	1	1	1	1	1	1	3	2	3	3	2
50 TP 0P2– Career Competency Development II	CO2		1		1	1	1	1	1	2	3	2	3	2	2
	CO3	1	1	1	1	2	3	1	1	2	3	2	3	3	3
	CO4	3	2	2	2	1	2	1	1	2	3	2	3	1	3
	CO5	3	2	2	2	1	2	1	1	2	3	2	3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K	.S.Rangasa	my College	of Techno	logy – Auto	nomous		R2018						
		50 MC 501	- Micropro	cessors an	d Microcon	trollers								
	Semester Hours / Week Total Credit Maximum Marks V 3 0 0 45 3 50 50 100 To study the architecture of 8085,8086 microprocessors,8051 & ARM micro controllers. To introduce the need & use of Interrupt structure. To introduce the commonly used peripheral / interfacing ICs and study its simple applications At the end of the course, the students will be able to 1. Understand the architecture concepts of 8086 microprocessor and its operation. Course Course Course To Maximum Marks Maximum Marks Credit Maximum Marks Course Total Natimum Marks Natimum Marks Course Total Natimum Marks Natimum													
Somostor	H	ours / Week		Total	Credit	N	<u>laximum Ma</u>	arks						
Semester	L	Т	Р	Hrs	С	CA	ES	Total						
V	3	0	0	45	3	50	50	100						
Objectives	To study tTo introduTo unders	he addressi ice the need stand the ard	ng modes & l & use of In chitecture ar	instructions terrupt struc nd programm	sets of 808 ture. ning of vario	5,8086 805° us advance	1 & ARM. d microconti	roller.						
Course Outcomes	 Understar programs Understar Understar language Compare 	nd the bas nd the archit nd functiona programs. advanced n	ecture conc l and archite nicrocontroll	epts of 8086 ectural chara er concepts	of microp microproce acteristics of and memory	essor and its f 8051 micro y organizatio	operation. ocontroller a	nd assembly						

8085 Microprocessor

Evolution of microprocessors- Architecture—Functional block diagram—Instruction set—Addressing modes—Timing diagrams—Assembly language programming—Interrupts and memory interfacing. [09]

8086 Microprocessor

Advanced microprocessor family overview, Introduction to Harvard architecture - 8086 internal architecture, Pin diagram and function of each pin, 8086 programming model - Memory Segmentation - Generation of Physical address - Concept of queue in 8086.

8051 Microcontroller

Microcontroller Hardware- I/O Pins, Ports- External memory—Counters and Timers-—Serial data I/O- Interrupts-8051 Assembly Language Programming: Instruction set of 8051, Addressing modes, Data transfer instructions, Arithmetic and Logical Instructions, Jump and Call Instructions. [09]

ARM Microcontroller

Introduction to ARM microcontroller - Internal architecture, I/O pins, Ports, Timers –Interrupts- Memory organization - Concept of Pipelining -Basic features and comparison of ARM, PIC, AVR, Arduino and Raspberry Pie Microcontrollers. [09]

Applications

Interfacing of ADC,DAC, stepper motor, speed control of DC motor interfacing,traffic light control and case study of washing machine control. [09]

Total Hours: 45

Text book(s)::

- 1 Krishna Kant, "Microprocessors and Microcontrollers Architecture, Programming and System Design 8085, 8086, 8051, 8096", Prentice Hall of India, New Delhi, 8th Edition, 2011.
- 2. Ajay V. Deshmukh, "Microcontrollers Theory and Applications", Tata McGraw Hill Publishing company Ltd, New Delhi 2011.

Reference(s):

- 1. Mathur S,Panda J, "Microprocessor and Microcontrollers", PHI Learning, 2018.
- 2. Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design", 2nd Edition, Prentice Hall of India, 2015
- 3. R.S. Goankar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2010.

Refined Sheet

4. A.K. Ray and K.M. Bhurchandi, "Advanced Microprocessors and Peripherals", 2nd Edition, Tata McGraw-Hill Publishing company Ltd, 2010.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO		
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
	CO1	3	3	2		3	2							3	3	
50 MC 501 & Microprocessors and Microcontrollers	CO2	3	3	2		3								2	3	
	CO3	3	3	2		2	2			2		2		3	2	
	CO4	3	2	3	2	2		2	3		3		2	2	3	
	CO5	3	2	3	2	3							2	3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S	.Rangasar	ny Colle	ge of Techno	ology – Au	ıtonomous		R 2018		
		50 M	C 502 - S	ystem Desig	n and Co	ntrol				
		E	B.E. Mech	natronics Er	gineering					
Semeste	er l	Hours / We	ek	Total hrs	Credit	1	Maximum Marks	i		
	L	Т	Р		С	CA	ES	Total		
V	3	1	0	60	4	50	50	100		
Objectives	 To understand the various time domain and frequency domain tools for analysis and des of linear control systems. To study the methods to analyze the stability of systems from transfer function forms To describe the methods of designing compensators To under stand the concept of state space analysis 									
Course outcomes	mathemat 2. Learn abo 3. Learn abo response 4. Understan and Nyqui	d the open ical model, ut time dor ut frequence olots. d the concert Plots.	loop and Translati nain spec by domair ept of sta	I closed loop ons and Rota ifications and specification bility and kno	control systional systems about vans and des	tems transfe rious types o sign and deve pout Root loc		equency tz Criterion		

Systems and Their Representation

Introduction to Control System: Open and Closed loop Systems Examples –Residential Heating System, Automobile Drive System, and Temperature Control System. Transfer function: Mathematical Model-Mechanical Model- Translational & Rotational Systems, Electrical Model, Block Diagram Reduction Techniques, Signal flow Graph using Manson's Gain Rule –Related problems. [09]

Time Response Analysis

Introduction – The Performance Specifications: Transient Response-Rise time, Peak time, Peak Overshoot, Settling time, Measure of performance of the Standard Second Order System -Steady State Response-Steady State Error Constants and System Type Numbers. Types of Test Inputs: Step, Ramp, Parabolic, Impulse -First and Second Order System Response. Feed Back Control System Characteristics: - Proportional, Integral, Derivative, PID Modes of Feedback Control.

Frequency Response Analysis

Introduction – The Performance Specifications in Frequency Domain- The Bode Plots – The Polar Plots–Nichols Chart-determination of closed loop response from open loop response [09]

Stability of Control Systems

Introduction-Characteristic Equation, Location of Roots in S-plane for Stability. Stability Criterion: Bounded input Bounded output Stability, Zero input Stability, Routh Hurwitz Criterion. Root locus construction: Root locus Concept, Guidelines for Sketching Root Loci, Selected illustrative Root Loci-Gain Margin and Phase Margin. Nyquist Stability Criterion Selected illustrative Nyquist Plots. [09]

Compensator Design and Statespace Analysis

Performance criteria - Lag ,Lead and Lag-lead networks-Compensator design using bode –plot, Introduction to state space analysis-physical variable, phase variable and canonical variable forms. [09]

	Total Hours: 45 + 15(Tutorial) = 60
Text	book(s):
1	I.J Nagrath and M.Gopal "Control System Engineering", New Age international publisher, New Delhi,2016
2	Katsuhiko Ogata, "Modern Control Engineering", 5th Edition, Pearson Education, New delhi, 2012
Refe	rence(s)::
1	M.N. Bandyopadhyay, "Control Engineering Theory and Practice", Prentice Hall of India, 2006.
2	Chesmond C.J. "Basic Control System Technology", Viva Low Priced Student Edition, 1998
3	Leonard N.E. and William Levine, "Using MATLAB to Analyze and Design Control Systems"
4	Gopal M. "Control System Principles and Design", 3rd Edition ,Tata McGraw-Hill, New Delhi,2010

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												so
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	2	2								3	3	2
50 MO 500 9 Outton	CO2	3	3	3	3			3					3	2	2
50 MC 502 & System Design and Control	CO3	3	3	3	2	2	2					3	3	2	2
Design and Control	CO4	3	3	3	3	2							2	2	3
	CO5	3	3	3	3	2							2	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.I	Rangasamy	College of	Technolog	y – Autonoi	nous		R2018			
		50 M	C 503 -Sens	ors and Ins	strumentati	on					
			B.E. Mecha	tronics Eng	jineering						
Semester	Н	ours / Week		Total	Credit	Maximum Marks					
Semester	L	Т	Р	Hrs	С	CA	ES	Total			
V	3	0	0	45	3	50	50	100			
Objectives	quantitieTo makeTo teachTo introd	quantities. To make the students familiar with the specifications of sensors and transducers. To teach the basic conditioning circuits for various sensors and transducers.									
Course Outcomes	 Examine applicati Demons displace Illustrate Choose 	of the cours fundamental the suitable ons Outline trate the wo ment, load, le the working the appropri	physical and specification the various rking of election intensity and characters are sensors	d technical I on of mecha methods inv trical transd y and angle. teristics of s	base of sens nical transdu olved in forn ucers which smart sensor	ucers for diff ning process can measu rs.	ses. re the temp	erature,			

Introduction

Function block of instrumentation - Intelligent instruments- classification of sensors --Performance Characteristics-Static & Dynamic Characteristics-Errors in Measurement- Calibration and Standards-I/O elements

[09]

Mechanical Transducer

Introduction-Temperature Measurement-Pressure Measurement-Force Measurement-Torque Measurement-Liquid Level Measurement-Flow Measurement-Displacement to pressure transducers. [09]

Passive Electrical Transducer

Resistive Transducers, Resistance thermometers, Hot wire resistance transducer, Resistive displacement

transducers, Resistive strain transducers-Inductive Transducer, Inductive thickness transducer, Displacement transducer, Moveable core type inductive transducer, Eddy current type inductive transducer-Capacitive Transducers-Thickness, Displacement, Moisture [09]

Active Electric Transducer

Thermo electric transducers-Piezo Electric Transducers-Magnetostrictive Transducers-Hall-Effect Transducers-Photoelectric Transducers-lonization Transducers-Digital transducers-electrochemical transducers. [09]

Recent Trends And Applications

Film sensors – Micro-scale sensors – Particle measuring systems – Applications and case studies- Automobile Engineering, Aeronautics, Machine tools and Manufacturing processes. [09]

	Total Hours: 45
Text	book(s):
1	Patranabis D.,"Sensor and Actuators", Prentice Hall of India (Pvt) Ltd., 2017
2.	Renganathan S., "Transducer Engineering", Allied Publishers (P) Ltd., 2015
Refe	erence(s):
1.	Murthy, D.V.S., Transducers and Instrumentation, 2 nd Edition, Prentice Hall of India Pvt. Ltd., NewDelhi, 2010.
2.	Ian Sinclair, Sensors and Transducers, 3 rd Edition, Elsevier, 2012.
3.	J. P. Bentley, Principles of Measurement Systems, Addison Wesley Longman Ltd., UK, 2010
4.	K. Sawhney and P. Sawhney, A Course on Mechanical Measurement Instrumentation and Control, Dhanpat Rai and Co, New Delhi, 2011.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & CO			РО											PSO	
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 503 & Sensors and Instrumentation	CO1	3	3									3		3	2
	CO2	3	3				2							2	2
	CO3	3	3		3	2			3					3	3
	CO4	3	3	3	3	3	2		2	2	3	3		3	3
	CO5	3	3	3	2	3			2	2	3		2	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018										
	50 MC 504 – Machine Design										
B.E. Mechatronics Engineering											
Compotor	Hours / Week Total Credit Maximum Marks										
Semester	L T P Hrs C CA ES Total										
V	3 1 0 60 4 50 50 100										
Objectives	 To familiarize the various steps involved in the Design Process. To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements. To learn to use standard practices and standard data. To learn to use catalogues and standard machine components To design the various machine components as per standards. 										
Course Outcomes	At the end of the course, the students will be able to 1. Analyze stresses and dimensions in machine elements at various loads. 2. Understand the design of shaft, couplings, keys and knuckle joint for different applications. 3. Design and analyze the springs and gears. 4. Exhibit the design of bearings and connecting rod. 5. Understand the threaded fasteners and ability to design of welded joints.										

Variable Stresses in Machine Members

Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Direct, Bending and torsional stress equations - Impact and shock loading - eccentric loading - Design of curved beams - crane hook and 'C' frame - Factor of safety - theories of failure - stress concentration - design for variable loading - Soderberg, Goodman and Gerber relations. [09]

Shafts and Couplings

Design of solid shaft based on strength, rigidity and critical speed – Design of keys – Types - keyways - Design of rigid and flexible couplings - design of knuckle joints.

r francel
Chairman Bos/MCT

Springs and Gears

Springs –Types of Springs, Design of helical, leaf and torsional springs under constant loads and varying loads – Concentric torsion springs – Gears, types, terminologies-Design of spur and helical gears. [09]

Bearings and Connecting Rod

Study of bearings, Design of bearings – sliding contact and rolling contact types. – Cubic mean load – Design of journal bearings – Mckees equation – Lubrication in journal bearings – calculation of bearing dimensions – Design of connecting rod. [09]

Fasteners and Welded Joints

Threaded fasteners - Design of bolted joints including eccentric loading – Design of welded joints for pressure vessels and structures - theory of bonded joints. [09]

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO											PSO		
COURSE NAME	3	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 504 & Machine Design	CO1	3	3		3									2	2
	CO2	3	3		2									2	3
	CO3	3	3	3	3				3					3	3
	CO4	3	3	3	2				3				3	3	2
	CO5	3	3	3	3								3	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC 5P1 – Microprocessors and Microcontrollers Laboratory											
	50 M					rs Laborato	ory					
			B.E. Mecha	tronics Eng	jineering							
Semester	H	ours / Week		Total	Credit	N	laximum Ma	arks				
Semester	L	Т	Р	Hrs	С	CA	ES	Total				
V	0	40	100									
	To familiarize the architecture of 8085, 8086 Microprocessor and 8051 microcontrollers.											
To explore a basic knowledge of microprocessors and microcontrollers.												
Objectives	To learn	 To learn programming of microprocessors and microcontrollers. 										
	 To design 	n and devel	op interfacir	ng concepts	of microprod	cessors and	microconti	rollers.				
	Ability to	Ability to develop microprocessor and microcontroller based small applications.										
	At the end of the course, the students will be able to											
	1. Perform the basic arithmetic operations using 8085 microprocessors by developing											
		y language				•		· ·				
Course	2. Develop	an assemb	y language	program to	convert hexa	adecimal to	decimal and	decimal to				
Outcomes				orting using								
Outcomes					ısing 8086 n							
	4. Perform	the basic ar	ithmetic ope	rations usin	g 8051 micr	ocontrollers	by developi	ng				
	assembl	y language	programs									
	5. Demons	trate the inte	erfacing of s	tepper moto	r and traffic	light controll	er using 80	51				

List of Experiments

Programming with 8085 Microprocessors

- 1. Arithmetic operations (addition, subtraction, multiplication, division) using 8085
- 2. Logical operations programs using 8085
- 3. Sorting numbers in ascending and descending order of 8085
- 4. 8-bit decimal to hexadecimal conversion of 8085

5. Hexadecimal number to decimal number conversion of 8085

Programming with 8086 Microprocessors

6. Basic Programming with 8086 Assembler

Programming with 8051 Microcontrollers

- 7. Arithmetic operations (addition, subtraction, multiplication, division) using 8051
- 8. Stepper motor interface using 8051
- 9. Interface Traffic light controller using 8051
- 10. ADC and DAC Interface.

Total Hours: 60

Text book(s):

- R.S. Goankar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2013.
- 2. Ajay V. Deshmukh, "Microcontrollers Theory and Applications, "Tata McGraw Hill Publishing company Ltd, New Delhi 2011.

Reference(s):

- 1. Krishna Kant, "Microprocessors and Microcontrollers Architecture, Programming and system Design 8085, 8086, 8051, 8096", Prentice Hall of India, New Delhi, 8th Edition, 2011.
- 2. Mathur S, Panda J, "Microprocessor and Microcontrollers", PHI Learning, 2018.
- 3. Yu-Cheng Liu, Glenn A. Gibson, "Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design", 2nd Edition, Prentice Hall of India, 2015.
- 4. A.K. Ray and K.M. Bhurchandi, "Advanced Microprocessors and Peripherals", Tata McGraw-Hill Publishing company Ltd, Second Edition, 2010.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3		3							1	3	3
50 MC 5P1 &	CO2	3	3	3		3		3					2	3	2
Microprocessors and Microcontrollers	CO3	3	3	3	2	3			3				1	2	2
Laboratory	CO4	3	2	3	2	3				3			2	2	3
ĺ	CO5	3	3	2	2	3							2	3	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018											
		50 MC 5P	2 – Metrolo	gy and Dyn	amics Labo	oratory						
B.E. Mechatronics Engineering												
Semester	H	ours / Week		Total	Credit	N	arks					
Semester	L	Т	Р	Hrs	С	CA	ES	Total				
V	0	0	4	60	2	60	40	100				
Objectives	 To be familiar with different measurement equipment's and quality inspection for industrial applications. Identify and use reference materials to ensure good quality, accurate, traceable measurement results. To study the principles of gyroscope, Cam and measurement of surface finish. To calculate the moment of inertia of connecting rod. To analyze the natural frequency of different types of vibrations. 											
Course Outcomes	 To analyze the natural frequency of different types of vibrations. At the end of the course, the students will be able to 1. Describe the basic concepts of Metrology and classify different measuring tools related to experiments. 2. Discriminate between various screws by measuring their taper angle and pitch. 3. Measure the diameter of the screw thread. 4. Verify the laws of gyroscope and plot the profile of cam. 5. Evaluate the natural frequency of spring mass system and moment of inertia of connecting rod. 											

Introduction to metrology and measurement.

- 1. Calibration of micrometer using slip gauges.
- 2. a) Study of Tool Makers Microscope.
 - b) Measurement of taper angle and pitch by using tool maker's microscope.

- 3. a) Study of Gear Terminology.
 - b) Measurement of various dimensions of the given component using profile projector.
- 4. Measurement of taper angle using sine bar.
- 5. a) Study of Screw thread terminology.
 - b) Measurement of major and effective diameter of screw thread using 2 wire methods.
- 6. a) Study of various surface finish measurement techniques.
 - b) Measurement of surface flatness by using autocollimator.
- 7. Determination of gyroscopic couple using Motorized Gyroscope.
- 8. Plot the profile of cam and study of jump phenomenon.
- 9. Determination of natural frequency and critical speed of given shaft.
- 10. Determination of natural frequency of given spring mass system.
- 11. Determination of torsional frequency of a single rotor system.
- 12. Calculate the moment of inertia of connecting rod by oscillation method.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	2	3	1								2	3	2
50 MC 5P2 & Metrology	CO2	2	2	3	1								2	2	3
and Dynamics	CO3	2	2	3	1								2	2	3
Laboratory	CO4	2	2	3	1								2	2	2
	CO5	2	2	3	1								2	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology - Autonomous Regulation R 2018											
	Semes	ter										
Carrage Carla	Course Norse	Hou	rs/We	ek	Credit		Maximum Marks					
Course Code	Course Name	L	Т	Р	С	CA	ES	Total				
50 TP 0P3	CAREER COMPETENCY DEVELOPMENT III	0	0	2	0	100	00	100				
Course Objectives	 professional contexts To help the learners to enrich their very employability requirements of the companing. To help the learners to comprehend the placement and competitive online exams. To help the learners to enhance their known linear equations. To help the learners to augment the core of compete in coding contests. 	To help the learners to enrich their verbal and logical reasoning ability to meet out the employability requirements of the companies To help the learners to comprehend the Intermediate level of aptitude skills required to attend placement and competitive online exams To help the learners to enhance their knowledge in the quantitative aptitude skills in algebraic and linear equations. To help the learners to augment the core technical and coding skills of their respective domains to										
Course Outcomes	At the end of the course, the student will be able to 1. Examine the written and oral communication skills in the academic and professional contexts 2. Interpret the concepts of verbal reasoning and relate for the concepts to the requirements of the competitive exams and employability 3. Infer the concepts of intermediate level of aptitude skills pertaining to competitive exams and company recruitments. 4. Assess their comprehension in the quantitative aptitude skills in algebraic and linear equations.											

Review the core technical and coding skills of their respective domains to compete in contests	coding								
Unit – 1 Written and Oral Communication – Part 1	Hrs								
Reading Comprehension Level 3 - Self Introduction - News Paper Review - Self Marketing - Debate- Structured and Unstructured GDs Psychometric Assessment – Types & Strategies to answer the questions Practices : Sentence Completion - Sentence Correction - Jumbled Sentences - Synonyms & Antonyms - Using the Same Word as Different Parts of Speech - Interpretation of Pictorial Representations - Editing - GD - Debate. Materials : Instructor Manual, Word power Made Easy Book, News Papers	6								
Unit – 2 Verbal & Logical Reasoning – Part 1									
Syllogism - Assertion and Reasons - Statements and Assumptions - Identifying Valid Inferences - identifying Strong Arguments and Weak Arguments - Statements and Conclusions - Cause and Effect - Deriving Conclusions from Passages - Seating Arrangements. Practices: Analogies - Blood Relations - Statement & Conclusions. Materials: Instructor Manual, Verbal Reasoning by R.S.Aggarwal									
Unit – 3 Quantitative Aptitude – Part 3									
Probability - Calendar- Clocks - Logarithms - Permutations and Combinations Materials: Instructor Manual, Aptitude Book	6								
Unit – 4 Quantitative Aptitude – Part 4									
Algebra - Linear Equations - Quadratic Equations – Polynomials. Practices: Problem on Numbers - Ages - Train - Time and Work - Sudoku – Puzzles. Materials: Instructor Manual, Aptitude Book	6								
Unit – 5 Technical & Programming Skills – Part 1	4								
Core Subject – 1,2 3 Practices: Questions from Gate Materials: Text Book, Gate Material									
Total	30								
Evaluation Criteria									
C No. Dortioular Tost Portion	Marke								

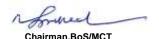
Lvaida	tion Ontona		
S.No.	Particular	Test Portion	Marks
1	Evaluation 1 Written Test	15 Questions each from Unit 1, 2, 3, 4 & 5 (External Evaluation)	50
	Evaluation 2 -	GD and Debate	
2	Oral Communication	(External Evaluation by English, MBA Dept & External Trainers)	30
	Evaluation 3 –		
3	Technical Paper Presentation	Internal Evaluation by the Dept.	20
		Total	100

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 Questions from Unit 1,2,3,4 and 5 and 5 Questions from Unit 1
- Evaluation has to be conducted as like Lab Examination.


Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												PSO		
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2		
	CO1	3	2	2	2	3		1			3	2	3	3	3		
50TP0P3 & Career	CO2	3	2	2	2	3		1			3	3	3	2	2		
Competency	CO3	3	2	2	2	3	2		2	3	3		3	3	3		
Development III	CO4	3				3	2	1		3	3		3	2	3		
	CO5	3				3	2	1		3	2		3	3	3		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rangas	amy Colleg	E. Mechatronics Engineering Total Credit Maximum Marks P hrs C CA ES Total								
	50 MC 601 – Programmable Automation Controllers											
		B.E. Mechatronics Engineering										
Semester	H	ours / Week		Total	Credit	M	aximum Ma	ırks				
Semester	L	T	Р	hrs	С	CA	ES	Total				
VI	3	1	0	60	4	50	50	100				

	 To gain the knowledge of various skills necessary for industrial applications of PLC.
	 To provide the basic programming concepts and various logical instructions used in PLC.
Objectives	To familiarize the learners in data handling of PLC.
	 To impart the knowledge on advanced functions of PLC.
	 To enable the students to troubleshoot and maintain the controller operation in industries.
	At the end of the course, Students will be able to
	 Describe the main functional units in a PLC and its elements.
Course	2. Develop ladder logic programming for industrial applications.
Outcomes	3. Use PLC data handling instructions for industrial automation.
	4. Analyze the advanced functions in control of drives and interfacing techniques with PLC.
	5. Outline different industrial automation applications and troubleshooting procedure.

Automation Fundamentals and PLC

Introduction – Requirement, Architecture of Industrial Automation system – History & Architecture of PLC – Principle operation – PLC Input & Output modules –Selection criteria – PLCs versus computers – Programming devices – PLC programming: Ladder diagram, STL, Functional block diagram, Sequential flow chart, Instruction List.

PLC Programming

Symbols in ladder diagram – Boolean logic & relay logic– input and output field devices – Bit logic instructions – ladder diagram examples, interlocking, latching, inter dependency and logical functions – PLC Timer & Counter functions: ON-delay timer, OFF-delay timers, retentive timers, pulse timers, up-counter, down-counter and up-down counter, industrial process examples using timer & counters. [09]

Data Handling Functions

Data move instructions— FIFO & LIFO, FAL, ONS, CLR, SWEEP functions — Math instructions — Data manipulation & conversion functions — Program control and interrupts: SKIP and MCR functions, jumps, subroutine, and sequence control relay — Simple programs. [09]

Advanced PLC Functions

Sink and Source concept – Analog PLC operation– PID functions – networking of PLC – Drives Control: AC Motor starter, DC motor controller, Variable Frequency Drive – Introduction to IEC61131 international standard for PLC.

PLC Maintenance and Case Studies

PLC maintenance – internal & external PLC faults – programmed error – watch dogs – hardware safety circuits – troubleshooting. Case Studies: Robot controller – FMS – Factory automation – Process control –Materials handling applications – Automatic control of power plant – Simple programs. [09]

Total Hours: 45 + 15(Tutorial) = 60 hours

Text book(s):

- 1. Frank D. Petruzella "Programmable Logic Controller", Tata McGraw-Hill Publication, 5th Edition, 2016.
- 2. John W. Webb and Ronald A. Reis "Programmable Logic Controllers: Principles and Applications" Prentice Hall India Publication, 5th Edition, 2013.

Reference(s):

- 1. W. Bolton, "Programmable Logic Controllers", Elsevier Publication, 5th Edition, 2009.
- 2. E.A.Parr "Programmable Controllers An Engineer's Guide", Elsevier Publication, 3rd Edition, 2014.
- 3. Stuart A Boyer, "SCADA Supervisory Control and Data Acquisition", ISA, 4th Revised Edition, 2016.
- 4. Krishnakant, "Computer based Industrial Control", PHI, New Delhi,5th Edition, 2017.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	1 1 1		PO												PSO		
COURSE NAME	0	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
	CO1	3	3			3								2	2		
50 MC 601 &	CO2	3	3	3		3		3						3	3		
Programmable	CO3	3	3	3		3	3	3	2	3	3			3	3		
Automation Controllers	CO4	3	3	2	2	3			3		3	3	2	3	3		
	CO5	3	3	2	2	2							2	2	3		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous	R2018
50 MC 602 - Computer Aided Design and Manufacturing	
B.E. Mechatronics Engineering	

Semester		Н	ours / Week		Total	Credit	M	aximum Ma	ırks
Semester		L	Т	Р	hrs	С	CA	ES	Total
VI		3	0	0	45	3	50	50	100
	•	To provid	de an overvi	ew of how co	omputers are	being used	in compone	nt design.	
	•	To educa	ate concept (of computer	graphics and	d graphics st	tandards.		
Objectives	•	To impar	t the fundan	nentals of ge	ometric mod	lelling and its	s application	in machine	design.
	•	To provid	de knowledg	e on CNC m	achines and	train the stu	udents in CN	C part progr	amming.
	•	To under	stand the ap	oplication of	computers ir	n various asp	pects of Man	ufacturing.	
	At	the end o	f the cours	e, the stude	nt will be al	ole to			
	1.				ps involved i				
Course	2.	Recogniz	ze and expla	in the 2D an	nd 3D transfo	rmations an	d different S	tandards in	CAD.
Outcomes	3.	Explain t	he fundame	ntals of Para	metric curve	s, Surfaces	and Solids.		
	4.	Apply NC	C programmi	ng concepts	to develop j	oart program	nme for Lath	e & Milling M	lachines.
	5.	Recite th	e role of cor	nputers in G	T and FMS.			_	

Introduction to CAD/CAM

Product cycle, Design process (Shigley model), Sequential and Concurrent Engineering. Computer Aided Design - Applications of Computer in Design, Benefits of CAD. Computer Aided Manufacturing, CAD/CAM concept - Automation and CAD/CAM, Role of CAD/CAM in industry 4.0. [09]

Computer Graphics

Introduction to Computer Graphics - Input and Output devices. Graphical input techniques - Output primitives - 2D and 3D transformations. Visibility techniques: Windowing and Clipping, Hidden line removal, Brightness modulation and Shading. Graphics standards, Standards for exchange images - Open Graphics Library (OpenGL) - Data exchange standards – IGES and STEP.

Geometric Modeling

Introduction to Geometric Modeling - Wireframe modeling - Representation of curves- Hermite curve- Bezier curve- B-spline curves. Techniques for surface modeling - surface patch- Coons and bicubic patches- Bezier and B-spline surfaces. Solid modeling techniques - CSG and B-rep. [09]

Fundamentals of CNC machines and Part Programming

Introduction to NC and CNC systems - Machine axis and Co-ordinate system - Functions and Constructional features of CNC - Classification of CNC machines - DNC concepts and types - Adoptive control. Fundamentals of part programming - Manual Part Programming. Computer assisted part programming - NC programming using CAD/CAM.

Group Technology and Flexible Manufacturing System

Group Technology (GT), Part Families - Parts Classification and coding systems - Simple Problems in OPITZ Coding system - Production Flow Analysis - Group technology machine cells - Guidelines for implementing GT. Flexible Manufacturing System (FMS) - FMS Components and its types - Flexibility in FMS - FMS Control - FMS layout configuration - FMS Application & Benefits. [09]

	Total Hours: 45
Text	book(s):
1	K Lalit Narayan, K Mallikarjuna Rao and M M M Sarcar, "Computer Aided Design and Manufacturing", PHI Learning (P) Ltd, 2015.
2	P Radhakrishnan, S Subramanyan and V Raju, "CAD/CAM/CIM", New Age International (P) Ltd., 2010.
Refe	erence(s):
1	Chris McMahon and Jimmie Browne, "CAD/CAM Principles, Practice and Manufacturing Management", Addison Wesley Longman England, 2000
2	Donald Hearn and M Pauline Baker, "Computer Graphics", PHI Pvt Ltd., New Delhi, 2006
3	Ibrahim Zeld and R Sivasubramanian, "CAD/CAM:Theory and Practice", Tata McGraw Hill Company, 2007.
4	Sadhu Singh, "Computer Aided Design and Manufacturing", Khanna Publishers, New Delhi, 2011.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO		PO											PSO	
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 602 & Computer	CO1	3	2			2								2	3
Aided Design and	CO2	3	2	2	2	2					2			2	3
Manufacturing	CO3	3	3	2		2	2		3		2			2	3

CO4	3	3	2	3	2	2		2		3	3
CO5	3	1	2	2	2		3		1	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangasam	/ College o	f Technolog	y – Autonoi	mous		R2018
		5	0 MC 603 -	- Robotics E	ngineering			
			B.E. Mech	atronics En	gineering			
Semester	I	Hours / Week		Total	Credit	N	laximum Ma	arks
Semester	L	T	Р	hrs	С	CA	ES	Total
VI	3	0	0	45	3	50	50	100
	To deve	lop the studer	t's knowled	ge in various	robot struct	ures and the	eir workspac	e .
	 To deve 	lop student's	skills in perf	orm kinemat	ics analysis o	of robot syst	ems	
		ide the studen	•		•	•		e operation of
Objectives	•	systems		louge of the	on igularity lo	oudo udodo.		o operation of
		•	t with some	knowlodgo	and analysis	ckille accoci	atad with ra	hotic concore
	•	ide the studen		_	-			
		ide the studen				ociated with	Machine vi	sion system
		of the course	•					
	 Express 	s the basic cor	icepts, laws	s, componen	ts and param	eters of rob	ots.	
	Explain	the types of g	rippers and	its functions				
Course	Know th	ne basic robot	kinematic a	ind acquaint	ance of homo	geneous tra	ansformation	n for
Outcomes	various	types of robot	S.	-		_		
2 2.12 311100	4. Unders	tand the senso	ors principle	s for differer	t environmer	ntal condition	า.	
		he basis of ma						aues used in
		al robots.			. 9		3	1

Introduction and Robot Components

Introduction – basic components of robot – laws of robotics – classification of robot – robot motions work space – precision of movement – power transmission system – gear transmission - belt drives – rotary to linear motion conversion, rack and pinion drives, stepper motors and servo motors. [09]

End Effectors

Robot End Effectors – Introduction-Types of end effectors – Mechanical gripper – types of gripper mechanism – gripper force analysis – other types of gripper – special purpose grippers. [09]

Robot Mechanics

Introduction- Matrix representation - rigid motion - homogeneous transformation matrices - forward & inverse kinematics of robot – degeneracy and dexterity. [09]

Sensors

Introduction – Characteristics of sensor - types of sensors – Potentiometers – LVDT – Encoders – Velocity and acceleration sensors – pressure sensor – touch and tactile sensor - proximity sensor – range & sniff sensor.[09]

Machine Vision System and Programming

Introduction - Image acquisition - Sampling and quantization - Image Processing Techniques - Noise reduction methods - Edge detection - Segmentation - thresholding - binary morphology and gray morphology. Robot programming - Introduction - On-line programming - Manual input, lead through programming - teach pendant programming - Off-line programming languages and Simulation. [09]

Text book(s):

1 Saeed B. Niku, "Introduction to Robotics: Analysis, systems, Application", 2nd Edition, Pearson Education India, 2017.

2 Mikell P. Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008.

Reference(s):

1 John.J.Craig, "Introduction to Robotics: Mechanics & control", Pearson Publication, 4th Edition, 2018.

2 Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", Springer, 2nd Edition, 2016.

Roland Seigwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "Introduction to autonomous mobile robots", 2nd Edition, MIT Press, 2011.

Ramesh Jain, Rangachari Kasturi, Brain G.Schunck," Machine Vision", Tata McGraw Hill, USA., 2nd Edition (India), 2012.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO		PO											PSO	
COURSE NAME	0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	3		3	3		3					2	2
FO MC COO & Debation	CO2	3	2	2		3	2							3	3
50 MC 603 & Robotics Engineering	CO3	3	3	3		2	2		3					2	3
Linginicoming	CO4	3	3	2	2	2	3	2		3	3	3	2	3	3
	CO5	3	3	2	2	3	2	2		3	3	3	2	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

		K.S	S.Rangasan	y College o	of Technolog	gy – Autono	mous		R2018			
			50 MY		ups and En		ship					
				Commo	n to all Bran	ches						
Semester		Н	ours / Week		Total	Credit	M	aximum Mar	ks			
Semester		L	T	Р	hrs	С	CA	ES	Total			
IV		2	0	0	30	-	100	-	100			
	•				for transforr	ning an idea	into a produ	ct or service	that			
		creates v	alue for othe	rs.								
Objectives	•	To build a	a winning str	ategy, how t	o shape a ur	nique value p	proposition, p	repare a bu	siness plan			
Objectives	•	To impar	t practical kn	owledge on	business opp	portunities						
	 To inculcate the habit of becoming entrepreneur To know the financing, growth and new venture & its problems At the end of the course, the student will be able to											
	•	To know	the financing	j, growth and	d new ventur	e & its proble	ems					
	At	the end o	f the course	, the stude	nt will be ab	le to						
	1.	Transforr	n ideas into	real product	ts, services a	and process	es, by valida	ting the idea	i, testing it,			
		and turnii	ng it into a g	owing, profi	table and sus	stainable bus	siness.					
	2.	•	•		irements in	order to est	imate the po	tential of an	innovative			
Course			ne basis of a									
Outcomes	3.				eration of a v				nging ideas			
					ck, and learn							
	4.				in creating a							
	5.	Apply m innovator		strategies	learned froi	m interview	s with start	up entrepre	neurs and			

Introduction to Entrepreneurship & Entrepreneur

Meaning and concept of Entrepreneurship, the history of Entrepreneurship development, Myths of Entrepreneurship, role of Entrepreneurship in Economic Development, Agencies in Entrepreneurship Management and Future of Entrepreneurship.

The Entrepreneur: Meaning, the skills required to be an entrepreneur, the entrepreneurial decision process, Role models, Mentors and Support system. [06]

Business Opportunity Identification and Preparing a Business Plan

Business ideas, methods of generating ideas, and opportunity recognition, Idea Generation Process, Feasibility study, preparing a Business Plan: Meaning and significance of a business plan, components of a business plan. [06]

Innovations

Innovation and Creativity - Introduction, Innovation in Current. Environment, Types of Innovation, School of Innovation, Analysing the Current Business Scenario, Challenges of Innovation, Steps of Innovation Management, Experimentation in Innovation Management, Participation for Innovation, Co-creation for Innovation, Proto typing to Incubation. Blue Ocean Strategy-I, Blue Ocean Strategy-II. Marketing of Innovation, Technology Innovation Process

Financing and Launching the New Venture

Importance of new venture financing, types of ownership, venture capital, types of debt securities, determining ideal debt-equity mix, and financial institutions and banks.

Launching the New Venture: Choosing the legal form of new venture, protection of intellectual property, and formation of the new venture. [06]

Managing Growth and Rewards in New Venture

Characteristics of high growth new ventures, strategies for growth, and building the new ventures. Managing Rewards: Exit strategies for Entrepreneurs, Mergers and Acquisition, Succession and exit strategy, managing failures – bankruptcy. [06]

Text book(s):

- Stephen Key, "One Simple Idea for Startups and Entrepreneurs: Live Your Dreams and Create Your Own Profitable Company" 1st Edition, Tata McGrawhill Company, New Delhi, 2013.
- Charles Bamford and Garry Bruton, "ENTREPRENEURSHIP: The Art, Science, and Process for Success", 2nd Edition, Tata McGrawhill Company, New Delhi, 2016.

Africal Chairman Ros/MCT

Total Hours: 30

Ref	erence(s):
1	Philip Auerswald, "The Coming Prosperity: How Entrepreneurs Are Transforming the Global
	Economy", Oxford University Press, 2012.
2	Janet Kiholm Smith; Richard L. Smith; Richard T. Bliss, "Entrepreneurial Finance: Strategy, Valuation,
	and Deal Structure, Stanford Economics and Finance", 2011
3	Edward D. Hess, "Growing an Entrepreneurial Business: Concepts and Cases", Stanford Business
	Books, 2011
1	Howard Love, "The Start-Up J Curve: The Six Steps to Entrepreneurial Success", Book Group Press,
4	2011

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO									PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	3	1	3	1	2	1		2	2	2	1
	CO2	2	3	3	2	2		2	2	2		2	2	3	
50 MY 014 & Startups and Entrepreneurship	CO3	3	2	3	1	2				1	3	1	3	3	
and Entropreneuramp	CO4	3	3	3	3	3	2	2	1		1	3	3	3	
	CO5	3	2	3	3	3			2			3	2	2	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018 50 MC 6P1 – Robotics and Machine Vision Laboratory													
	;	50 MC 6P1 -	- Robotics	and Machin	e Vision La	boratory							
	B.E. Mechatronics Engineering												
Semester	Н	ours / Week		Total	Credit	N	<u>laximum Ma</u>	arks					
Semester	L	Т	Р	Hrs	С	CA	ES	Total					
VI	0	0	4	60	2	60	40	100					
Objectives	 To introduce different types of robotics and demonstrate them to identify different parts and components. To write programming for simple operations. The students will learn to design, build, program, control robotic devices and think of ways in machine vision system. To educate recent robotics concepts. To conduct advanced fundamental and applied research in robotics 												
Course Outcomes	1. Describe 2. Analyze quantiza 3. Analyze 4. Inspect t the desir	of the cours the different the Signal c tion the Thresho	e, the stude at types of lir onversion or old, connecti differentiate sents.	ents will be nks, drives, j f sensing an vity, noise re the compone	able to oints and er d digitizing t eduction and ents while do	nd effectors he images under the images under the bind the pick	sing sampli	ng and					

- 1. Study of different types of links and joints used in robots, components of robots with drive system and end effectors, classification of robots based on configuration and application.
- 2. Verification of transformation (Position and orientation) with respect to gripper and world coordinate system.
- 3. Robot programming exercises (Point-to-point and continuous path programming)
- 4. Signal conversion of sensing and digitizing the images using sampling and quantization analysis.
- 5. Windowing and digital conversion techniques of the captured component image for data reduction process.
- 6. Threshold, connectivity, noise reduction and edge detection of the component image for further segmentation analysis of the component.
- 7. Texture analysis of the captured image for feature extraction process.
- 8. Depth and volume analysis of the component in feature extraction techniques to pick the component.
- 9. Analysis of color inspection to differentiate the components while doing the pick and place operation of the desired component.
- 10. Template matching such as pattern matching and geometric matching exercises for the component recognition to pick the component using grippers.

Total Hours: 60

Text book(s):

Chairman ROS/MCT

1	Saeed B. Niku, "Introduction to Robotics: Analysis, Systems, Applications", Second Edition, Pearson Education India, PHI 2013 (ISBN 81-7808-677-8)
2.	Ramesh Jain, Rangachari Kasturi, Brain G. Schunck, "Machine Vision", Tata McGraw Hill, 2012
Refe	erence(s):
1	M.P.Groover, "Industrial Robotics-Technology, Programming and Applications", McGraw Hill, USA.
1.	2012.
2.	John.J.Craig, "Introduction to Robotics: Mechanics & control", Pearson Publication, 4th Edition, 2018
3.	Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", Springer, 2 nd Edition, 2016.
4	Damian M Lyons, Cluster Computing for Robotics and Computer Vision, World Scientific, Singapore,
4.	2011.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO											PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 6P1 & Robotics	CO1	3	3			3								3	2
	CO2	2	2			3								2	3
and Machine Vision	CO3	2	3			3			2					2	3
Laboratory	CO4	3	2	2	2	3		3	2		3	3	3	2	3
	CO5	2	3	2	2	3	2	2	2	2		2	2	3	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
			50 MC 6P2	- Computer	Aided Man	ufacturing L	aboratory						
	B.E. Mechatronics Engineering												
Semester		H	ours / Week	(Total	Credit	M	aximum Ma	irks				
Semester		L	T	Р	hrs	C	CA	ES	Total				
VI		0	0	2	60	40	100						
	To provide knowledge on construction and working of Computer Numerical Control (CNC)												
		 Machines To be familiar with on interfacing, communicating and control of CNC machine tools. 											
Objectives	•	To be far	miliar with or	n interfacing,	communicat	ing and conf	trol of CNC r	nachine tool	s.				
Objectives	•	 To impart the knowledge on CNC manual part programming basics. 											
	•	To provide skill on programming of CNC turning center and CNC machining center.											
	•	To gain p	oractical exp	erience com	puter assiste	d part progra	amming						
	At	the end o	f the cours	e, the stude	nt will be ab	le to:							
	1.			tion and work			ls.						
Course	2.			us concepts									
Outcomes	3.			s to manufac									
	4.			s to manufac					j centers.				
	5.	Understa	and the NC o	code generati	ion through (CAD models	in CAM Soft	ware.					

CNC Turning

- 1. NC manual part program generation on step turning.
- 2. NC manual part program generation on taper turning.
- 3. NC manual part program generation on grooving cycle.
- 4. NC manual part program generation on thread cutting.
- 5. NC manual part program generation on drilling and boring cycle.

CNC Milling

- 6. NC manual part program generation on linear interpolation.
- 7. NC manual part program generation on circular interpolation.
- 8. NC manual part program generation on contour milling.
- 9. NC manual part program generation on drilling and peck drilling.
- 10. NC manual part program generation on Mirror imaging in CNC Milling.

Computer Aided Part Programming

11. CL Data Generation for the given component by using CAM Software.

Total Hours: 60

Text book(s):

Lalit Narayan. K, Mallikarjuna Rao. K and Sarcar. M. M. M, "Computer Aided Design and Manufacturing", PHI Learning (P) Ltd, 2015.

2	Radhakrishnan. P., "Computer Numerical Control Machines", New Central Book Agency, 2001.											
Refe	Reference(s):											
1	NIIT., "Fundamentals of Computer Numerical Control", PHI learning private limited, New Delhi, 2009											
2	Sadhu Singh, "Computer Aided Design and Manufacturing", Khanna Publishers, New Delhi, 2011.											
3	Ibrahim Zeld and R Sivasubramanian, "CAD/CAM:Theory and Practice", Tata McGraw Hill Company, 2007.											
4	Chris McMahon and Jimmie Browne, "CAD/CAM: Principles, Practice, and Manufacturing Management", Pearson Education Asia, 2001.											

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO	
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 6P2 & Computer	CO1	3	3	3		3				2			2	2	3
	CO2	3	2	3		3				2			2	2	3
Aided Manufacturing	CO3	3	3	2		3				2			2	3	2
Laboratory	CO4	3	3	3		3				2			2	3	2
	CO5	3	2	3	·	3				2			2	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology	– Auto	nomo	us R	egulation)			R 2018			
	Seme	ster VI										
Course Code	Course Name	Hou	rs/We	ek	Credit		Maxim	um Mark	s			
Course Code	Course Name	L	Т	Р	၁	CA	ES	To	otal			
50 TP 0P4	Career Competency Development IV	0	0	2	0	100	00		00			
Course Objectives	 employability requirements of the com To help the learners to comprehence Geometry To help the learners to enhance the da To help the learners to enrich the temployability, codeathons and hackath 	 and professional contexts To help the learners to augment their advanced verbal and logical reasoning ability to meet ou employability requirements of the companies To help the learners to comprehend the advanced level of aptitude skills in the concept Geometry To help the learners to enhance the data interpretation and analytical skills in varied methods. To help the learners to enrich the technical and programming skills to be focused on be employability, codeathons and hackathons 										
At the end of the course, the student will be able to 1. Examine and correlate the written and oral communication skills in the academic and profession contexts 2. Predict and discriminate advanced verbal and logical reasoning ability to meet out employability requirements of the companies 3. Infer the concepts of advanced level of aptitude skills on Geometry pertaining to compet exams and company recruitments. 4. Illustrate the data interpretation and analytical skills in varied methods. 5. Formulate the technical and programming skills to be focused on better employability, codeath and hackathons												
	ritten and Oral Communication – Part 2								Hrs			
Practices on Re Skimming and S Correction – Jur Speech	 GD – Personal Interview Skills eading Comprehension Level 2 – Paragraph Scanning – Interpretation of Pictorial Rembled Sentences – Synonyms & Antonymals: Instructor Manual, Word power Made E 	present ns – Us	ations sing th	– S ne Sa	Sentence ame Word	Comple	tion- S	Sentence	4			
	pal & Logical Reasoning – Part 2	,	,									
Analogies – Bloc Effect – Deriving Reasoning – Cl	od Relations – Seating Arrangements – Sy Conclusions from Passages – Series Complassification – Critical Reasoning Practical Series Instructor Manual, Verbal Reasoning	pletion (es : Ana	Numbalogies	ers, <i>i</i>	Alphabets	& Figur	es) – A	nalytical	8			
Unit – 3 Quantitative Aptitude – Part – 5												
Geometry – Straight Line – Triangles – Quadrilaterals – Circles – Co-ordinate Geometry – Cube – Cone – Sphere. Materials: Instructor Manual, Aptitude book												
 Sphere. Materi 	iais: instructor ivianuai, Aptitude book											

Data Interpretation based on Text – Data Interpretation based on Graphs and Tables. Graphs can be ColumnGraphs, Bar Graphs, Line Charts, Pie Chart, Graphs representing Area, Venn Diagram & Flow Charts.										
Materia		in, Graphs representing Area, Verill Diagram & Flow Cha	aris.							
Instructor Manual, Aptitude Book										
Unit – 5 Technical & Programming Skills – Part 2										
Core Subject – 4, 5, 6 Practices: Questions from Gate Material. Materials: Text Book, Gate Material										
i, o, o : i i i i i i i i i i i i i i i i i i										
Total										
Evaluat	ion Criteria									
S.No.	Particular	Test Portion		Marks						
1	Evaluation 1 Written Test	15 Questions each from Unit 1, 2, 3, 4 & 5 (External		50						
		Evaluation)								
2	Evaluation 2 –	GD and HR Interview		30						
Oral Communication (External Evaluation by English, MBA Dept.)										
3	Evaluation 3 – TechnicalInterview	Internal Evaluation by the Dept. – 3 Core Subjects		20						
Total 1										

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough Work pages
- Each Assignment has 20 questions from Unit 1,2,3,4,5 and 5 questions from Unit 1(Oral Communication) & Unit 5(Programs)
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 TP 0P4 –	CO1	3	3		3	3	2	1	2	3	3	2	3	3	3
	CO2	3	2	2	2	2	1	1	2	3	3	2	3	2	2
Career Competency	CO3	3	2	2	2	2		1	2	3	3	3	3	1	3
Development IV	CO4	3		2						3	2	3	3	3	2
	CO5	3		2						3	2	3	3	2	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018 50 MC 701 – Industrial Automation Protocols														
		50 MC	701 – Indu	strial Auton	nation Proto	cols								
	B.E. Mechatronics Engineering													
Semester	1	lours / Weel	K	Total	Credit	M	Maximum Marks							
Semester	L	T	Р	Hrs	ES	Total								
VII	3	0	0	45	3	50	50	100						
	To impart the knowledge of Supervisory Control and Data Acquisition (SCADA) System.													
To make the students understand role of Distributed Control System in industrial automation.														
Objectives(s)	To familiarize the learners in industrial communication with its protocol													
Objectives(s)	To prov	vide an impo	rtance of Inte	ernet of Thing	t of Things (IoT) and it's envisioned deployment domains.									
	To enable the students to understand the various cyber security technologies used in													
	industri	es.												
			•	s will be abl										
	•	•	•	trol and Data	•	•		•						
_	_		uted control	system and	to differentia	te the DCS	over other au	utomation						
Course	system					f								
Outcomes				n buses and	•		applications	5.						
				of Things (IoT Dlogies to enh			industrial							
		nication.	and technic	nogles to em	iance the cy	ber security	iriuusiriai							
Supervisory			sition Syste	em:										

Elements of SCADA-Functionalities of SCADA-Architecture: Hardware, Software: Development, Runtime mode

Functions-Tools: Tag Database-Recipe database- Alarm Logging-Trends: Real Time, Historical Trends-Security and User Access Management-Management Information System-Report Function. Different Communication Protocols, SCADA systems in operation and control of manufacturing Plant, Trends in SCADA. [09]

Distributed Control Systems:

Distributed Control System (DCS) - Introduction, Flow sheet symbols, Architecture, Specifications, Supervisory computer functions and Algorithm, Computer displays, Control Techniques and Strategies, Computer interface with DCS, System integration with PLCs, Computer – HMI, DCS programming. [09]

Role of Networking in Automation

Different Network protocols - ASI, CAN, Device net, Industrial Ethernet, Profibus – PA / DP / FMS, Fieldbus, HART, Physical layer and wiring rules, Safety Instrumented System (SIS) - Need for safety instrumentation- risk and risk reduction methods, hazards analysis, Process control systems and SIS, Safety Integrity Levels (SIL) and availability, Introduction to the international functional safety standard IEC61508. [09]

Industrial Internet of Things

Introduction to Internet of Things-Overview of Internet of Things-the Edge, Cloud and the Application Development, Anatomy of the Thing, Industrial Internet of Things (IIoT -Industry 4.0), Quality Assurance, Predictive Maintenance, Real Time Diagnostics, Design and Development for IoT, Understanding System Design for IoT, Design Model for IoT. IoT Specific Challenges and Opportunities. [09]

Cyber Security in Industrial Automation

Emerging Approaches to Industrial Automation Security-Internet of Things, Open platform communications unified architecture, Security and privacy, Big data analytics and the industrial Internet of Things, The National Institute of Standards Technology (NIST) Cyber-Physical Systems (CPS) Framework, CPS and Cybersecurity, Critical Infrastructure security, Software-defined elements.

Total Hours: 45

Text book(s):

- M. P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Fourth Edition, Pearson Education, UK, 2016.
- 2 Stuart A.Boyer, "SCADA: 'Supervisory control and Data Acquisition', 4th Edition, ISA, 2010.

Reference(s):

- 1. Natalia Olifer, Victor Olifer, "Computer Networks: Principles, Technologies and protocols for Network design", John Wiley & Sons, 2010.
- 2. Robert Radvanovsky, Jacob Brodsky, "Handbook of SCADA/Control Systems Security", 2nd Edition, CRC press, 2016.
- 3. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress 1st Edition, 2017.
- 4. Lucas M.P, Distributed Control Systems, Van Nostrand Reinhold Company, Newyork, 1986.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

0010011120															
COURSE CODE &	СО						Р	O						PS	SO
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3		3							3	3	2
50 MO 704 9 Indication	CO2	3	3	3		2							3	2	3
50 MC 701 & Industrial Automation Protocols	CO3	3	2	3		3		2						2	2
Automation Protocols	CO4	3	2	2	2	3	3	2	3					3	3
	CO5	3	2	2	2	2	3		3					3	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangasa	my College	of Technol	ogy – Auto	nomous		R2018								
			50 MC 702 -	- Embedded	d System											
			B.E. Mecha	tronics Eng	ineering											
Semester	H	ours / Week		Total	Credit	M	laximum Ma	arks								
Semester	L	L T P Hrs C CA ES Total 3 0 0 45 3 50 50 100														
VII	3															
Objectives(s)	developrTo endoTo bring	ment Strateg w with an ov	gies. verview of Al rious networ	RM architec	ture and Me	mory organi	zation.	s Embedded dded system								

R4/ w.e.f.24.02.2022 Passed in the BoS Meeting Held on 02.02.2022 Approved in Academic Council Meeting held on 23/02/2022

To equip students with the knowledge of scheduling and multitasking strategies of RTOS.
 To illustrate the different embedded processors and their application in practice.
 At the end of the course, the students will be able to
 Describe the function and operation of software and hardware components of embedded systems
 Design ARM based systems and study about memory organization.
 Design and discriminate various communication networks and their interfaces
 Outline the features of RTOS and Configure the RTOS for operations involved in embedded applications.
 Develop the hardware for embedded system application based on the processors.

Introduction to Embedded Systems

The build process for embedded Systems-Structural units in Embedded processor, selection of processor &memory Devices-Timer and Counting devices, Watchdog Timer, Real Time Clock-Software Development tools-IDE, assembler, compiler, linker, simulator, debugger, In circuit emulator, Target Hardware Debugging need for Hardware-Software Partitioning, Co-Design. [09]

ARM Architecture and Memory Organization

ARM architecture—ARM programming's Model-Registers— Pipelining architecture—Interrupts and Exceptions handlings—ARM Instruction sets—THUMB instruction sets. ARM Programming-DMA—Memory Management-Cache mapping techniques, dynamic allocation—Fragmentation. [09]

Embedded networking and communication

Sockets, ports, UDP, TCP/IP, client server model, socket programming, 802.11, Bluetooth, ZigBee, firewalls, network security and I2C. Wireless sensor networks – Introduction – Applications – Network Topology – Localization –Time Synchronization - Energy efficient MAC protocols.

Types of Interrupt-Programmed I/O Busy wait approach without ISM-ISR Concept-Interrupt Handling Mechanism-Context Switching-Interrupt latency-Interrupt Service Deadline-preventing Interrupt overrun, disability interrupts-interrupt driven I/O-writing interrupt service routine in C & assembly languages. [09]

Real Time Operating System(RTOS)

Introduction to RTOS –Advantage and Disadvantage of Using RTOS – Multitasking – Tasks and task states - Real Time Kernels – Scheduler - Non-Preemptive Kernels - Preemptive Kernels – Round Robin Scheduling - Task Priorities – Mutual Exclusion – Deadlock – Clock ticks. [09]

Case Studies

Embedded System in Automobile–Adaptive Cruise Control Systems in a car– Case study of coding for a Digital Camera -Elevator control –ATM Machine-Mobile Phone-Robotic ARM control. [09]

Total hours 45

Tex	t book:
1	P.Rajkamal, "Embedded System-Architecture, Programming and Design", 3rd Edition, Tata McGraw Hill
•	Publishing Co.Ltd,2015.
2.	Steve Furber, "ARM System on chip Architecture", 2 nd Edition , Addison Wesley, 2013.
Refe	erence(s):

Frank Vahid, 'Embedded System Design – A Unified Hardware & Software Introduction', John Wiley, 2002.

Sriram V. Iyer, Pankaj Gupta, 'Embedded Real Time Systems Programming', Tata McGraw Hill, 2004.

Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design", 2nd Edition, Morgan Kaufman Publishers, 2013.

Dominic Symes, Chris Wright, Andrew N.sloss, "ARM Systems Developer's Guides- Designing & Optimizing System Software", 2008, Elsevier.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	o						PS	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	3	3	3								2	2
50 MO 700 8 Fast addad	CO2	3	3	3	2	3								3	3
50 MC 702 & Embedded System	CO3	3	2	2	2	3			2	2	3			3	3
Cydlom	CO4	3	2	2	2	3		3				2	2	2	3
	CO5	3	2		2	3		3	2	3	3	2	2	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous

R2018

		50	0 MC 703 -	Autonomou	ıs Vehicle										
			B.E. Mecha	tronics Eng	ineering										
Semester	Н	ours / Week		Total	Credit	N	laximum Ma	arks							
Semester	L	Т	Р	Hrs	С	CA	ES	Total							
VII	3	0	0	45	3	50	50	100							
	To intro	duce the b	asic conce	ots and cor	mmunication	protocols	of autonom	nous vehicle							
	system.														
	 To famil 	iar and expla	ain about dri	ver aassista	ınce techniq	ues and trou	ubleshooting	methods.							
Objectives(s)	 To enlig 	hten the lea	arners abou	t the basics	of unmann	ed aerial ve	ehicle and it	ts navigation							
	concepts	concepts.													
	•	To expertise in the autonomous vehicle architectures and path planning system.													
					le projects a	ınd data acc	quisition syst	tem.							
	At the end of		•												
					utonomous										
Course					and mainter										
Outcomes					and control a										
			nomous veh	nicle archited	ctures conce	pts and obs	tacle avoida	ince							
	methods	• •					-l: :l: ff	ant Calda							
	5. Enhance		in the succe		omous vehic	ie case stu	aies in differ	ent fields.							

Introduction to Autonomous Vehicle System (AVS)

AVS - Missions, capabilities, types and configurations - Basic control system theory applied to automobiles - Overview of Electronic Control Unit (ECU) - Basic Cyber Physical System (CPS) theory and autonomous vehicles - Role of surroundings sensing systems - Telemetry and communications, wireless data networks and autonomy. [09]

Advanced Driver Assistance System Technology

Driverless car technology - Moral, legal, roadblock issues, technical issues and security issues - Troubleshooting and maintenance of advanced driver assistance systems, failure modes - Self calibration - Sensor testing and calibration - Standard manufacturing principles - Redundant systems. [09]

Concepts of Unmanned Aerial Vehicle (UAV)

History of UAVs – Ground, surface water and underwater UAVs - Remotely Operated Vehicle (ROV) - Levels of autonomy - Coordinate systems - Equations of motion and transformation for payloads - Sensors and actuators - Internal measurements and navigation, Global Positioning System (GPS) - Proportional Integral Derivative (PID) automatic control – Guidance – Navigation - Vision based guidance for ground vehicles. [09]

Architectures for Autonomous Vehicle

Control architectures and motion autonomy - Deliberative, reactive, hybrid architectures - Overview of sharp architecture, models of vehicles, concepts of sensor based maneuver, reactive trajectory - Parallel parking-Platooning, main approaches to trajectory planning - Non-Holonomic path planning [09].

Autonomous Vehicle and Case Studies

Defense Advanced Research Projects Agency (DARPA) Challenges case study, ARGO prototype vehicle, The Generic Obstacle for Lane Detection (GOLD) system - The inverse perspective mapping, lane detection, obstacle detection, vehicle detection, pedestrian detection - Software systems architecture, Computational performances, ARGO prototype vehicle hardware – Functionalities, Data Acquisition System (DAS), processing system and control system.

Total hours 45 Text book: Nicu Bizon ,Lucian D Ascalescu and Naser Mahdavit Abatabaei "Autonomous Vehicles Intelligent Transport Systems and Smart Technologies", Nova Publishers, 2014. Reg Austin, 'Unmanned Aircraft Systems: UAVs Design, Development, and Deployment', First Edition, 2. John Wiley and Sons Ltd., 2011. Reference(s): James M. Anderson, Nidhi Kalra, Karlyn D. Stanley, Paul Sorensen, Constantine Samaras, Oluwatobi A. 1. Oluwatola, "Autonomous Vehicle Technology" Published by Rand Corporation, 2016. Anthony Finn and Steve Scheding, "Developments and Challenges for Autonomous Unmanned Vehicles", 2. Springer, 2010. 3. Hong Cheng, "Autonomous Intelligent Vehicles Theory, Algorithms, and Implementation", Springer, 2011. Thomas Gleason and Paul Fahlstrom, 'Introduction to UAV Systems', Fourth Edition, John Wiley and Sons Ltd., 2012.

Pre-requisite: Nil

COURSE CODE &

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

PO

PSO

CO

COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3		3										2	2
50 MO 700 0	CO2	3		3										2	3
50 MC 703 & Autonomous Vehicle	CO3	3	2	2										2	2
Adionomods vehicle	CO4	3	3	2	2	2							2	3	3
	CO5	3	3	2	2	2							2	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S	.Rangasamy	College of	Technology	– Autonomo	us R2018										
		50 AC	001 - Resea	rch Skill De	velopment -	l										
Semester		Hours / Wee	k	Total	Credit	Мах	kimum Marks	;								
Semester	L	Т	Р	Hrs	С	CA	ES	Total								
VII	1	0	0	10	0	100	0	100								
	To lea	rn about the	effective usag	ge of power p	oint presenta	ation										
	 To pre 	To prepare presentation with various effects To visualize the data in the presentation.														
Objective(s)	To visi	To visualize the data in the presentation														
	To acc	To acquire knowledge about data sources														
	To inve	 To acquire knowledge about data sources To investigate the research articles based on various applications 														
	At the end	d of the cour	se, the stud	ents will be	able to											
	1. Develo	op presentation	on with visual	effects												
Course		re a presenta	•													
Outcomes	3. Attain	the important	ce of researc	h and data co	ollection											
	•	ze the various														
	5. Interpr	et the tools a	nd methods	n preparing r	manuscript											

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Preparing a Presentation

(03)

Presenting data using Power Point- Power Point preparation and presentation, Design principles for creating effective Power Point slides with visuals displaying data. - Profile, - Problem, and a set of basic Excel charts, use to create a presentation.

Creating effective slides using PowerPoint

(02)

Create effective slides using PowerPoint. Tools within Power Point, structure story line, create story boards, identify primary elements of slide design, display data and finalize slide presentation.

Research Designs and Data Sources

(03)

Overview of the topics: process of data collection and analysis. Starting with a research question - Review of existing data sources- Survey data collection techniques- Importance of data collection- Basic features affect data analysis when dealing with sample data. Issues of data access and resources for access.

Measurements and Analysis Plan

(02)

Importance of well-specified research question and analysis plan: various data collection strategies - Variety of available modes for data collection – review of literature - Tools at hand for simple analysis and interpretation.

Total Hours: 10

Text Book(s):

- 1. Judy Jones Tisdale. Effective Business Presentations. Gulf Coast Books LLC. ISBN-13: 978-0130977359, 2004.
- 2. Frauke Kreuter. Framework for Data Collection and Analysis,2018. https://www.coursera.org/learn/data-collection-framework

Reference(s)

- 1. Kothari, C.R. andGaurav Garg, "Research Methodology: Methods and Techniques", New Age International Publishers, 2013
- 2. Srivastava, T.N. and Rego, S., "Business Research Methodology", Tata McGrawHill Education Pvt. Ltd., Delhi, 2019.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						P	0						PS	30
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 AC 001 & Research	CO1	3	3					3	3	3	3	3	3	3	2

r fred

Skill Development -I	CO2	3	3			3	3	3	3	3	3	2	2
	CO3		3			3	3	3	3	3	3	2	3
	CO4		3			3	3	3	3	3	3	3	2
	CO5		3			3	3	3	3	3	3	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Ranga	asamy Colle	ege of Tech	nology – Au	tonomous		R2018
		50 MC 7P1 -	Industrial A	Automation	and Contro	Laboratory	1	
			B.E. Mech	natronics En	gineering			
Semester		Hours / Wee	k	Total	Credit	IV	laximum Ma	arks
Semester	L	T	Р	hrs	С	CA	ES	Total
VII	0	0	4	60	2	60	40	100
	To ti	ain the studer	its to be fam	niliar with the	software and	d hardware o	of PLC using	g ladder logic
	code	es.						
Objectives(s)	 To fa 	amiliarize the s	student to de	evelop PLC p	rograms for	different app	olications.	
Objectives(s)	 To fa 	acilitate knowle	edge on PL0	C Control Pri	nciples and A	Applications	with Field D	evices.
	To ti	ain the studer	its to create	ladder diagr	ams for proc	ess control o	descriptions.	
	• To ir	mpart knowled	ge on Confi	gure commu	nication betw	veen the PLO	C and PC.	
	At the e	nd of the cou	rse, Studer	nts will be al	ole to			
	1. Write	e a PLC progra	am for vario	us industrial	applications.			
Course	2. Con	trol the speed	of AC motor	rs using VFD				
Outcomes	Inter	face the sen	sors for flo	ow, pressure	and level	monitoring	and contro	ol in process
Outcomes	indu	stries.						
		gn the of close						
	5. Expl	ore the conce	ot of real-tim	ne monitoring	and control	using HMI.		
Programming t	the PLC u	sing ladder log	ic for:					

Programming the PLC using ladder logic for:

- 1 Basic operations (Mathematical and Boolean).
- Gray painting system.
- Control the lamp by timer.
- 4 Material handling system.
- 5 Lift elevator control.
- Traffic light control

Program and Interface the PLC using ladder logic for:

- Bottle filling and stamping system
- Water level control.
- Speed control of AC motor.
- 10 Flow measurement
- 11 Pressure measurement.
- 12 Temperature control.
- 13 Human machine interface

	Total Hours: 60
Tex	tt book(s):
1.	M. P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Fourth Edition,
1.	Pearson Education, UK, 2016.
2.	Stuart A.Boyer, "SCADA: 'Supervisory Control and Data Acquisition', 4th Edition, ISA, 2010.
Ref	erence(s):
1	Natalia Olifer, Victor Olifer, "Computer networks: Principles, Technologies and protocols for Network
1.	design", John Wiley & Sons, 2010.
2.	Robert Radvanovsky, Jacob Brodsky, "Handbook of SCADA/Control Systems Security", 2 nd edition,
۷.	CRC press, 2016.
3.	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress 1st Edition, 2017.
4.	Lucas M.P, Distributed Control Systems, Van Nostrand Reinhold Company, Newyork, 1986.
	D 19 APP

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО						P	O						PS	so
COURSE NAME	•	1	2	3	4	5	6	7	8	9	10	11	12	1	2

	CO1	3	3			3	3	3	3	3	3	3	3
50 MC 7P1 & Industrial	CO2	3	3			3	3	3	3	3	3	3	2
Automation and Control	CO3		3			3	3	3	3	3	3	3	2
Laboratory	CO4		3			3	3	3	3	3	3	3	3
	CO5		3			3	3	3	3	3	3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018										
		50 MC	7P2 – Emb	edded Syst	tem Laborat	ory					
		I	B.E. Mecha	tronics Eng	jineering						
Semester	H	ours / Week		Total	Credit	N	laximum Ma	ırks			
Semester	L	T	Р	Hrs	С	CA	ES	Total			
VII	0	0	4	60	2	60	40	100			
				ncepts of Er							
		Using Embedded C / Assembly Language using Keil IDE or Equivalent. Learn the working of									
Objectives(s)		nitecture in A									
0.000.0000		To explore a basic knowledge of AT89X51ED2 Development board.									
		To train the students for creating embedded control process for variety of applications.									
		To conduct advanced fundamental and applied research in embedded systems.									
	At the end of		•								
				of embedde				perations in			
		-		nbination of		_	-				
Course	2. Test the					•					
Outcomes	3. Demons										
	4. Demons	. Demonstrate the concept of 7 segment display and real time clock.									
	Interface	5. Interface the traffic light signal, stepper motor and position control of DC motor using ARM									
	processo	processor.									

- 1. Real time operating system solutions with KEIL tools Introduction
- 2. Program to perform 8bit and 16bit Arithmetic operation using KEIL IDE.
- 3. Program to perform search and replacement a number using KEIL IDE.
- 4. Program to transmit a message from Microcontroller to PC serially using UART communication
- 5. Program to check the status of PORT1 (8051) signal using LEDs.
- 6. Interfacing and programming of 8 Channel 12 Bit ADC
- 7. Interfacing and programming of Dual Slope ADC
- 8. Interfacing and Programming of Seven Segment Display
- 9. Interfacing real time clock and serial port
- 10. Program to interface Traffic Light Controller
- 11. Program to interface Stepper Motor to rotate the motor in clockwise and anticlockwise directions
- 12. DC motor speed and position control using ARM Processor

	Total Hours: 60
Tex	t book:
1	P.Rajkamal, "Embedded System – Architecture, Programming and Design", 3 rd Edition, TataMcGraw Hill Publishing Co. Ltd, 2015.
2.	David E. Simon, "An Embedded Software Primer", 3rd Edition, Pearson Education, 2014.
Refe	erence(s):
1.	Steve Furber, "ARM System on chip Architecture", 2 nd Edition, Addision Wesley, 2013.
2.	Dr K.V.K.KPrasad, "Embedded /Real-Time systems: Concepts, Design & Programming", New Edition, Dream Tech Press, 2013.
3.	Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield, "ARM System Developer's Guide Designing and Optimizing System Software", Elsevier Publications, 2013.
4.	Dominic Symes, Chris Wright, Andrew N.sloss, "ARM Systems Developer's Guides- Designing & Optimizing System Software", 2008, Elsevier.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO		
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
50 MC 7P2 & Embedded	CO1	3	2	2	3	3		3						3	2	

System Laboratory	CO2	3	3	2	3	3			3				3	3
	CO3	3	3	2	2	3		3					2	2
	CO4	3	3	2	2	3	2	3			3	3	2	3
	CO5	3	3	2	2	3	2				2	2	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018												
		50	MC 7P3 - Pr	oject Work -	Phase I							
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks					
Semester	L	Т	Р	hrs	С	CA	ES	Total				
VII	0	0	4	60	2	100	50	100				
Objective(s)	 To apply the knowledge/concepts acquired in the Previous semesters to create / design / implement project relevant to the field of Electrical / Electronics / Robotics / Automation / Mechanical domains. To acquire collaborative skills through working in a team to achieve common goals. To search for related area in which the students are going to do their project. To identify suitable project work, acquiring knowledge on that area, making preliminary works towards project phase II. To acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific audience in both the written and oral forms. At the end of the course, the students will be able to Survey the literature and market for availability of resources 											
	At the end of the course, the students will be able to											
Course Outcomes	 Selection Collection Carry 	ey the literature t the title and ot the literature out partial de are and prese	collect relevance based on sign of the sy	ant information survey and donuter stem	on related wit	h selected tit						
Methodology	 Three reviews have to be conducted by the committee of minimum of three members one of which must be the guide. Problem should be selected. Students have to collect around 25 papers related to their work. Report has to be prepared by the students as per the format available in CTCMS. Preliminary implementation can be done if possible. Evaluation has to be done for 100 marks. 											

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

0010011120															
COURSE CODE &	СО	PO												PS	so
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC 7P3 & Project - Work - Phase I -	CO1	3	3	3	3	3	3	3	3	3	3	3	3	2	2
	CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	2
	CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	2
	CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology - Autonomous Regulation R 2018												
	Semester VII											
Course Code	Course Name	Но	urs/	Week	Credit		Maximum Marks					
Course Code	Course Name	L	Т	Р	С	CA						
50 TP 0P5	Career Competency Development V 0 0 2 0 100 00 100											
Course Objectives	 To help the learners to practice the writand professional contexts To help the learners to practice the verequirements of both competitive exams To help the learners to practice efferecruitments and competitive exams To help the learners to practice effective company based recruitments and competitive exams 	erbal and ctive	and com ly the	logica panies e aptit ta inte	il reason s tude mo	ing ab	ility to	meet out the				

	To help the learners to hone the technical and programming skills for better employability									
Course Outcomes	contexts 2. Discriminate and assess employability requirements 3. Relate the aptitude modu effectively 4. Compare and illustrate t company based recruitments	oral communication skills in the academic and pro- the verbal and logical reasoning ability to meet of the companies les for company based recruitments and competitive the data interpretation and analysis modules effect ts and competitive exams the technical and programming skills to be focused	out the re exams tively for							
Unit – 1	Written and Oral Communication		Hrs							
Based Question	on – GD – HR Interview Skills – ons and Competitive Exams structor Manual	Corporate Profile Review - Practices on Company	6							
Unit – 2	Verbal & Logical Reasoning		6							
Practices on Company Based Questions and Competitive Exams Materials: Instructor Manual										
Unit – 3 Quantitative Aptitude										
Practices on C Materials: Ins	Company Based Questions and Co structor Manual	mpetitive Exams	6							
Unit – 4	Data Interpretation and Analysi	s								
	Company Based Questions and Co structor Manual	mpetitive Exams	6							
Unit – 5	Programming & Technical Skill	s – Part 3								
Objective Typ		Queues – Tree – Graph. Practices on Algorithms and	6							
		Total	30							
Evaluation C		Total Booting								
S.No.	Particular	Test Portion	Marks							
1 Evalu	uation 1 - Written Test	15 Questions each from Unit 1, 2,3, 4 & 5 (External Evaluation)	50							
₂ Evalu	uation 2 - Oral Communication	GD and HR Interview (External Evaluation by English, MBA Dept.)	30							
3 Evalu	uation 3 – Technical Interview	Internal Evaluation by the Dept. – 3 Core Subjects	20							
		Total	100							

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL PUBlications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments(5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions for Unit 1,2,3,4 & 5 and Unit 5 and 5 questions from Unit 5(Algorithms) & Unit 1(Oral Communication)
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												SO
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
TD	CO1	3	3		3			1	2	3	3	3	3	3	3
50 TP 0P5 & Career Competency	CO2	3	2		2			1	2	3	3	3	3	3	2
Development V	CO3	3	2	2	2			1		3	3	3	3	3	3
	CO4			2		3	1	1			2	2	3	2	2

CO₅

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018													
	50 HS 003- Total Quality Management												
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	3					
Semesiei	L	Т	Р	hrs	С	CA	ES	Total					
VIII	3	0	0	45	3	50	50	100					
		ilitate the unde	_			•		•					
	To equivalent sector	uip the studen [:] s.	ts to apply the	TQM princip	les, tools and	techniques in	manufacturii	ng					
Objective(s)	To equ	To equip the students to apply the TQM principles, tools and techniques in service sectors.											
Objective(s)		To impart knowledge on quality management principles, tools, techniques and quality standards											
		Il life application		the important	oo of otondora	la in the qualit	., 00011ron00	nrocco					
		ke the student eir impact on t		•	ce oi standard	is in the qualit	y assurance	process					
	At the en	d of the cour	se, the stude	ents will be	able to								
	1. Recog	nize the need	for quality co	ncepts and its	application in	organization	S.						
Course	2. Apply	the TQM princ	iples for survi	val and growt	th in world cla	ss competitior	1						
Outcomes	3. Apply												
Catoonics		The second secon											
	improvement.												
I	5. Apply QMS and EMS in organizations.												

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction

Introduction, definitions of quality, need for quality, evolution of quality, dimensions of quality, product quality and service quality; Basic concepts of TQM, TQM framework, contributions of Deming, Juran and Crosby, Barriers to TQM; Quality statements, customer focus, customer satisfaction, customer complaints, customer retention; costs to quality.

TQM Principles

TQM principles; leadership, strategic quality planning; Quality councils- employee involvement, motivation; Empowerment; Team and Teamwork; Quality circles, recognition and reward, performance appraisal; ontinuous process improvement; PDSA cycle, Kaizen, 5S & 7S; Supplier partnership, Partnering, Supplier rating and selection.

TQM Tools and Techniques I

The seven traditional tools of quality; New management tools - applications to manufacturing, service sector, Statistical Fundamentals, Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, control charts, process capability, concepts of six sigmas, Bench marking - Reasons to benchmark, Benchmarking process. [09]

TQM Tools and Techniques II

Quality circles, Quality Function Development (QFD), Taguchi guality loss function; TPM- concepts, improvement needs, performance, measures. FMEA- stages, Types-Design FMEA and Process FMEA. [09]

Quality Management System

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000 - ISO 9001, ISO 9001:2008 Requirements-Implementation-Documentation-Internal Audits-Registration-Environmental Management System: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS.

Total Hours: 45

	Total House 40
Text	Book(s):
1.	Dale H. Besterfield ., et. al, "Total Quality Management", 3rd Edition., Pearson Education South Asia, 2013.
2.	Janakiraman, B and Gopal, R.K, "Total Quality Management – Text and Cases", Prentice Hall (India) Pvt. Ltd. 2006.
Refe	rence(s)
1.	Joel.E. Ross, "Total Quality Management – Text and Cases", 3rd Edition, Routledge, 2017.
2.	James R. Evans, James Robert Evans, William M. Lindsay, "The Management and Control of Quality", 8th Edition, South-Western, 2010.
3.	Kiran.D.R, "Total Quality Management", Key concepts and case studies, Butterworth – Heinemann Ltd, 2016.
4.	Oakland, J.S. "TQM – Text with Cases", Butterworth – Heinemann Ltd., Oxford, Third Edition, 2003.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & CO		PO											PSO		
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 HS 003 & Total Qualiy Management	CO1	3	2			2	3	3	3	3	3		3	3	2
	CO2	3	2			2	3	3	3	3	3		3	3	3
	CO3		3				2	2			3			2	3
	CO4		3			3	2	2	3	2			3	3	3
	CO5	3				3	3		3	2	2			1	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018										
	50 AC 002 - Research Skill Development -II										
Semester	Hou	urs / Week		Total Hrs	Credit	Ма	ximum Mark	(S			
Semester	L	Т	Р	Total HIS	С	CA	ES	Total			
VIII	1	0	0	15	0	100		100			
Objective(s)	To organizTo attain kTo apply for	 To organize manuscript for submission To attain knowledge for filing Patent 									
Course Outcomes	At the end of the course, the students will be able to 1. Prepare a manuscript for journal publication. 2. Apply the manuscript for publication 3. Interpret the process of obtaining copyright and patent 4. Analyze the various provisions to share the application 5. Create and publish the mobile application in the digital store										

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Preparation of Manuscript

Data necessary before writing a paper: the context in which the scientist is publishing. Learning and identification of research community - advantages of scientific journal publication and manuscript preparation - ethical values in publishing. [03]

Writing the paper

Writing research paper - structure of the paper - usage of bibliographical tools - abstract preparation and to do a peer review for the abstract of the others, as in real academic life. Plagiarism of the prepared manuscript.

Copyright

Copyright law in India-Meaning of copyright-Classes of works for copyright protection -Ownership of Copyright-Assignment of copyright-Intellectual Property Rights (IPR) of Computer Software-Copyright Infringements-Procedure for registration.

Patents

Patent System In India -Types of Patent Applications-patentable invention - Not patentable-Appropriate office for filing -Documents required Publication and Examination of Patent Applications -Grant of Patent-Infringement of Patents -E-filing of Patent applications. [03]

Deploying Mobile App. in play store

Introduction to Application Stores – Play Store, App Store, Microsoft Store, Creating App – Android, iOS, UWP, Defining Manifest, Certifying App, Create Store Listing, Sharing Screenshots, Sharing App Credentials for Testing.

		Total Hour	s: 15							
Text	t Book(s):									
1	Mathis Plapp. How to Write and Publish a Scientific Paper (Project-Centered Course).									
'	https://www.coursera.org/learn/how-to-write-a-scientific-paper#instructors									
2	Rajkumar S. Adukia ,Handbook On Intellectual Property Rights In India,2007									
3	Dr. M. Kantha Babu ,"Text book on Intellectual Property Rights",2019.									
Refe	erence(s):									
1	Kothari C.R. andGauray Garg "Research Methodology Methods and Techni	aues" New	Age							

	International Publishers, 2013
2	Srivastava, T.N. and Rego, S., "Business Research Methodology", Tata McGrawHill Education Pvt. Ltd.,
	Delhi, 2019.
3	https://support.google.com/googleplay/android-developer/answer/9859152
4	https://developer.apple.com/ios/submit/
5	https://docs.microsoft.com/en-us/windows/uwp/publish/app-submissions

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES.

COURSE CODE &	PO												PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 AC 002 & Research Skill Development -II	CO1							3	3	3	3	3	3	3	1
	CO2							3	3	3	3	3	3	2	3
	CO3							3	3	3	3	3	3	2	3
	CO4							3	3	3	3	3	3	3	2
	CO5							3	3	3	3	3	3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.I	Rangasamy	College of T	echnology -	- Autonomo	us R 2018						
	50 MC 8P1- Project Work - Phase II											
Compotor		Hours / Wee	k	Total	Credit	Max	imum Marks	6				
Semester	L	Т	Р	hrs	С	CA	ES	Total				
VIII	0	0	16	240	8	50	50	100				
 To enable the students in convenient groups of not more than 4 members on a project involving theoretical and experimental studies related to the branch of study. To have guidance for an every project team, by the faculty member of the concerned department. To receive the directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide. To present in periodical seminars on the progress made in the project To produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusion. This final report shall be typewritten form as specified in the guidelines. 												
Course Outcomes	At the end of the course, the students will be able to 1. Make links across different areas of knowledge and to generate, develop and evaluate ideas and information 2. Apply these skills to the project 3. Design the project work. 4. Model and fabricate the project work											
Methodology	 5. Prepare and present the project work along with report. Three reviews have to be conducted by the committee of minimum of three members one of which should be their project guide. Progress of project has to be monitored by the project guide and committee regularly. Each review has to be evaluated for 100 marks. Attendance is compulsory for all reviews. If a student fails to attend review for some valid reasons, one more chance may be given. Final review will be carried out by the committee that consists of minimum of three members one of which should be their project guide (if possible include one external expert examiner within the college). The project report should be submitted by the students around at the first week of April. 											
L Pre-reguisi		roject report	SHOULD DO SUI	onnice by in	C Students at	ourid at tile i	HOL WOOK OF	<i>,</i> .p				

Pre-requisite: **Nil**

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	PO											PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	3	3	3	3	3	3	3	3	3	2	
	CO2	3	3	3	3	3	3	3	3	3	3	3	3	2	
50 MC 8P1 & Project Work - Phase II	CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	2
WOIK - Fliase II	CO4	3	3	3	3	3	3	3	3	3	3	3	3	1	2
	CO5	3	3	3	3	3	3	3	3	3	3	3	3		2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018										
	50 MC E11 – Wireless Sensor Networks										
	B.E. Mechatronics Engineering										
Semester	H	ours / Week		Total	Credit	M	laximum Ma	arks			
Semester	L	Т	Р	Hrs	С	CA	ES	Total			
V	3	0	0	45	3	50	50	100			
	To introc	To introduce the basic concepts in Wireless sensor networks.									
	To illustrate architecture and protocols in wireless sensor.										
Objectives	To provide	de an insigh	t into differe	nt layers and	d their desig	n considera	tions.				
Objectives	To identi	 To identify the trends and latest development of the technologies in the area. 									
	To provide	de a broad o	overage of	challenges a	and latest re	search resu	lts related to	the design			
	and man	nagement of	wireless se	nsor network	KS.			_			
	At the end of	of the cours	e, the stud	ents will be	able to						
	 Learn the 	e componen	ts of wireles	ss sensor ne	tworks.						
Course	2. Explore	the different	layers in wi	reless netwo	orks.						
Outcomes	Understa	Understand the different routing protocols in Wireless networks.									
	4. Have an	4. Have an in-depth knowledge on sensor timing synchronization and localization.									
	5. Produce										

Introduction

Introduction to wireless sensor networks, Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor Networks, Advantage of Sensor Networks, Applications of Sensor Networks, Mobile Adhoc NETworks (MANETs), Sensor Node Hardware and Network Architecture: Single-node architecture, Hardware components & design constraints, Operating systems and execution environments, Optimization goals and figures of merit, Design principles for WSNs, Service interfaces of WSNs, Gateway concepts. [09]

Networking Sensors

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing. [09]

Network Laver

Routing Metrics, Flooding and Gossiping, Data-Centric Routing, Proactive Routing, On-Demand Routing, Hierarchical Routing, Location-Based Routing, QoS-Based Routing Protocols Node and Network Management: Power Management, Local Power Management aspects, Dynamic Power Management, Conceptual Architecture.

Time Synchronization

Clocks and the Synchronization Problem, Time Synchronization in Wireless Sensor Networks, Basics of Time Synchronization, Time Synchronization Protocols Localization: Ranging Techniques, Range-Based Localization, Range-FreeLocalization, Event Driven Localization. [09]

Security

Fundamentals of Network Security, Challenges of Security in Wireless Sensor Networks, Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and Zig Bee Security. [09]

	Total Hours: 45
Text	book(s):
1	Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and
ı	Practice", Wiley 2010.
2.	Mohammad S. Obaidat, SudipMisra, "Principles of Wireless Sensor Networks", Cambridge, 2014.
Refe	erence(s):
1.	Fei Hu, Xiaojun Cao, "Wireless Sensor Networks", CRC Press,2013.
2.	Jun Zheng, Abbas Jamalipour, "Wireless Sensor Networks: A Networking Perspective", Wiley, 2009.
3.	C S Raghavendra, K M Sivalingam, TaiebZnati, "Wireless Sensor Networks", Springer, 2010.
4.	lan F. Akyildiz, Mehmet Can Vuran, "Wireless Sensor Networks", Wiley, 2010

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО									PSO				
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC E11 & Wireless Sensor Networks	CO1	3	3	1	1	2			3	2			1	1	1
	CO2	3	3	1	1	2			2	2			1	1	1
	CO3	3	3	2	1	2			2	2			1	1	1
	CO4	3	3	3	2	2	3	2	2	1			1	2	2
	CO5	3	3	3	2	2	3	2	3	2			1	2	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018										
	50 MC E12- Automobile Technology										
	B.E. Mechatronics Engineering										
Semester	H	ours / Week		Total	Credit	l. N	/laximum Ma	arks			
Semester	L	Т	Р	Hrs	С	CA	ES	Total			
V	3	0	0	45	3	50	50	100			
Objectives	 automote To proving automote To learn To study automote To acquing automote 	 automobile components. To provide knowledge on the working of fuel supply and electrical system in various automobiles. To learn the function of various components in transmission and drive lines of a vehicle. To study the concept and working of steering, brakes and suspension systems in automobiles. 									
Course Outcomes	 Demons Explain t Explain t Identify a 	 Explain the function of fuel supply and electrical systems. Explain the function of various components in transmission and drive lines of a vehicle. Identify and explain the types of steering system, suspension system and braking system. 									

Vehicle Structure and Engines

Types of Automobiles - vehicle construction, chassis, frame and body. Vehicle aerodynamics (various resistances and moments involved). Engine -Types and Construction. Lubrication system - Types and construction. Cooling system -Types and construction. Engine emission control by 3 Way Catalytic Controller.

Fuel Supply and Electrical Systems

Spark ignition engine- Electronic fuel injection system, mono-point and multi Point injection systems. Compression ignition engine-Inline fuel injection system, Common rail direct fuel injection system. Supercharger and turbo charger. General layout of electrical system. Construction and operation of Lead Acid battery -Lighting system –Starting motor and drives. [09]

Power Transmission Systems

Clutch- Types- single plate clutch, multi plate clutch. Gearbox - Types- synchromesh gearbox, sliding mesh gear box, constant mesh gearbox. Automatic transmission system. Fluid flywheel, torque convertors, propeller shaft,slip joint, universal joints. Differential and rear axle drives - hotchkiss drive and torque tube drive.

[09]

Wheel, Steering, Brakes and Suspension

Wheels and Tyre Construction. Steering geometry and types of steering - rack and pinion steering gear, recirculating ball type steering gear and Power steering - construction and working principle. Suspension systems - Types - rear suspension and front suspension. Braking systems-types- disc brake, drum brake, hydraulic brake and air brake.

Alternate Energy Sources

Use of Natural Gas, LPG, Bio diesel, Gasohol and Hydrogen in Automobiles. Electric and Hybrid Vehicles - layout of electric and hybrid vehicles, components, transmission requirements, advantages and limitations. Fuel Cells – classification, working principle, components and applications. [09]

Total Hours: 45

Text book(s):

1	Kirpal Singh, "Automobile Engineering, Volume I & II", 13th Edition, Standard Publishers, New Delhi, 2013.
2.	Rajput R.K., "Automobile Engineering", 2nd Edition, Laxmi Publication, New Delhi, 2014.
Ref	erence(s):
1.	Gupta S. K. "Automobile Engineering", S Chand Publishing Company, New Delhi, 2020.
2.	Sethi H. M. "Automobile Technology", Tata McGraw Hill Publishing Company Private Limited, New Delhi,
۷.	2007.
3.	Jain K.K. and Asthana R.B., "Automobile Engineering", 1st Edition, Tata McGraw Hill Publishers, New
5.	Delhi, 2002.
4.	I. Hussain, "Electric & Hybrid Vehicles - Design Fundamentals", Boca Raton: CRC Press, 2011.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	1			1		3	2	1		2		1	2	1
50 MO 540 0 A (1 m) 11	CO2	2	2		1	3	2	1	1		2		1	2	3
50 MC E12 & Automobile Technology	CO3	2			1		3	2	1		2		3	2	1
recritiology	CO4	1			1		3	2	1		2		1	2	1
	CO5	1	2		1	3	2	1	1		2		1	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC E13 – Virtual Instrumentation and Applications												
	;	50 MC E13 -	- Virtual Ins	strumentation	on and App	lications							
		E	B.E. Mecha	tronics Eng	jineering								
Semester	Н	ours / Week		Total	Credit	N	laximum Ma	arks					
Semester	L	T	Р	Hrs	С	CA	ES	Total					
V	3	0	0	45	3	50	50	100					
Objectives	programTo impaTo devel	programming with their functions in LabVIEW. To impart the fundamental knowledge on the software tools in virtual instrumentation. To develop programming through LabVIEW graphical programming environment.											
	 To famil 	iarize studen	ts with vario	ous applicati	ons of VI.								
	At the end of		•										
		and the basic				tion.							
Course		·											
Outcomes	3. Develop programming through LabVIEW graphical programming environment.												
	4. Describe the functions and the interface requirements in Data acquisition system.												
	Underst	· · · · · · · · · · · · · · · · · · ·											

Introduction to VI

Historical perspective and Traditional bench-top instruments – General functional description of a digital instrument – Block diagram of a Virtual Instrument – Physical quantities and analog interfaces – Hardware and Software – Advantages of Virtual Instruments over conventional instruments – Architecture of a Virtual Instrument and its relation to the operating system.

VI Software Tools

Graphical user interfaces – Controls and Indicators – Modular programming – Data types – Data flow programming – Editing, Debugging and Running a Virtual Instrument – Graphical programming palettes and tools – Function and Libraries – VI and sub-VI, Structures: FOR Loops, WHILE loops, Shift Registers, CASE structure, Formula nodes, Sequence structures, Timed looped structures.

VI Programming Techniques

Arrays and Clusters: Array operation – Bundle/Unbundle and Bundle/Unbundle by name – Plotting data: graphs and charts – String and File I/O: High level and Low level file I/O's – Attribute nodes – Local and global variables.

[09]

Data Acquisition and Interface System

Introduction to data acquisition on PC, Sampling fundamentals. Concepts of Data Acquisition and terminology – Installing Hardware and drivers – Configuring and addressing the hardware – Digital and Analog I/O function – Real time Data Acquisition – USB based DAQ. Common Instrument Interfaces: Current loop – RS 232C – RS485 and Bus Interfaces.

VI Applications

Advantages and Applications – Advanced concepts – TCP/IP VI's – PXI – Instrument Control – Image acquisition – Motion Control – Signal processing – Signal analysis: Power spectral analysis – Control design and simulation.

	Total hours 45
Tex	t book:
1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2012.
2.	Sanjeev Gupta, "Virtual Instrumentation using LabVIEW", TMH, 2013.
Refe	erence(s):
1.	Jovitha Jerome, "Virtual Instrumentation using LabView", PHI Learning Pvt. Ltd, New Delhi, 2010.
2.	Gary W. Johnson, Richard Jennings, "Lab-view Graphical Programming", McGraw Hill Professional
۷.	Publishing, 2011.
3.	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
1	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
4.	Control", Newness, 2010.

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO.						Р	O						PS	SO
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3		3		3	3					2	2
50 MC E13 & Virtual	CO2	3	3	3		3								1	1
Instrumentation and	CO3	3	3	3		3	3				2			2	2
Applications	CO4	3	3	2	2	3				3	3	3	3	1	1
	CO5	3	3	2	2	3				3		2	3	1	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC E14 – Composite Materials												
		I	B.E. Mecha	tronics Eng	jineering								
Semester	H	ours / Week		Total	Credit	N	laximum Ma	arks					
Semester	L	T	Р	Hrs	С	CA	ES	Total					
V	3	0	0	45	3	50	50	100					
Objectives	To identiProvides	To identify the properties of fiber and matrix materials used in composite materials.											
		rse commun				focusing on	nanocompo	osites.					
Course Outcomes	 Recogni: Describe materials Portray t materials Gain known 	materials. 3. Portray the various manufacturing processes involved in the fabrication of composite materials. 4. Gain knowledge on the mechanics and performance of composite materials.											

Introduction to Composites


Definition of composite material – need for composites – general characteristics of composites – classification of composites. Fibers – Types of fibers, Glass, Carbon, Aramid, Kevlar and natural fibers – Matrices: polymer, metal ceramic matrices – polymer matrix composites – thermoset polymers – coupling agents, fillers and additives.

Types of Composite Materials

Properties of metal matrix composites (MMC)- inter metallic and alloys used for MMC and their properties – characteristics and applications of MMC – Classification of ceramics and their potential role as matrices – properties and application ceramic matrix composites (CMC) using fine ceramics, carbon, glass, cement and gypsum as matrices, polymer matrix composites (PMC)- characteristics and applications of PMC. [09]

Manufacturing Methods

Fundamentals – hand layup & spray layup – bag moulding – compression moulding – injection moulding – resin injection – pultrusion – filament winding – other manufacturing processes for CMC & MMC – quality inspection and non-destructive testing. [09]

Mechanics and Performance

Introduction to micro-mechanics – unidirectional lamina – bi directional lamina – laminates – types of laminates, symmetric laminate, anti-symmetric laminate, balanced laminate, quasi-isotropic laminates, cross ply laminates, angle ply laminate – inter-laminar stresses – static mechanical properties – fatigue properties – impact properties – environmental effects – fracture mechanics and toughening mechanisms, damage prediction, failure modes.

Advanced Composites

Carbon-Carbon composites-processing, properties and applications-sandwich-structured composites – hybrid composites – Biodegradable green composites – Polymer nano composites – nano clay – carbon nanofibers – carbon nanotubes (CNTs) – production and properties of CNTs – applications of nano composites. [09]

Total Hours: 45

Text book(s):

- Mallick, P. K, "Fiber-reinforced composite: Materials, Manufacturing and Design", 3rd Edition, CRC press, 2010.
- 2. Krishan K. Chawla, "Composite Materials- Science and Engineering", Third Edition, Springer Science & Business Media, 2014.

Reference(s):

- 1. Michael W Hyer, "Stress Analysis of Fiber Reinforced Composite Materials", DEStech Publications, Inc. 2008, ISBN: 193207886X
- 2. Bhagwan.D. Agarwal, Lawrence.J.Broutman and K.Chandrasekara , "Analysis and Performance of Fiber Composites", John Wiley and Sons,3rd Edition, 2006, ISBN: 0471268917
- 3. F.Matthews & R.Rawlings, "Composite Materials, Engineering and Science", Woodhead Publishing, New edition, 1999, ISBN:1855734737
- 4. Ronald F Gibson, "Principles of Composite Material Mechanics", second edition, CRC press, Taylor & Francis group, 2015.

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PS	so
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	3	3		2	2					3	3	3
50 MC 544 9 Composite	CO2	2	2		2		2	2					2	3	2
50 MC E14 & Composite Materials	CO3	3	2	2	2		2	2					3	3	3
Materiale	CO4	2	2	2	2		2	2					2	3	2
	CO5	2	2	2	2		2	2					2	3	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasam	y College o	f Technolog	gy – Autono	omous		R2018	8				
		50 H	IS 004 - Prir	nciples of M	anagemen	t							
Semester	H	ours / Week		Total	Credit	N	/laximum Ma	arks					
Semester	L	Т	Р	Hrs	С	CA	ES	Total					
V	3	0	0	45	3	50	50	100					
	The obj	ective of	this course	is to mak	e the stud	dents to u	nderstand	Evolution o	of				
	Manage	ment.											
Objectives	To provide	de them kno	owledge on p	olanning pro	cess								
Objectives	To make	To make them differentiate between formal and informal organization											
	To provide	de them kno	owledge on le	eadership, n	notivation ar	nd communi	cation						
	 To enab 	le them to le	earn different	t controlling	techniques								
	At the end of	f the cours	e, the stude	ent will be a	ble to								
		the role of											
Course			g, forecastin										
Outcomes			on decentrali										
	4. Know the types of leadership, motivation techniques and process of communication												
	5. Apply su	itable contro	olling technic	ques									

Historical Development

Definition of Management - Role of managers - Evolution of Management thought -Contribution of Taylor and Fayal- Functions of Management -Types of Business Organization [09]

Planning

Nature and Purpose- Types of plans-Steps involved in planning- Objectives – Setting Objectives –process of Management by Objectives (MBO)-Strategies, Policies, Planning Premises- Forecasting – Decision Making

Total Hours: 45

Organizing

Nature and Purpose- Formal and Informal-Organization Chart- Structure and Process-Departmentation –Line and Staff authority- benefits and limitations-Decentralization and Delegation of Authority-Staffing –Selection Process - Techniques-Human Resource Development-Managerial Effectiveness [09]

Directing

Scope-Human Factors-Leadership-Types of Leadership- Motivation-Hierarchy of Needs-Motivation Theories-Motivation Techniques-Job enrichment-Communication-Process of Communication-Barriers and Breakdown-Effective Communication-Electronic Media in Communication [09]

Controlling

System and Process of Controlling- Requirements for effective control-the Budget as control technique-Information Technology in Controlling- Use of Computers in handling the information-Productivity- Problems and Management-Control of overall performance — Direct and preventive control-Reporting- the Global environment-Globalization and Liberalization- International Management and global theory of Management [09]

Text book(s):

- 1 Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 6th Edition, 2004.

Reference(s):

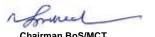
- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill,1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.
- 5. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008
- 6. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill,1998.
- 7. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						P	0						P:	so
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1			2		1	3	3	2	3	2	3	2	3	1
50.110.004.0.00	CO2			1		2	2	2	1	3	2	3	2	1	3
50 HS 004 & Principles of Management	CO3			2		1	3	3	2	3	3	3	3	1	2
or management	CO4			1		1	2	2	1	3	1	3	2	2	1
	CO5			1		1	3	3	1	3	3	3	3	1	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution


	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC E21 - Supply Chain Management												
			50	MC E21 - St	upply Chair	Manageme	nt						
				B.E. Mech	atronics En	gineering							
Semester		H	ours / Week	(Total	Credit	N	laximum Ma	ırks				
Semester		L	Т	Р	hrs	С	CA	ES	Total				
VI		3	0	0	45	3	50	50	100				
	•	To understand the components of supply chain management.											
	•	To understand the concept of supply chain network design.											
Objectives	•	To understand the role of forecasting for both an enterprise and a supply chain.											
	•	To under	stand the ro	le of transpo	rtation in a s	supply chain.							
	•	To under	stand the ro	le of Informa	ition Techno	logy in a sup	ply chain ma	anagement.					
	At	the end o	f the course	e, the stude	nt will be al	ole to							
	1.	Demonst	trate knowle	dge on logist	ics and supp	oly chain mar	nagement to	ols and tech	niques				
Course	2.	 Demonstrate knowledge on logistics and supply chain management tools and techniques Plan and demonstrate the facility networks and design options. 											
Outcomes	3.	3. Carry out order management and supply.											
	4. Organize the functions of Transportation in Supply Chain.												
	5.												

Introduction

Role of Logistics and Supply chain Management: Scope and Importance - Evolution of supply chain - Elements of Supply Chain - Structure of supply chain, Examples - Decision Phases in Supply Chain - Process views of supply chain - Competitive and Supply chain Strategies - Drivers of Supply Chain performance and obstacles. [09]

Supply Chain Network Design

Role of Distribution in Supply Chain - Factors influencing distribution network design - Design options for

Distribution Network - Distribution Network in Practice - Role of network Design in Supply Chain - Framework for network decisions.

Planning Demand, Inventory and Supply

Overview of Demand forecasting in the supply chain - collaborative forecasting models - bullwhip effect - information sharing - aggregate planning in supply chain - strategies-multi echelon inventory planning - models - discounting - risk pooling - centralized versus decentralized systems. [09]

Transportation in Supply Chain

Role of transportation in supply chain - factors affecting transportations decision - Design option for transportation network - Tailored transportation - Routing and scheduling in transportation. [09]

Information Technology in Supply Chain

Role of IT in supply chain - Supply chain IT framework - Customer Relationship management - Supplier relationship management - Transaction management foundation - Future of IT in supply chain - supply chain IT in practice.

Text book(s):

1 Sunil Chopra, Peter Meindl and Dharam Vir Kalra, "Supply Chain Management: Strategy, Planning, and Operation", 6th Edition, Pearson Education India Ltd., New Delhi, 2016.

2. Janat Shah, "Supply Chain Management: Text and Cases", Pearson Education, 2013

Reference(s):

1 Jeremy F Shapiro, "Modeling the Supply Chain", 2nd Edition, Cengage Higher Education, New Delhi, 2007.

2 Srinivasan G.S, "Quantitative Models in Operations and Supply Chain Management", PHI Learning, 2013.

3 James B.Ayers, "Handbook of Supply chain management", 2nd Edition, CRC Press, 2006.

4 David Simchi Levi, Philip Kaminsky And Edith Simchi-Levi, "Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies", Tata McGraw Hill, 3rd Edition, 2015.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

00100mE0															
COURSE CODE &	60						Р	O						PS	SO
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3											1	
50 MO 504 0 0	CO2	3	3												1
50 MC E21 & Supply Chain Management	CO3	3	3		2						3				
Onain Management	CO4	3	3	3	2	3	3	3	2		3	3	3	1	
	CO5	3	2	3	1	3	2		2	3		2	2	1	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC E22 – Additive Manufacturing												
		50	MC E22 - A	dditive Ma	nufacturing								
		I	3.E. Mecha	tronics Eng	jineering								
Semester	H	ours / Week		Total	Credit	N	laximum Ma	ırks					
Semester	L	Т	Р	Hrs	С	CA	ES	Total					
V	3	0	0	45	3	50	50	100					
	 To under 	To understand the various rapid prototyping, process and its applications.											
	To know the principle methods, areas of usage, possibilities and limitations as well as												
	environmental effects of the Additive Manufacturing technologies.												
Objectives	 To under 	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1											
	 To be far 	miliar with th	e characteri	stics of the	different mat	terials those	are used in	Bio-Additive					
	Manufac	turing.											
	To know	the different	application	s additive m	anufacturing	role in the	medical field	d.					
	At the end o	of the cours	e, the stude	ents will be	able to								
	1. Understa	ind the need	, history, gro	owth and cla	ssification o	f RP system	٦.						
Course	2. Understa	ind the Princ	iple, proces	s parameter	s, applicatio	ns of SLA, I	FDM and LC	M.					
Outcomes	s 3. Learn the Principle, process parameters, applications of SLS, 3DP and LENS.												
	4. Initiate a continuous improvement in medical and bio additive manufacturing.												
	Understand the different types of rapid tooling and applications.												

Introduction to Additive Manufacturing

Overview – History - Need for the time compression in product development- Classification -Additive Manufacturing Technology in product Development-Materials for Additive Manufacturing Technology – Applications. [09]

Liquid Based and Solid Based Additive Manufacturing Systems

Classification – Liquid based system – Stereo Lithography Apparatus (SLA) - Principle, process, advantages and applications - Solid based system –Fused Deposition Modeling(FDM) - Principle, process, advantages and applications, Laminated Object Manufacturing (LOM)- Principle, process, advantages and applications. [09]

Powder Based Additive Manufacturing Systems

Classification – Powder based system, Selective Laser Sintering(SLS) – Principles of SLS process - Process, advantages and applications, Three Dimensional Printing - Principle, process, advantages and applications-Laser Engineered Net Shaping (LENS)- Principle, process, advantages and applications. [09]

Medical and Bio-Additive Manufacturing

Customized implants and prosthesis: Design and production, Bio-Additive Manufacturing- Computer Aided Tissue Engineering (CATE)-Applications. [09]

Software& Tools

DesigningforAdditiveManufacturing(DAM)-SoftwareToolsvs.Requirements-Pre-&Post-processing-3DScanning &theScanningProcess –Modifying &Repairing Data-AMFile Formats-STEPFile Format-MoreDetailon NURBS - Model Validation-Working with DICOM Files for 3DPrinting Medical Imagery. [09]

	Total Hours: 45
Text	book(s):
1	Hari Prasad I and A.V. Suresh, "Additive Manufacturing Technology", 1st Edition, Cengage Publishers, 2019.
2.	Subramanian Senthilkannan Muthu and Monica Mahesh Savalani, "Handbook of Sustainability in Additive Manufacturing", 1st Edition, Springer, 2016.
Refe	erence(s):
1.	Jing Zhang and Yeon-Gil Jung, "Additive Manufacturing: Materials, Processes, Quantifications and Applications", 1st Edition, Butterworth-Heinemann, 2018.
2.	David lan Wimpenny, Pulak M.Pandey and L.Jyothish Kumar, "Advances in 3D Printing & Additive Manufacturing Technologies", 1st Edition, Springer, 2017.
3.	Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press, 2015.
4.	Ian Gibson, David Rosen and Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer Nature, 2 nd Edition, 2015.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

00.00															
COURSE CODE &	0	PO									PSO				
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC E22 & Additive Manufacturing	CO1	3	2											2	
	CO2	3	2			3	2	2						2	1
	CO3	3	2		3	3			3	3				2	
	CO4	3	2	3	3		3	3		2		3	2	3	
	CO5	3	2	3						2			1	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
		50 MC E	23 - Desig	n of Transn	nission Sys	tems							
	B.E. Mechatronics Engineering												
Semester	Н	ours / Week		Total	Credit	I.	ırks						
Semester	L	L T P			С	CA	ES	Total					
VI	3	3 0 0 45 3 50 50 100											
	To gain	To gain knowledge on the types of power Transmission systems.											
	To gain knowledge about the working principles of power transmission systems.												
Objectives	To unde	rstand the p	rocedure us	ed to design	the power t	transmission	elements.						
	 To learn 	to use stand	dard practice	es and stand	dard data.								
	 To learn 	n to use cata	logues and	standard ma	achine trans	mission eler	nents						
	At the end of	of the cours	e, the stud	ents will be	able to								
		e concepts o											
Course		2. Design of spur and helical gears with different applications.											
Outcomes													
		Design and analyze the various types of gear box.											
	5. Apply the	. Apply the concepts of design for clutches and brakes.											

Design of Flexible Elements

Design of Flat belts and pulleys – Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprocket- recirculating ball design. [09]

Spur Gears and Helical Gears

Speed ratios and number of teeth-Force analysis -Tooth stresses – Dynamic effects – Fatigue strength – Factor of safety – Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears- helix angles - Cross helical: Terminology- - Estimating the size of the pair of cross helical gears. herringbone gears.

Bevel, Worm Gears

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits- terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. [09]

Design of Gear Boxes

Geometric progression – Standard step ratio – Ray diagram, kinematics layout -Design of sliding mesh gear box – Design of multi speed gear box for machine tool applications – Constant mesh gear box – Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications [09]

Design of Clutches and Brakes

Role of clutches - positive and gradually engaged clutches, toothed claw clutches, design of clutches- single plate and multiple plate, variable speed drives, types and selection. Design of Brakes, Role of brakes-types of brakes-self energizing and de-energizing brakes. [09]

Total Hours: 45

Text book(s):

1 Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.

2 Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design",8th Edition, Tata McGraw-Hill, 2008.

Reference(s):

1. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003

2. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.

3. C.S.Sharma, Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003

4. Gitin Maitra, L. Prasad "Hand book of Mechanical Design", 2nd Edition, Tata McGraw-Hill, 2001

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & CO		PO											PSO		
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC E23 & Design of Transmission Systems	CO1	3	2	3		2			3	2		3		2	3
	CO2		2				2	1				3		2	3
	CO3	2	2	1		1		2	2		1			2	3
	CO4		3	1		3				2		3		2	3
	CO5	3	2		2	3		2						2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018													
	50 MC E24 – Industrial Design and Applied Ergonomics													
	B.E. Mechatronics Engineering													
Semester		H	ours / Week		Total	Credit	M	aximum Ma	rks					
Semester		L	Т	Р	hrs	С	CA	ES	Total					
VI		3												
Objectives	•	 Course imparts students to possess essential knowledge on ergonomics. Insights on psychological and anthropometrical development leads student into a good designer. Emphasis given on industrial worker's health and safety pertaining to industrial design. Course deals with Viable Ergonomic principles and their application. 												
	At the end of the course, the students will be able to													
Course	1.	 Apply ergonomic principles and tools for a safer and effective work atmosphere. 												
Outcomes	2.	· · · · · · · · · · · · · · · · · ·												
	3. Formulate control measures for ergo risk areas.													

- 4. Explain work related causes of musculoskeletal disorders.
- 5. Design a workplace complying with suitable ergonomic principles.

Introduction to Ergonomics and Industrial Design

Ergonomics – The focus of ergonomics and its area of application in the work system- anatomy: human body-structure and function – posture and health.

Industrial Design: An approach to industrial design- workplace design and assessment -elements of design structure for industrial design in engineering application in modern manufacturing system – Industrial design and human factors- human machine interface- health and safety legislation and ergonomics. [09]

Human Behaviour and Perception

Human characteristics and limitations-human error-team work and ageing- fitting the job to the person and the person to the job-psychology – communication and cognitive issues -perception of risk-motivation and behavior-memory-signal detection theory and vigilance- stress – cause, preventive and protective measures- organisation – shift working and overtime. [09]

Human Physical Dimension on Design Concern

Anthropometrics- body growth and somato types- static and dynamic anthropometry performance support – ergonomics approach and design intervention to work station - standing – anthropometry landmarks- sitting postures- anthropometry - squatting and cross-legged postures- measuring techniques- data and percentile calculation – work station design- vertical and horizontal work surface-movement – work counter-risk factors for musculoskeletal disorder in the workplace - environmental factors influencing worker comfort ability-Posture Evaluation Tools- Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA) – NIOSH Lifting Equation-Hand Activity Level.

Application of Ergonomics

Principles- human skill & performance and display, control and virtual environments-cognitive ergonomics, human information processing-memory;reading-perception-navigation-problem solving- decision making,human – computer interaction, input/output technology, usability- evaluation- health problems, research techniques in ergonomic data generation, interpretation and application of stastiscal methods, ergonomic design process-ergonomic design methodology- ergonomics criteria/check- design process involving-checklist for task easiness.

Macroergonomics and Case Studies

Macroergonomic methods- participatory ergonomics-parallel suggestion involvement, job involvement, implementing issues- design for physically challenged -design ergonomics in India- scope for exploration -case studies.

Studi	[00]
	Total Hours: 45
Text	book(s):
4	Mark S Sanders, Ernest J Mccormick, "Human Factors in Engineering & Design", McGraw-Hill Education
ļ '	Private Limited,7 th Edition,2016.
2	Knoz, Stephan A, Johnson, Steven, Holcomb Hathaway, Scottsdale, "Work Design: Industrial Ergonomics",
~	7 th Edition, 2007.
Refe	rence(s):
1	Bridger R.S., "Introduction to Ergonomics", CRC Press, 3rd Edition, 2008.
2	Khan M I, "Industrial Ergonomics", PHI Learning Private Limited, New Delhi,2013.
3	Mayall W H, "Industrial Design for Engineers", London Hiffee Books Limited,1988.
4	"Introduction to Work Study" II O Oxford and IRH Publishing Company Rombay 3rd Edition 2008

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & CO			PO											PSO	
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	3		2			3	2		3		2	3
50 MC E24 & Industrial	CO2		2				2	1				3		2	3
Design and Applied	CO3	2	2	1		1		2	2		1			2	3
Ergonomics	CO4		3	1		3				2		3		2	3
	CO5	3	2		2	3		2						2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R20								
50 MC E25 – Virtual Reality and Haptics								
	B.E. Mechatronics Engineering							
Semester	Hours / Week	Total	Credit	Maximum Marks				

	L	T	Р	hrs	C	CA	ES	Total			
VI	3	0	0 0 45 3 50 50 1								
Objectives	 Explore the potential of a virtual world for delivering application. Determine possible instructional designs. Understand the limitations. Understand the barriers, solutions, and costs associated, including required training. Understand the various applications of virtual reality technique. 										
Course Outcomes	1.2 Function as a member of an engineering design feam										

Introduction to Virtual Reality

The historical development of VR: Scientific landmarks Computer Graphics, Real-time computer graphics, Flight simulation, Virtual environments, Requirements for VR, benefits of Virtual reality. [09]

Hardware Technologies for 3D user Interfaces

Visual Displays Auditory Displays, Haptic Displays, Choosing Output Devices for 3D User Interfaces. [09]

Human Factors

Methodology and terminology-user performance studies-VR health and safety issues-Usability of virtual reality system- cyber sickness -side effects of exposures to virtual reality environment. [09]

VR Programming

Introducing Java 3D-loading and manipulating external models using a lathe to make shapes. 3D Sprites-animated 3D sprites-particle systems. [09]

Applications

Medical applications-military applications-robotics applications- Advanced Real time Tracking-other applications-games, movies, simulations, therapy. [09]

Total Hours: 45

Text book(s):

- C. Burdea & Philippe Coiffet, "Virtual Reality Technology", Second Edition, Gregory, John Wiley & Sons, Inc.,2014.
- 2 Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2015.

Reference(s):

- Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations of Effective Design", Morgan Kaufmann, 2016.
- 2 Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2014.
- 3. Alan B. Craig, "Understanding Augmented Reality, Concepts and Applications", Morgan Kaufmann, 2013.
- 4 Matjaz Mihelj and Janez Podobnik, "Haptics for Virtual Reality and Teleoperation", Springer Publishing Company, 2012.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO										PSO		
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC E25 & Virtual Reality and Haptics	CO1	2	2	3	3	3	2	2	3	3	3	3	1	2	3
	CO2	3	2	3	2	2	3	2	3	2		1		3	3
	CO3	2	2	2	2	2	3	2	2	2	1		1	2	2
	CO4	2	2	3	2	2	2	3	3	2	1		3	2	3
	CO5	3	3	2	3	3	3	2	2	3	2	3	1	2	2

Note: 3 - Strong Contribution: 2 - Average Contribution: 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2									
	50 ME E31 – Operations Research								
Compotor	H	ours / Week		Total	Credit	M	ırks		
Semester	L	Т	Р	Hrs	С	CA	ES	Total	
VI	3	0	0	45	3	50	50	100	

	To impart knowledge about Operations Research techniques and enable students to take
	effective engineering and managerial decisions.
	To train students to apply Operations Research techniques for the effective utilization of
	available resources in engineering and business.
Objectives	To equip students to find the optimum solution for transportation problems and assignment
	problems.
	To impart knowledge a-bout network models and train students to apply these concepts to
	solve the real world problems.
	To train students to apply simulation techniques to solve Inventory and queuing problems.
	At the end of the course the students will be able to
	Form Linear Programming models and solve them.
Course	2. Apply transportation models and Assignment models to solve real world problems.
Outcomes	3. Construct Networks and find optimum solution.
	4. Apply Inventory models to solve inventory problems.
	5. Apply Queuing models to solve problems and analyze them using simulation techniques.

Linear Programming Problems

OR-definition – Phases of OR - Models, Concept of linear programming model-Development of LP models – Graphical solution - Simplex method - Big M method - Two phase method, Introduction to duality theory. [09]

Transportation Problems

Transportation problems- Balanced and Unbalanced TP- Basic feasible solution, Optimal solution by MODI method - Degeneracy, Production problems. Assignment problems - Hungarian method - Balanced and Unbalanced assignment problems - Problem with assignment restrictions-, Travelling salesman problem. [09]

Network Models and Project Management

Shortest route model- Minimal spanning tree model - Maximum flow model - Project network construction - Network logic - Fulkerson's rule - Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT) - Probability of completing a project in a scheduled date - Crashing of project networks. [09]

Inventory Models

Types of inventory models - Inventory cost - Deterministic Inventory models - Economic Order Quantity (EOQ) - Purchase and Production models with and without shortages - Determination of buffer stock and re-order levels - EOQ with price breaks - Multi product EOQ models - ABC, VED & SDE analysis in inventory - Introduction to Stochastic inventory problems - discrete case and continuous case. [09]

Queuing Theory and Simulation

Queuing system - terminologies of queuing problem - applications of queuing model - Poisson distribution and exponential distribution -Single server queuing models - Simulation - Need for simulation - Advantages , disadvantages and applications of simulation - Random number generation - Monte Carlo technique- Inventory and Queuing problems in simulation. [09]

	Total Hours: 45
Text	book(s):
1	Hamdy A. Taha, "Operation Research - An Introduction", 9th Edition, Pearson India Education Services
	Pvt.Ltd., New Delhi, 2014.
2.	Panneerselvam, R., "Operations Research" 2 nd Edition, Prentice Hall of India Private Ltd, New Delhi, 2006.
Refe	erence(s):
1.	Wayne L. Winston, "Operations Research – Applications and Algorithms", 4th Edition, Cengage Learning
1.	India Private Limited, New Delhi, 2011.
2.	Frederick S. Hillier And Gerald J. Lieberman, "Introduction To Operations Research", 9th Edition, McGraw
۷.	Hill Publishing Co., New Delhi, 2011.
3.	Perm Kumar Gupta, D.S. Hira, "Operations Research", S.Chand and Company Ltd., 2008.
4.	Srinivasan G, "Operations Research Principles and Applications", 3rd Edition EEE PHI, 2017.
5.	Sharma J K, "Operations Research Theory and Applications", 5th Edition, Macmillan India, 2013.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PS	SO
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MO 504 0 O	CO1	3	2		2	2						3	2		3
	CO2	2	3	3	2	2						2	3	1	2
50 MC E31 & Operations Research	CO3	3	2	2	2	2						1	2		3
Resolution	CO4	3	3	2	2	2						1	3	2	
	CO5	3	2	2	2	2						2	2		2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC E32– Design of Material Handling Equipments														
	50 MC E32- Design of Material Handling Equipments B.E. Mechatronics Engineering														
			B.E. Mecha	tronics Eng	jineering										
Semester	H	ours / Week		Total	Credit	N	laximum Ma	ırks							
Semester	L	Т	Р	Hrs	С	CA	ES	Total							
VI	3	0	0	45	3	50	50	100							
Objectives	 To enlighten the learners about the concepts of basic operational features of material handling equipment. To impart the fundamental knowledge design flexible hoisting appliances, pulleys, sprockets, drums arresting gear and brakes. To understand the motor rating and determination of torque during transient motion in hoisting gears. To endow with an overview of specific requirements of conveyors systems and their applications. To gain adequate knowledge in the area of designing cage elevators, fork lift truck and escalators. At the end of the course, the students will be able to														
Course Outcomes	 Describe equipme Design fl arresting Design tl motion ir Understa 	the important for specification in the transfer in the transfe	ince of mate ic applicationg applianc rakes ed in hoistinars. ific requiren	erial handling ns. es, pulleys, ng equipmen nents of con	g equipment sprockets, di t and determ	rums, load had ination of to	nandling atta orque during and their app	transient							

Materials Handling Equipment

Introduction - Intraplant transporting facilities - Types - Principle groups of material, handling equipment - Choice of material handling equipment - types of material handling equipment - General characteristics of Hoisting machines, surface and overhead equipment- application- AGVs- ASRs. [09]

Design of Hoist

Designing of hoisting elements: Welded and roller chains - Hemp and steel wire ropes - pulleys, pulley systems, sprockets and drums - Load handling attachments - Forged hooks and eye hooks - Crane grabs - Electric lifting magnets - Grabbing attachments - Ladles - Arresting gear and Brakes. [09]

Hoisting Gear

Drives of Hoisting gear - Hand and power drives - Traveling gear - Rail traveling mechanism - Cantilever and monorail cranes - Trackless travelling mechanisms - Slewing, jib and luffing gear - Selecting the motor ratings Cogwheel drive. [09]

Conveyors

Conveyor types - Belt conveyor - Pneumatic conveyor - Screw conveyor - Apron conveyor - Vibratory conveyor - Design and applications. [09]

Elevators

Bucket elevators - design - Loading and bucket arrangements - Cage elevators - Shaft way, guides, counter weights, hoisting machine, safety devices - Fork lift truck - Escalators. [09]

Text book(s):

Rudenko, N., "Materials Handling Equipment", Peace Publications, Mascow, 2014.

Spivakovsy, A.O and Dyachkov, V.K., "Conveying Machines", Volumes I and II, MIR Publishers, 2012.

Reference(s):

Alexandrov, M., "Materials Handling Equipments", MIR Publishers, 2010.

Arora, K.C and Vikas V. Shinde., "Aspects of Material handling", First Edition, Laxmi Publications (P). Ltd, 2008.

Fayed, M.E and Thomas S.Skoair, "Mechanical Conveyors", Selection and operation", First Edition, CRC press, 2010.

P.S.G. Tech, "Design Data Book", Kalaikathir Achchagam, Coimbatore, 2011.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PS	80
COURSE NAME	Ö	1	2	3	4	5	6	7	8	9	10	11	12	1	2

	CO1	3	3	2	2	1	1	1	1	1	1	2	3	3	3
50 MC E32 & Design of	CO2	3	2	3	2	1	2	2	1	1	1	2	3	3	3
Material Handling	CO3	3	2	3	2	1	2	2	1	1	1	2	3	3	3
Equipments	CO4	3	2	2	2	1	2	1	1	1	1	1	3	2	3
	CO5	3	3	3	2	1	1	1	1	1	1	1	3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rang	asamy Colle	ge of Techn	ology – Aut	onomous		R2018			
			50 MC E33 -	Finite Elem	ent Analysis	3					
Semester		Hours / Wee	ek	Total Ura	Credit	N	laximum Mai	rks			
Semester	L	Т	ce the various steps involved in the finite element analysis of a problem.					Total			
VI	3	0	0	45	3	50	50	100			
Objective(s)	 To explore the mathematical theory keystones in finite element analysis. To practice the various steps involved in the finite element analysis of a problem. To learn to use standard practices and standard data. To apply the finite element method by solving the problems in solid and structural mechanics, heat transfer. To learn the usage of catalogues and standards for machine transmission elements. At the end of the course, the students will be able to										
Course Outcomes	 Apply Formula Estima Solve proble Formula 	d of the courthe Variational the Variational the one of the the steady the structural ms using trial that the Quadratural dre quadratural the court of the court	al methods of dimensional by state heat tra problems wit ngular elemen drilateral elem	approximation ar element a cansfer through the plane stres nt.	on for solving nd apply it fo h composite s, plane strai	r solving sol wall and thir n assumptio	id mechanics n fins. ons and axisy	s problems.			

Fundamentals

Mathematical models of physical systems – Analytical solutions - Variational methods of approximation – Ritz method – Weighted residual method: Galerkin, Least squares and Collocation methods. Piecewise approximation – Finite element method (FEM) – Basic features - steps of FEM – Numerical solution of finite element equations – Gauss elimination method.

One Dimensional Problems

One dimensional elements – Interpolation and Shape functions - Principle of minimum potential energy - Derivation of element equations – Connectivity of elements – Imposition of boundary conditions – Solution of equations - Application to Bars and Plane Trusses.

[09]

One Dimensional Beam and Heat Transfer Problems

One dimensional beam element – formulation – hermite shape function - Element equations - Load vector and boundary conditions – Solution - Application to analysis of beams. One dimensional heat transfer - Conduction and Convection – Application to steady state heat transfer in composite walls and thin fins.

Two Dimensional Problems

Triangular element – Interpolation and Shape functions – Strain-Displacement relations - Stress-Strain relations – Plane stress and Plane strain assumptions - Element equations – Axisymmetric problems - Application to Structural and heat transfer problems.

Isoparametric Formulations

Natural co-ordinate systems - Legrangian and Serendipity Rectangular elements - Isoparametric formulations - Quadrilateral elements - Coordinate transformations - Jacobian transformation matrix -Shape functions - Element equations - Application to plane stress problems - Numerical integration - Gauss-Legendre quadrature.

Total hours 45

Text Book(s):

- 1. Chandrupatla T.R and Belegundu A.D., "Introduction to Finite Elements in Engineering", 4thEdition, Pearson Education, New Delhi, 2011.
- SingiresuS.Rao, "The Finite Element Method in Engineering", 5th Edition, Butterworth-Heinemann, New Delhi 2011.

Reference(s):

- 1. Reddy J.N., "An Introduction to Finite Element Method", 3rdedition, McGraw Hill Education Ltd, New Delhi, 2006
- 2 Daryl L.Logan, "A First course in the Finite Element Method", 5th Edition, Cengage Learning, 2011.
- 3 Zeinkiewicz.O.C, "The Finite Element Method: Its Basis and Fundamentals", 7th Edition, Elsevier, 2013.
- 4 Cook R D, Malkus D S,Plesha M E, "Concepts and Applications of Finite Element Analysis", Fourth Edition, John Wiley and Sons, New Delhi, 2011.

Pre-requisite: Engineering Drawing

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						P	SO
COURSE NAME	- 00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	3	2	2	1	1	1	1	1	1	2	3	3	3
	CO2	3	3	3	2	1	2	2	3	2	1	2	3	3	3
50 MC E33 & Finite Element Analysis	CO3	2	2	3	2	1	2	2	1	1	1	2	3	3	2
,	CO4	3	2	2	2	1	2	1	1	1	1	1	3	2	3
	CO5	1	3	3	2	1	1	1	1	2	1	1	3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.				ogy – Autor	nomous		R2018
				- MEMS an				
			3.E.Mechat	ronics Engi	neering			
Semester	H	ours / Week		Total	Credit	M	laximum Ma	arks
Semesiei	L	Т	Р	Hrs	С	CA	ES	Total
VI	3	0	0	45	3	50	50	100
	To devel	op the basic	knowledge	about the N	IEMS syster	m		
	 To pract 	ice the conc	epts and pri	nciples of M	EMS			
Objectives	To gain a	adequate kn	owledge mi	cro fabrication	on and manu	ufacturing te	chniques.	
	 To equip 	students to	Nano electi	ronics				
	To Reali	zing the vari	ous applica	tion of NEM	S and MEMS	S		
	At the end o	of the cours	e, the stude	ent will be a	ble to:			
	1. Understa	and the Fund	damentals a	nd working	principles of	microsyster	ns and micr	oelectronics
Course	2. Practice	the concept	on both mid	cro fabrication	on and manu	ufacturing te	chniques .	
	Acquire	knowledge a	about micro	system desi	gn and its va	arious applic	ations	
Outcomes	4. Study at	out the bas	ic concepts	of Nano ele	ctronics with	various dev	ices and als	so discusses
	with its a	pplications						
	5. Realize	he various a	application o	of NEMS and	d Architectur	e of MEMS		

Introduction

Fundamentals – Micro systems and microelectronics - working principle of microsystems – Micro sensors, acoustic sensor, Bio sensor, chemical sensor, pressure sensor, Temperature sensor - micro actuation techniques – Actuation using thermal forces, actuation using SMA, Actuation using piezo electric effect, Actuation using electro static forces – micro gripper – micro motors – micro valves – micro pumps, types – micro heat pipes.

Micro Fabrication And Manufacturing Techniques

Materials for micro systems – Substrates and wafer- Silicon, Quartz, Piezoelectric crystals, polymers - Photo Lithography – Diffusion- Oxidation – CVD- PVD, Etching, types - Bulk micro manufacturing – Surface micro machining - Micro system packaging-materials, die level, device level, system level - Packaging techniques – die preparation - Surface bonding-wire bonding - sealing. [09]

Mechanics For Micro System Design And Applications

Basic concepts – Bending of thin plates – Mechanical vibration – Thermo mechanics - Fracture mechanics – Fluid mechanics at micro systems- Design considerations - Process design-mask layout design – Mechanical design-Applications of micro system in automotive industry, bio medical, aerospace and telecommunication.

Nano Electronics

Basics of nano electronics – Nano electronics with tunneling devices – Nano electronics with super conducting devices - Molecular nano technology – Applications of MNT - Direct self-assembly-device assembly - electrostatic self-assembly-nano tubes – Nano wire and carbon-60 - Dielectrophoretic nano assembly. [09]

Architecture And Applications

Architecture of MEMS - Requirements of nano systems - Development of nano electronics and structuring -

App	lication of NEMS – Deposition of coatings – Three dimensional materials – Dewatering. [09]
	Total Hours: 45
Tex	t book(s):
1	Goser.K , Dienstuhl .J , " Nano Electronics & Nanosystems " , Springer International Edition, 2010.
2.	Tai - Ran Hsu,"MEMS & Microsystems: Design and Manufacture ", Second Edition Tata McGraw Hill,
۷.	2008.
Ref	erence(s):
1	Michael Pycraft Inrushes, "Nano Electro Mechanics in Engineering & Biology", CRC Press New York,
1.	2002.
2.	Charles P.Poojlejr Fran K J.Owners, "Introduction to Nano Technology", Willey Student Edition 2008.
3.	Gregory Timp, "Nano Technology", Spinger International Edition, 1999.
4.	Julian W.Gardner, Vijay K. Varadan, Osama O. Awadel Karim, "Microsensors MEMS and Smart Devices",
4.	John Wiby & Sons Ltd.,2001

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	o						P\$	so
COURSE NAME	3	1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MO 504 0 M5MO	CO1	3		2	2	3					3		·	2	3
	CO2	3		2	2	3			2	2	3	3		2	3
50 MC E34 & MEMS and NEMS	CO3	3	2	2	2	3	2	2	2	2		3		2	3
and IVEIVIO	CO4	3	2	2	2		2				2		3	2	3
	CO5	3		3	3		2	2			2		3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rangasaı	ny College	of Technolo	gy – Auto	onomous		R20)18
		50 M	C E35 - Pro	oduct Desig	n and Cos	sting			
			B.E. Mecha	atronics Eng	jineering				
Semester		Hours / Week		Total	Credit	M	laximum Ma	arks	
Semester	L	Т	Р	hrs	С	CA	ES	Tot	al
VI	3	0	0	45	3	50	50	10	0
	• To ena	able the stud	lent to und	derstand the	various	aspects of t	he product	design	and
	develo	pment.							
Objectives	 To edu 	cate the conce	ept of custor	mer need and	d product a	architecture.			
Objectives	 To train 	n the student i	n the concep	ot of product	developm	ent economic	s in product	design.	
	 To imp 	art knowledge	on various	types of cost	s associat	ed with produ	ction of com	ponents	
	 To edu 	cate the conce	ept of work	study and erg	onomics a	and its influen	ce in produc	tion.	
	At the end	of the course	e, the stude	ent will be ab	ole to				
	1. Unders	stand the funda	amentals of	product design	gn, plannir	ng, developme	ent and prod	uct life	
	cycle.								
Course		stand the signi						t.	
Outcomes		he economic a							
Catoonics		te various typ		•	•	ponents by to	urning, drilli	ng, sha∣	ping,
		ng, milling, grin	•		-				
		the process of		, method stu	dy, tools a	and technique	es used for i	t and ab	le to
	calcula	te the standar	d time.						

Product Design and Development

Principles of creativity in design - Product development planning - Planning process - Product analysis - Criteria for product design - Market research - Design for customer and design for manufacture - Product life cycle.

Customer Needs and Product Architecture

Customer satisfaction - Voice of customer, Types of customer needs, customer need model - Organizing and prioritizing customer needs. Product architecture - Architecture types - Implication - Establishing product modularity – types. [09]

Product Development Economics

Elements of economic analysis - Quantitative analysis - Qualitative analysis. Economic Analysis Process - build a base- Case financial model - Sensitivity analysis - Understand the project trade-offs - Influence of the qualitative factors on project success. [09]

Cost Estimation of Manufactured Jobs

Africal Chairman BoS/MCT

Cost estimation to find out labor and total costs for simple machining works such as Turning, Drilling, Shaping Planning, Milling, Grinding, Cast, Welded and forged components. [09]

Work Study and Ergonomics

Method study - definition - objectives - Motion economy principles - Tools and techniques – applications. Work and Measurement - purpose - use - procedure techniques - Standard time. Ergonomics - tools - principles - applications. [09]

applications. Total Hours: 45 Text book(s): Karl T. Ulrich, Steven D. Eppinger, "Product Design and Development", Tata Mc Graw-Hill edition, 4th Edition, 2012. Kevin Otto, Kristin Wood, "Product Design: Techniques in Reverse Engineering and New Product 2 Development", Pearson education, 2012. Reference(s): George E Dieter, "Engineering Design: A Materials and Processing Approach", McGraw Hill Publishing Company, London, 2000. 2 Stanley Walker Jones, "Product Design and Process Selection", Butterworth Publications, 1973. Sameul Eilon, "Elements of Production Planning and Control", McMillan and Company, 1962. 3 R Kesavan, C Elanchezhian and B Vijaya Ramnath, "Process Planning and Cost Estimation", New Age International (P) Ltd., Publishers, 2015.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PS	30
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC E25 8 Product	CO1	2	2	3	2	3							1		2
	CO2	2	2	3									1		3
50 MC E35 & Product Design and Costing	CO3	1	2	3	1								2		2
Doolgii and Gooting	CO4	2	2	3	2								2		2
	CO5	2	2	2	2			2					1		1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of 1	Technology	- Autonom	nous		R2018
				Drone Tech				
		I	B.E. Mecha	tronics Eng	ineering			
Semester		Hours / Week		Total	Credit	I.	laximum Ma	arks
Semester	L	Т	Р	Hrs	C	CA	ES	Total
VII	3	0	0	45	3	50	50	100
	The ma	ain aim of this	course is to	understand	I the basics	of Drones a	nd its comp	onents.
	To inti	oduce the va	arious types	s, functions	of UAV, a	nd Rules a	nd Regulati	ion of Aerial
	vehicle	s.						
Objectives	To ma	ke the studen	ts understai	nd the basic	working pri	nciple and c	lifferent Ser	nsors used in
	UAV.							
		ble the stude		•			•	systems.
	• To und	lerstand the m	ethod of op	erating unm	anned vehic	les and pay	loads	
	At the end	of the cours	e, the stude	ents will be	able to			
		the fundame	_	•				
Course		ication of unm						
Outcomes		strate the des			ed wing mu	lticopter and	electronic	components
Culcomes		Drones and						
		guidance and					anned syste	m.
	Describe	e the applica	tions and pa	ayloads of a	erial vehicles	5.		

Introduction to Drone

Basic Drone terminology - Historical Development -Types of drones - Components for UAV Prototypes - Functional Operations and Advantages of UAVs. [09]

Unmanned Systems

Unmanned Aerial Vehicle - Basics of UAV piloting - Unmanned ground vehicle-, Unmanned Water vehicle - Classification of UGV and UWV- Parts and function of UGV and UWV- Launching and Recovery of US - Electronics components of US- Amphibious Vehicle- Lighter Than-Air Systems- Rules and Regulation of Aerial vehicles.

Integration of Aerial Robots and Sensors

Fixed wing UAVs- Multicopter UAV- Flapping wing UAV- Swarm Robot, Integration of Aerial robot- IOT based Aerial robot- Safety procedure of Aerial Robot- Material for Aerial Robot. Introduction to sensors – types of sensors – accelerometer-barometer-Gyro sensor and magneto sensor- other sensors – distance sensor-thermal sensor and chemical sensor.

Navigation and Guidance System of Aerial Vehicles

Flight Control System –Path planning- Way point Navigation system - Obstacle's avoidance Techniques – functional block of lateral and longitudinal guidance- GPS – GCS-Telemetry –Transmitter & Receiver. [09]

Applications and Payloads of Aerial Vehicles

Applications of Aerial Vehicles - Remote sensing, Aerial mapping, Disaster response, Surveillance Search and rescue, Transportation Payload delivery, Image acquisition for cinematography, Aerial Observations Military Operations, Civilian and Private Applications-of Payload -Classification of payloads -Camera and sensors. [09]

Total hours 45

	Total nours 45
Text	book:
1	Theory, Design, and Applications of Unmanned Aerial Vehicles- by A. R. Jha Ph.D., 2016
2.	Reg Austin, "Unmanned Air Systems: UAV Design, Development and Deployment "First Edition, Wiley
۷.	Publishers, 2015.
Refe	erence(s):
1.	Handbook of Unmanned Aerial Vehicles- Editors: Valavanis, K., Vachtsevanos, George J. (Eds.), 2014
2.	Guidance of Unmanned Aerial Vehicles- by Rafael Yanushevsky (Author), 2011
2	Mirosaw Adamski, "Power units and power supply systems in UAV", New Edition, Taylor and Francis
3.	Group publishers, 2014.
4.	Droneprep, "Unmanned Aircraft Systems Logbook for Drone Pilots & Operators", Create Space
4.	Independent Publishing Platform, Latest Edition, 2015.

Pre-requisite: Sensors and Instrumentation, Autonomous Vehicle, Robotics Engineering MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												PSO				
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	CO1	2	3	3	3	1		2					2	3	2				
50 MC 45 Drana	CO2	2	2	3	2	1		2					2	3	1				
50 MC 45- Drone Technology	CO3	2	3	3	1	1		2					2	3	3				
realmology	CO4	2	2	3	1	-		2					3	3	2				
	CO5	2	3	3	1	1		2					2	3	1				

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MC E42 – Vehicle Intelligence													
	B.E. Mechatronics Engineering													
Semester		Н	ours / Week		Total	Credit	N	<u>laximum Ma</u>	rks					
Semester		L	T	P	Hours	С	CA	ES	Total					
VII		3	0	0	45	3	50	50	100					
	•	To enligh	nten the learr	ners about th	ne concepts	of basic vehi	cle safety fe	atures.						
	•	To expla	in latest adva	ancement in	hybrid engir	ne technolog	у.							
Objectives	•	To under	rstand the de	sign concep	ots of body fo	r safety.								
	•	To famili	ar with adva	nced feature	s in comfort	vehicle tech	nology.							
	•	To broad	len the advar	nced technol	logies in mod	dern vehicle	systems							
	At	the end o	f the course	, the stude	nts will be a	ble to								
	1.		and various s			nicle safety,	passenger C	omfort, rece	ent					
Course			gies in auton											
Outcomes	2.		the various a											
Outcomes	3.		out the accel											
	4.		he comfort sy											
	5.	Know ab	out the featu	res of the ve	hicle and an	alyze the wo	orking syster	ns.						

Vehicle Safety Concepts

Active safety - Driving safety, Conditional safety, Perceptibility safety, Operating safety, Passive safety - Exterior safety, Interior safety, Deformation behavior of vehicle body, Speed and acceleration characteristics of vehicle body, Velocity and time graph.

[09]

Advancement in Engine and Related Components.

Introduction & types of hybrid vehicle, Hybrid drives systems, Compressed air car, Solar Cars, Hydrogen operated Engine, Basic concepts of Blue Motion Technologies like DSG, TSI, TDI, GDI variable valve timing system.

[09]

Collision Avoidance Systems

Collision warning system, Causes of rear end collision, Front and rear vehicle object detection system, Automatic braking system, Lane departure warnings system, Electronic brake force distribution systems, Emergency brake assist system.

[09]

Comfort and Convenience System

Steering and mirror adjustment, Central locking, Remote control system, Tyre pressure monitoring system, Rain sensor system, Garage door opening system, Environment infotainment system, Vehicle seating positions and height adjustments, Laminated windshield protection and transparency. [09]

Modern Vehicle Systems

Introduction - Basic structure-vision based autonomous road vehicles-architecture for dynamic vision system - features - Applications- A visual control system using image processing and fuzzy theory- An application of mobile robot vision to vehicle information system-object detection. [09]

	Total Hours: 45
Text	book(s):
1	Gilbert Held "Inter and Intra Vehicle Communications", Auerbach Publications, 2008.
2	Bosch, "Automotive Handbook", 8th Edition, SAE publication, 2011.
Refe	rence(s):
1	Vivek D.Bhise "Ergonomics in the Automotive Design Process" Bhise publisher Crc press, Taylor and
'	Francis Group, 2012.
2	Tao Zhang, Luca Delgrossi, "Vehicle Safety Communications Protocols, Security and privacy", Information
	Communication Technology Series, 2012.
3	Jullian Happian, Smith, "An Introduction to Modern Vehicle Design", SAE, 2002.
4	Richard Bishop, "Intelligent Vehicle Technology and Trends" Artech House, Inc, 2005.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						P	80
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1		1	3	1	3		1	3		1		1		2
	CO2	3					2			2		3		2	1
50 MC E42 & Vehicle Intelligence	CO3		2		2			1	2				3	3	
_	CO4	3		3	1	2	2	3		2	3				2
	CO5	1	3		1			2	2	1		1	2	3	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018													
	50 MC E43 - New and Renewable Energy Sources													
	B.E. Mechatronics Engineering													
	Hours / \	Veek		Total Ura	Credit		Maximum Mark	(S						
Semester	L	T	Р	Total Hrs	С	CA	ES	Total						
VII	 3 0 0 45 3 50 50 100 The students are expected to identify the new methodologies / technologies for effective 													
Objectives	utilization ofCreate awa conventionLearn the f	of renewab areness ab al fuel reso undamenta	le energy bout sour erves will al concep	y sources. ces of energ last. ots about so	gy and abl	e to estimat	te how long the	available						
	pumping ar	nd electrici	ity genera	ation.			wind energy							

	energy from ocean, know about Biomass energy, mini-micro hydro systems and
	geothermal energy system.
	At the end of the course, the student will be able to
	1. Gain knowledge about working principle of various solar energy systems
Course	2. Provide importance of Wind Energy.
outcomes	3. Understand the role of ocean energy in the Energy Generation.
	4. Get the utilization of Biogas plants and geothermal energy
	5 Understand the concept of energy Conservation

Solar Energy

Solar radiation - Availability- Measurement and estimation- Isotropic and an isotropic model - Introduction to solar collectors (liquid flat- Plate collector - Air heater and concentrating collector) and thermal storage - Steady state transient analysis - Photovoltaic solar cell - Hybrid systems - Thermal storage- Solar array and their characteristics evaluation – Solar distillation – Solar drying.

[09]

Wind Energy

Wind energy - General considerations - Wind Power plant design – Horizontal axis wind turbine - Vertical axis wind turbine - Rotor selection - Design considerations - Number of blades - Blade profile - Power regulation - Yaw system - Choice of power plant - Wind mapping and selection of location - Cost analysis and economics of systems utilizing renewable sources of energy.

Ocean Thermal Energy Conversion

Wave and Tidal energy - Availability - Geographical distribution - Power generation using OTEC - Wave and Tidal energy - Scope and economics - Geothermal energy - Availability - Limitations. [09]

Hydrogen Energy

Electrolytic and thermo chemical hydrogen production – Metal hydrides and storage of hydrogen – Hydrogen energy conversion systems hybrid systems – Economics and technical feasibility- Applications of fuel cells.

New Energy Sources

Biofuels classification – Biomass production for energy forming – Energy through fermentation – Pyrolysis – Gasification and combustion - Aerobic and Anaerobic bio conversion process - Feed stock - Properties of biogas composition - Biogas plant design and operation - Alcoholic fermentation – Phase change materials.

[09]

Text book:

- 1. G. S. Sawhney, "Non Conventional Resources of Energy", PHI Learning Pvt. Ltd.. 2012
- 2. Rai G.D, "Non conventional Energy sources", Khanna Publishers, New Delhi, 2010.

Reference(s):

- 1. Bent Sorensen., "Renewable Energy", Academic Press, Elsevier, New Delhi, 2011.
- 2. Kothari.D.P, Singal.K.C and Rakeshranjan., "Renewable energy sources and emerging technologies" PHI learning Pvt Ltd, New Delhi,2011.
- Tasneem abbasi and Abbasi.S.A, "Renewable energy sources", PHI learning Pvt Ltd, New Delhi, 2011.
- Tiwari. G.N., Solar Energy "Fundamentals Design, Modeling & Applications", Narosa Publishing House, New Delhi, 2002.

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												80
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	3	1					1	1	2		2	3	3
50 MC E43 & New and	CO2	2	3	3	2	2			2	1	2		2	2	2
Renewable Energy	CO3	2	3	3	2	2			2	1	2		2	2	3
Sources	CO4	2	3	3	2				1	1	2		2	3	2
	CO5	2	3	3	1	2			1	1	2		2	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Rangas	amy Colle	ge of Techr	ology – Au	tonomous		R2018
	5	0 MC E44 -	Machine L	earning and	d Condition	Monitorin	g	
			B.E. Mech	atronics En	gineering			
Semester	Н	ours / Week		Total	Credit		Maximum N	/larks
Semester	L	Т	Р	Hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
	To under	erstand the n	nachine fror	n data witho	out human ir	ntervention.		
	• To kno	w the prir	nciple metl	hods of m	achines by	y simulatin	g the hur	man ability to
Objectives	underst	and machine	language.					
Objectives	To under	erstand differ	ent types o	f condition n	nonitoring te	chniques.		
	To be fa	amiliar with tl	ne Wavelet	Transform a	and vibration	n monitoring	J.	
	To know	v the differer	nt application	ns of non-de	estructive te	sting techni	ques in faul	lt diagnosis.
	At the end	of the cours	se, the stud	lents will be	able to			
	1. Familia	ize the diffe	rent machin	e learning te	echniques.			
Course	Underst	and the Na	tural Langu	age Proce	ssing (NLP)	and deep	Learning	with industrial
Outcomes	applicat							
Gutoomoo		ize with diffe	•		•		•	industries.
		and the role						
	5. Underst	and the sign	ificance of f	ault diagnos	sis and non-	destructive	testing tech	nniques .

Introduction to Machine Learning

Linear Regression-Linear Regression Assignment-Logistic Regression-Naive Bayes-Model Selection-Advanced Regression-Tree Models-Model Selection - Practical Considerations-Boosting-Unsupervised Learning: Clustering, Principal Component Analysis - Investment Case Study -Telecom Churn Case Study.

Natural Language Processing, Deep and Reinforcement Learning

Lexical Processing-Syntactic Processing-Semantic Processing-Deep Learning: Introduction to Neural Networks- Convolutional Neural Networks -Industrial Applications. Classical Reinforcement Learning-Deep-Reinforcement Learning. [09]

Introduction to condition monitoring and Basic signal processing techniques

Basic concept, techniques - visual monitoring, temperature monitoring, vibration monitoring, lubricant monitoring, crack monitoring, thickness monitoring, noise and sound monitoring. Basic signal processing techniques- Probability distribution and density, Fourier analysis, Digital filtering. [09]

Wavelet Transform and Vibration Monitoring

Introduction to Wavelets, Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), types of wavelets – Haarwavelets, Shannon wavelets, Meyer wavelets, Daubechies wavelets, Coifmann wavelets and applications of wavelets. Introduction to Vibration Monitoring, vibration data collection, techniques, instruments, transducers, selection, measurement location, time domain analysis. [09]

Mechanical fault diagnosis and Nondestructive testing techniques

Wear monitoring and lubricant analysis - sources of contamination, Spectrometric Oil Analysis Procedure (SOAP) and ferrography. NDT-Measurement of surface and subsurface flaws - liquid penetrant inspection, eddy current inspection, radiographic inspection, ultrasonic inspection. [09]

Total hours 45 Text book: Robert Bond Randall - Vibration-Based Condition Monitoring - Industrial, Aerospace and Automotive applications, John Wiley & Sons Ltd., 2011. 2 R A Collacot - Mechanical Fault Diagnosis - Chapman and Hall Ltd., 2007. Reference(s): Dr.K.Balaveera Reddy, ISTE Summer School on Machinery Diagnostics and Preventive Maintenance, 1. KREC, Surathkal, June 19-25, 2005. 2. Dr.A.Ramachandra, ISTE-STTP on Maintenance of Machinery, SJCE, Mysore, June 18-31, 2000. P Baldi, and S Brunak, Bioinformatics: A Machine Learning Approach. Cambridge, MA: MIT Press, 2002. 3. 4. C Bishop, Pattern Recognition and Machine Learning, Berlin: Springer-Verlag, 2006.

Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO												so
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC E44 & Machine	CO1	1	2		2			3		1	2		2	1	2

Learning and Condition	CO2			2	3	1		2	2		1	2
Monitoring	CO3			1		2	1			2	1	2
	CO4			2		2				1	1	2
	CO5	1	2		2	2	2		2		1	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018 51 PT T01 – Creo for Design												
				tronics Eng	ineering							
Semester	H	ours / Week		Total	Credit	N	<u>laximum Ma</u>	arks				
Semester	L	Т	Р	Hrs	С	CA	ES	Total				
VII	2	0	2	45	3	50	50	100				
Objectives	idea of n Study the Understa drawings To provide To acqui	ew structure e conventior and the basi s. de hands on ire design kr	e such as a nas and rules of dimension exposure on the control of	machine ele to be follow ing practices of mechanism the sheet n	ed by engine s that have to n design and netal design	eers for mak to be followed simulation	king accurated in the pre-	e drawings. paration of				
Course Outcomes	and develop	knowledge elopment of anding the ir ion of the pation of macon drawings knowledge alopment of ing knowled	about the variews. Inportance out drawings whine drawinabout the variews in she ge about the variews in the variews in the variews in the variews in the variews in the variews in the variews in the variews in the variews in the variews in the variews in	arious practi f the linking gs that in tu rious practiceet metal.	ces with regar functional ar rn help the sees with regar actices with r	nd visualizat tudents in th	ion aspects ne preparation	in the on of the sectioning				

Advance Part Modeling

Advanced Selection Techniques - Advanced Datum Features - Advanced Sketching Techniques - Create advanced holes - Create advanced drafts and ribs - Create advanced shells - Create advanced rounds and chamfers - Use relations and parameters - Create advanced blends - Create sweeps with variable sections - Create helical sweeps - Create swept blends - Advanced Layer Techniques - Advanced reference management techniques - Create family tables - Reuse features - Advanced copy techniques - Create advanced patterns.

Advance Assembly Design

Use advanced component selection - Use advanced assembly constraints - Create and use component interfaces - Utilize intelligent fasteners Extension (IFX) - Create and use flexible components - Restructure and mirror assemblies - Use assembly features and shrink wrap — Replace components in an assembly - Understand the basics of simplified reps - Create cross-sections, display styles, and combined views - Substitute components by reps, envelopes, and simplified reps - Understand advanced simplified rep functionality - Create and use assembly structure and skeletons - Utilize design exploration, extension (DEX).

Sheet Metal Design

Sheet metal Model Fundamentals - Creating Primary Sheet metal Wall Features - Creating Secondary Sheet metal Wall Features - Bending and Unbending Sheet metal Models - Sheet metal Form Features - Modifying Sheet metal Models - Sheet metal Setup and Tools - Detail sheet metal designs. [11]

Advanced Surfacing

Describe surface modeling and its terminology - Create various boundary surfaces - Utilize surface analysis tools - Additional Surface Analysis Tools - Extend and trim surfaces - Manipulate surfaces - Create and edit solid models using surface quilts - Utilize the master model technique - Style Surfacing. [11]

Total Hours: 45

Text book(s):

- Sham Tickoo, "PTC Creo Parametric 7.0 for Engineers and Designers", Revised and updated edition (MISL-DT), Dreamtech Press, 2018.
- 2 Kelly D.S, Pro / Engineer 3.0 for Engineers and Designers, Mcgraw Hill, 2014.

Reference(s):

1.	Creo Work Book, Dysmech Consultancy Servicers Private Limited, Pune, 2016.
2.	David S. Kelley, Pro/Engineer wildfire 5.0 instructor, McGraw-Hill, 2016.
3.	Sham Tickoo, Designing with Pro Engineer, Dreamtech Press, 2001.
1	Creo Work Book, Dysmech Consultancy Servicers Private Limited, Pune, 2016

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO.						Р	O						PS	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2					1		2		2			2	2
54 DT T04 00 (CO2	2					2		2		2			2	2
51 PT T01 &Creo for Design	CO3	2					2		2		1			3	2
Design	CO4	3					3		3		1			3	3
	CO5	3					3		3		1			3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Ran	gasamy Colle	ege of Techno	ology – Auto	nomous		R2018
		51 I	PT T02 - Cre	o for Product	ion Enginee	ring		
Semester		Hours / Wee	k	Total Hrs	Credit	V	/laximum Mai	rks
Semester	L	Т	Р	TOTAL FILS	С	CA	ES	Total
VII	2	0	2	45	3	50	50	100
Objective(s)	To undTo ens processTo imp to become	s can achieve art the mather ome profession ate an ability	asic operation ror rate is dec d. matical format nally efficient.	s of CAM and creased, unifo	automation or automation or the properties of th	of manufacture of manufacture of the manufacture of	ring industries and the pred facturing pro	cession in the
Course Outcomes	 Create Create Create Ability 	of the course, modify and a geometries, to retrieve the the concepts	analyze mold tool paths and tool paths and mathematical	components a d generate NC d generate NC al functions du	and assemblie codes for tur codes for m ring design p	rning using C illing using C rocess.		

Mold design

Basic Mold Process - Prepare design models for the mold process - Design Model Analysis - Mold Models - Shrinkage - Work pieces - Mold Volume Creation - Parting Lines - Skirt Surfaces - Parting Surface Creation - Splitting Mold Volumes - Mold Component Extraction - Mold Features Creation - Filling and Opening the Mold. [15]

Manufacturing Process

Manufacturing Process Overview - Creating Manufacturing Models - Configuring Operations - Using Reference Models - Using Work piece Models - Creating and Using NC Model Assemblies - Creating and Configuring a Work Center - Creating and Configuring Tools - Using Manufacturing Parameters - Creating Face Milling Sequences - Creating Volume Milling Sequences - Creating Profile Milling Sequences - Creating Straight Cut Surface Milling Sequences - Creating From Surface Isolines Surface Milling Sequences - Creating Cut Line Surface Milling Sequences - Advanced Surface Milling Options - Creating Roughing and Re-roughing Sequences - Creating Finishing Sequences - Creating Trajectory Milling Sequences - Creating Hole making Sequences - Creating Engraving Sequences - Using the Process Manager - Creating and Post- Processing CL Data Files. [20]

Rapid Prototyping: Introduction to RPT - Data Preparation - RPT Data Processing - Data Post Processing - RPT

Rapid Prototyping: Introduction to RPT - Data Preparation - RPT Data Processing - Data Post Processing - RPT assignment.

[10]

Total hours 45

Text Book(s):

- 1. Sham Tickoo, "Pro / Engineer PTC Creo Parametric 3.0 for Engineers and Designers", Revised and updated edition (MISL-DT), Dreamtech Press, 2015.
- Chua C.K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", 3rd Edition, World Scientific, New Jersey, 2010.

Reference(s):

- Chee Kai Chua, "Rapid Prototyping: Principles and Applications", World Scientific publications, 3rd Edition, Singapore, 2010.
- 2. Philip. J. Pritchard, "Mathcad: a Tool for Engineers and Scientists", Wiley publications, Indiana, 2013.

- Jacobs P.F., "Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography", McGraw-Hill, New York, 2010
- 4. David S. Kellev, Pro/Engineer wildfire 5.0 instructor, McGraw-Hill, 2016

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO						Р	O						PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2		3										2	2
54 DT T00 8 Cros for	CO2	2												2	2
51 PT T02 & Creo for Production Engineering	CO3	2												2	2
Froduction Engineering	CO4	2		3										2	2
	CO5	2												2	2

Note: 3 - Strong Contribution: 2 - Average Contribution: 1 - Some Contribution

	K	.S.Rangasa			•		_	R2018
		50 MC E51	- Unconve	entional Ma	chining Pro	cesses		
		l	B.E. Mecha	tronics Eng	ineering			
Semester	Н	ours / Week		Total	Credit	N	laximum Ma	arks
Semester	L	Т	Р	Hrs	С	CA	ES	Total
VII	2	0	2	45	3	50	50	100
	Give an	exposure ab	out various	unconvention	nal machini	ng processe	es.	
	 Recogni 	ze the role o	f mechanica	al energy in i	unconventio	nal machinii	ng processe	s.
	Gain the	e knowledge	on machi	ning the ele	ectrically con	nductive ma	aterial throu	igh electrical
Objectives	energy i	n unconvent	ional machir	ning process	es			
	• Impart s	specifies the	concept of	f machining	the hard m	naterial usin	g chemical	energy and
	_	hemical enei	=	_			-	
	Familiari	ity with vario	us thermal e	energy base	d unconven	itional mach	ining proces	sses.
	At the end of						<u> </u>	
	1. Describe	e the classific	cation of nor	n-traditional	machining n	nethods and	l process se	lection.
	2. Understa	and the Mec	hanical ene	rgy based ur	nconvention	al machining	g processes	
Course	3. Understa	and the Elec	trical energy	/ based unco	onventional	machining p	rocesses.	
Outcomes	4. Recogni	ze the Che	mical and	Electrochem	nical energy	/ based un	conventiona	al machining
	processo	es.						_
	5. Understa	and the Ther	mal energy	based unco	nventional n	nachining pr	ocesses	

Introduction

Introduction - Need of non-traditional machining Methods - Classification of modern machining processes, Process selection, Materials Applications. Ultrasonic machining: Elements of the process, mechanics of metal removal process, parameters, economic considerations, applications and limitations, recent development. **[09]**

Mechanical Energy Based Processes

Abrasive Jet Machining, Water Jet Machining and Abrasive Water Jet Machining: Basic principles, equipment, process variable, and mechanics of material removal (MRR)-application and limitations. **[09]**

Electrical Energy Based Processes

Electric Discharge Machining (EDM): Basic principle, equipment, Process Parameters, Surface Finish and MRR, electrode/Tool, Power and control Circuits, Tool Wear, Dielectric, Flushing. Wire cut EDM, Applications. **[09]**

Chemical and Electro-Chemical Energy Based Processes

Chemical machining: Etchants, Maskant, techniques of applying mask ants, Process Parameters, Surface finish and MRR, Applications. Electro-Chemical machining: Basic principle, equipment, Surface Roughness and MRR Electrical Circuit, Process Parameters, Electrochemical grinding and Electrochemical Honing Applications. [09]

Thermal Energy Based Processes

Laser Beam machining and drilling (LBM), plasma Arc machining (PAM) and Electron Beam Machining (EBM). Principles – Equipment –Types - Beam control techniques – Applications. [09]

Total Hours: 45

Text book(s):

1 K K Singh, "Unconventional Manufacturing Process",Dhanpat Rai & Company, New Delhi, 2012.

2.	P C Pandey and H S Shan, "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2017.
Ref	erence(s):
1.	Paul De Garmo, J.T. Black, and Ronald.A. Kohser, Material and Processes in Manufacturing, Prentice Hall of India Pvt. Ltd., New Delhi, 2011.
	Serope Kalpakjian and Steven Schmid, "Manufacturing Engineering and Technology", 7 th Edition, Pearson
2.	education India Ltd, New Delhi, 2013.
3.	P. K. Mishra, Non-Conventional Machining, Narosa Publishing House, New Delhi, 2010.
4.	Gary F Benedict, 'Nontraditional Manufacturing processes", CRC press, 2011

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PSO	
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	1	1	1	1	1	2	1		1			2	1
50 MC E51 &	CO2	3	2	1	2		1	2			2			1	1
Unconventional	CO3	2	3			1	1		2		1			1	1
Machining Processes	CO4	2	1	2		1	1	1			1			1	3
	CO5	1	2	1	2	3	1	2			1			3	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K	i.S.Rangasa	my College	of Techno	logy – Auto	nomous		R2018							
					Testing Met	hods									
			B.E. Mecha	tronics Eng	jineering										
Semester	Н	ours / Week		Total	Credit	l. N	laximum Ma	arks							
Semester	L	Т	Р	Hrs	С	CA	ES	Total							
VII	2	0	2	45	3	50	50	100							
	 To learn 	the fundam	entals of ND	T Technique	es										
	 To unde 	To understand the basic principles of various NDT methods													
Objectives	 To understand the basic principles of various NDT methods To be aware of applications and limitations of the NDT techniques 														
	 To know 	the differen	t type of ser	vice and pro	and process defects.		aximum Marks ES Total 50 100 Il products. Hent. esting ing defects								
	 To learn the fundamentals of NDT Techniques To understand the basic principles of various NDT methods 														
	At the end of	f the course,	the student	will be able	to:										
					ques and te										
Course															
Outcomes															
					and X-Rays		Maximum Marks A ES Total D 50 100 ues actured products. quipment. ctive testing ocessing defects aluation								
	5. Utilize ul	trasonic tes	ting as an N	DT techniqu	e to investig	ate defects.	ı								

Visual Inspection and Liquid Penetrant Testing

Introduction to NDT, scope and advantages of NDT, Comparison of NDT and DT, classifications of NDT. Equipment used for visual inspection -Magnifying Glass, Magnifying Mirror, Microscope, Bore scope and Endoscope.

Liquid Penetration Testing: Introduction, Principle, Procedures, Hazards Precautions, Advantages, Limitations and Applications. [09]

Eddy Current Testing

Principle of Eddy Current Testing, Advantages, Disadvantages, Factors affecting Eddy Current Response-Material Conductivity, Permeability, Frequency, Geometry and Proximity (Lift off)-Faraday's Law - Lenz's law - Types of Probes. [09]

Magnetic Particle Testing

Principle of Magnetic Particle Testing-Different methods to generate magnetic fields -Magnetic Particle Testing Equipment and Testing Procedures - Methods of De-Magnetization- Magnetic Particle Medium-Evaluation of test indications and Acceptance Standards. [09]

Radiographic Testing

Radiography Principle-Electromagnetic Radiation Sources- X-ray films, exposure- Penetrometer radiographic imaging-inspection standards and techniques – Neutron radiography – Radiography applications, limitations and safety. [09]

Ultrasonic Testing

Principle of operation, Types of Ultrasonic Propagation- Ultrasonic probes - Ultrasonic Transducers - Ultrasonic

Testing Techniques. Method for Evaluating Discontinuities - Applications in inspection of castings, forgings, Extruded steel parts, bars, pipes, rails and dimensions measurements. [90] Total Hours: 45 Text book(s): J Prasad, C G K Nair, "Non-Destructive Testing and Evaluation of Materials", Tata McGraw Hill Education Private Limited, 2017. Prakash Ravi, "Nondestructive Testing Techniques", New Age International publishers, 1st Revised 2. Edition, 2010. Reference(s): Baldev Raj, Jayakumar.T, Thavasimuthu.M, "Practical Non Destructive Testing", Narosa Publishing 1. House, New Delhi,3rd Edition, 2009. American Society for Metals, "Non-Destructive Evaluation and Quality Control": Metals Hand Book, Vol. 2. 17, 9th Edition, Metals Park, 1992. Paul E Mix, Wiley, "Introduction to Nondestructive Testing: A Training Guide", 2nd Edition New Jersey, 3. Y. Kong, C.J. Bennett, C.J. Hyde, "A Review of Non-Destructive Testing Techniques for the in-situ 4. investigation of fretting fatigue cracks ", Materials and Design, Vol. 196, Elsevier, 2020.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						P	,O						PS	SO
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	1	1	1		1	2			1			2	1
50 MC E52 & Non	CO2	3	2	1	2		1	2			1			3	2
Destructive Testing	CO3	2	1			1	1		2		1			1	1
Methods	CO4	3	1				1	1			1			1	1
	CO5	1	2	1	2	3	1	2			1			1	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangasar	ny College	of Technol	ogy – Autor	nomous		R2018
	50 HS	6 001 - Engi	neering Ec	onomics an	d Financial	Accountin	g	
		E	3.E. Mechat	ronics Eng	ineering			
Semester	Н	ours / Week		Total	Credit	M	laximum Ma	arks
Semesier	L	Т	Р	Hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objectives	businessTo knowTo knowTo unde	the financia about funct rstand the d	al aspects re ions of bank ifferent meth	lated to bus	iness. aisal of proje		nics & how t	o organize a
Course Outcomes	 Describe Explain t Interpret 	suitable demented the forms of the kinds of fixed cost a	nand forecas of business a banks and il nd variable	s will be able sting technique and different lustrate the cost and tect summarize the	ues and pre iate betweei Balance she hnical feasil	n proprietors et with suita pility and eco	ship and par able example onomic feas	tnership e ibility

Basic Economics

Definition of economics – nature and scope of economics – basic concepts of economics – factors of production – demand analysis – definition of demand – Law of demand – Exception to law of demand – Factors affecting demand – elasticity of demand – demand forecasting – definition of supply – factors affecting supply – elasticity of supply – market structure – perfect competition – imperfect competition - monopoly – duopoly – oligopoly and bilateral monopoly.

Organization and Business Financing

Forms of business – proprietorship – partnership - joint stock company - cooperative organization – state Enterprise - mixed economy - Money and banking – kinds of banking - commercial banks - central banking functions - control of credit - monetary policy - credit instrument – Types of financing - Short term borrowing -

Long term borrowing - Internal generation of funds - External commercial borrowings - Assistance from government budgeting support and international finance corporations- analysis of financial statement- Balance sheet-profit and loss account- Funds flow statement- Examples in all members [09]

Financial Accounting and Capital Budgeting

The balance Sheet and related concepts – The profit and loss statement and related concepts – Financial ratio analysis – Cash flow analysis – fund flow analysis – Capital budgeting– Average rate of return – Payback period – Net present value and internal rate of return. [09]

Cost Analysis

Types of costing – traditional costing approach - activity based costing - fixed Cost – variable cost – marginal cost – cost output relationship in the short run and in long run – pricing practice – full cost pricing – marginal cost pricing – going rate pricing – bid pricing – pricing for a rate of return – appraising project profitability - cost benefit analysis – feasibility reports – appraisal process – technical feasibility - economic feasibility – financial feasibility.

Break Even Analysis

Basic assumptions –break even chart – managerial uses of breakeven analysis - applications of breakeven analysis in engineering projects. [09]

	Total Hours: 45
Text	book(s):
1	Khan, M Y, Jain, _Basic Financial Management, 3rd Edition, McGraw Hill Education, 2017.
2.	Maheshwari K. L., Varshney R.L., Managerial economics, 22 nd Edition, S Chand and Co., New Delhi,
۷.	,2014.
Refe	erence(s):
1.	Samuelson P.A, _Economics - An Introductory ', New Age Publications, New Delhi, 2009.
2.	Barthwal R.R., _Industrial Economics - An Introductory', New Age Publications, New Delhi, 2010.
3.	S.K.Bhattacharyya, John Deardon and Y.K.Koppikar, Accounting for Management Text and Cases'.
4.	V.L.Mote,Samuel and G.S.Gupta, 'Managerial Economics - Concepts and Cases', Tata McGraw Hill, 2011.
	Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	O						PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	2	1	2	3	2	3	1	2	1	3	3
50 HS 001 &	CO2	3	2	3	1	1	2	1	1	3	2	3	2	2	2
Engineering Economics	CO3	2	1	2	1	2	3	3	1	1	3	2	1	2	3
and Financial Accounting	CO4	3	2	3	3	2	2	1	2	2	1	3	2	3	2
	CO5	2	1	3	1	1	3	2	1	2	2	3	1	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018									
	51 MC E53 – Fundamentals of Arduino									
			B.E. Mecha	tronics Eng	ineering					
Semester	H	ours / Week		Total	Credit	N	ırks			
Semester	L	Т	Р	Hrs	С	CA	ES	Total		
VII	2	0	2	45	3	50	50	100		
	To provide	de knowledg	je of differer	nt processor	and controll	ers				
	To under	rstand conce	epts of Ardu	ino system						
Objectives	 To famili 	arize studer	its with Ardu	ino as IDE,	programmin	g language	& platform.			
	To provide	de knowledg	je of Arduino	boards and	d basic com	ponents.				
	 To Deve 	lop skills to	design and i	mplement v	arious smart	t system ser	nsors			
	At the end of	of the cours	e, the stude	ents will be	able to					
				ncluding rea		atics				
				vith a breadt						
Course				oller to make						
Outcomes			microcontro	oller to a ser	ial terminal t	to understar	nd communic	cation and		
	stand-ald					_				
	 Explore the provided example code and online resources for extending knowledge about the capabilities of the Arduino microcontroller 									
Introduction	capabiliti	ies of the Ar	duino micro	controller						

Introduction

Introduction to embedded system - Understanding Embedded System - Overview of basic electronics and digital electronics- Microcontroller vs. Microprocessor - Common features of Microcontroller. - Comparison

between the two - Different types of microcontrollers.

[09]

Arduino i/o Functions

Pins Configured as INPUT -Pull-up Resistors - Pins Configured as OUTPUT - pinMode Function - digital Write Function - analog Read function - Arduino Interrupts. [09]

Arduino Sensors

Arduino Humidity Sensor - Arduino Temperature Sensor - Arduino Water Detector / Sensor- Arduino PIR Sensor - Arduino Ultrasonic Sensor - Arduino Connecting Switch (Magnetic relay switches). [09]

Input to the controller& Communications

Using serial input. -Controlling LEDs with keys. - Keys as toggle switch. - Interfacing a piezo Buzzer - Using a buzzer as an alarm unit.

Parallel Communication - Serial Communication Modules - Types of Serial Communications - Arduino UART - GSM/GPRS Arduino Interfacing [09]

Applications(Arduino case studies)

Intelligent home locking system- Intelligent water level management system- Home automation using RFID-Real time clock-based home automation- Intelligent Automatic Irrigation System [09]

Experiments:

- 1. Study about basic interfacing various actuators
- 2. General hardware interfacing(LED, switch, seven segment display, Relay, LCD, buzzer)
- 3. Interfacing arduino with different sensor (Touch sensor, Temperature sensor, LDR, Humidity sensor, Moisture sensor, Accelerometer, IR sensor, Proximity sensors)

Total hours= 45 Text book: Raiesh Singh, Anita Gehlot, Bhupendra Singh, and SushabhanChoudhur "Arduino-Based Embedded Systems, Boca Raton, 2017 first edition Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide -Designing and 2 Optimizing System Software", 2004, Elseiver . Reference(s): ARM System -On -Chip Architecture, Furber, Steve. J. M. Hughes, "Arduino: A Technical Reference: A Handbook for Technicians, Engineers, and 2. Makers", O'Reilly Media, Inc.", 16-May-2016 Jeremy Blum, "Exploring Arduino: Tools and Techniques for Engineering Wizardry" 1st Edition, 3. NovellaBargains, 2017 4. Simon Monk" Programming Arduino: Getting Started with Sketches (Tab) 2nd Edition, Kindle Edition, 2016 Pre-requisite: NIL

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO	
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	2	3	2	3							1		2
51 MC E53 & Fundamentals of Arduino	CO2	2	2	3									1		3
	CO3	1	2	3	1								2		2
	CO4	2	2	3	2								2		2
	CO5	2	2	2	2			2					1		1

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution Open Elective

	K.S.Rangasamy College of Technology – Autonomous R2018													
	50 MC L01 - Industrial Safety Engineering B.E .Mechatronics Engineering													
		1	t	3.E .Meci	natronics Er	ngineering								
Semest	er	Н	lours / We	eek	Total hrs	Credit	M	laximum Marl	KS					
		L	T	Р		С	CA	ES	Total					
Open Elec	tive	3 0 0 45 3 50 50 100												
Objectives	• To	o forefron o stress o give de	nt the safe the import eep insight	ety manag ance of s t into occu		ices. g practices alth and sat	in industries. ety practices	followed in in	dustries.					
Course outcomes	1. C	At the end of the course the student will be able to 1. Comprehend the history, safety organization and functions of safety organization. 2. Investigate accidents and document accident reports.												

- 3. Follow safety norms adhering to engineering industry including fire fighting and first aid.
- 4. Identify occupational health and hygiene issues at industries.
- 5. Summarize the legislations and standards pertaining to occupational safety, health and environment.

Safety Management

Introduction-Key concepts, terminologies of safety-History and development of industrial safety-Formation of factories act and safety council-safety and productivity- safety and reliability-safety policy-safety organization, safety committee, safety budget- safety training. Role of management and government in industrial safety.

[09]

Accident Prevention

Definition and theories-accident-injury- -near miss-theories and principles of accident causation-principle of accident prevention- unsafe act and conditions – Human error analysis and safety-cost of accidents-accident reporting and investigation – reportable and non reportable accidents- accident indices. [09]

Safety in Engineering Industries

Hazard, risk, general safety rules- Hazard identification Techniques - Housekeeping - standard operating procedures - machine guarding - types and its application- benefits of good guarding systems.

Safety in welding and gas cutting - general safety consideration in material handling - manual handling - mechanical handling - Ergonomic consideration in material handling. Safety in use of electricity- Fire triangle - Classes of fire - Fire fighting equipments – First aid. [09]

Occupational Health and Industrial Hygiene

Toxicity, exposure limits and levels, Lethal Dose and Concentration -LD₅₀,LC₅₀- MSDS - types of hazards-exposure, acute effect, chronic effect- routes of entry: dose- response relationship- occupational diseases, - control measures - Industrial hygiene -functional units and activities of occupational health services, pre-employment and post-employment medical examinations –exposure monitoring - stress, fatigue. [09]

Safety Regulation and Certifications

Overview of Factories Act 1948 and Tamil Nadu Factories Rules 1950 – ISO 9001, ISO 14001, OHSAS 18001 and Integrated Management System – ISO 45001. [09]

Total Hours: 45 Text books(s): John V Grimaldi and Rollin H Simonds, "Safety Management", All India Traveller Book Seller, 5th Edition, 1. New Delhi, 2001. Roger L Brauer, "Safety and Health for Engineers", Wiley, Third Edition, 2016 Reference(s): Deshmukh. L M, "Industrial Safety Management: Hazard Identification and Risk control", 6th Edition, 1. Tata Mcgraw Hill, New Delhi, 2010 Phillip E Hagan, John F.Montgometry, James T.O'Reilly "Accident Prevention Manual for business and 2. Industry", 13th Edition, National Safety Council, Chicago, 2009. "The Factories Act 1948", Madras Book Agency, Chennai, 28th Edition, 2017 3. Heinrich, H.W., "Industrial Accident Prevention", 5th Edition, McGraw-Hill, California, 1980. 4.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO	
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	2	2	3		3	3	3		2	3	2	1	2	3
FO MO LOA 9 la divettial	CO2	1	2	3		3	3	3		2	3	1	1	2	2
50 MC L01 & Industrial Safety Engineering	CO3	1	1	2		2	2	2		2	2	2	1	3	2
	CO4	3	3	3	1	2	2	2	1	2	3	2	1	3	1
	CO5	1	1	3	2	2	3	3		3	3	1	1	3	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
	50 MC L02–Industrial Toxicology												
			B.E. Mech	natronics En	gineering								
Semester	i i	Hours / Wee	k	Total	Credit	N	laximum Ma	arks					
Semester	L	Т	Р	hrs	С	CA	ES	Total					
Open Elective	3												
Objectives	To proTo givTo em	 To provide clear insights about the hazard factor affecting target organs. To give an overview on epidemiologic studies. 											
Course Outcomes	At the end of the course the student will be able to 1. Describe the principles of toxicology routes of entry and features of principal target organs. 2. Identify the toxicology factors influencing human body. 3. Carry out basic interpretation of the results from Epidemiological studies. 4. Explain the toxic and health effects encountered in the workplaces. 5. Comprehend the facts about biological agents.												

Basic Principles of Toxicology

Definitions of acute, chronic, local systemic, allergic reaction, sensitizer, carcinogen, mutagen, teratogen and xenobiotic- basic pharmacokinetics, absorption, distribution, storage and elimination- Biotransformation of the hazardous substances and toxic effects: Dose –Response relationship-meaning of LD₅₀ and LC ₅₀ and general health effects like asphyxia, irritation, narcosis and reproductive disorders. [09]

Physiology and Target Organs

Respiratory system and the relevance of particle size and absorption - gases and vapours- absorption through the lungs and importance of solubility- the lung as target organ. The structure and function of skin – different layers and components- skin as target organ – general and peripheral nervous system – nervous system as target organ – circulatory system and composition of blood- blood as target organ – liver and the structure of lobules- liver as target organ – kidney and its structure – the role of homeostasis and excretion – kidney as target organ- reproductive system and intervention of hazardous substances with male and female system-reproductive system as target organ. [09]

Epidemiology

Definitions of cohort or case- referent, retrospective, prospective, mortality ratios, morbidity ratios- use of epidemiological data-limitations and restrictions – limitation of epidemiological studies -importance of study size and link to exposure standards - sources of information- hazardous substances and processes. [09]

Health Effects and Industrial Processes

International system for risk and safety phrases- Safety Data Sheets (SDS)- national databases including REACH – gases and vapours- dust and particulate matters- organic dusts and other dusts – metal and their compounds – common industrial processes – working with metals – surface coating and chromium plating – galvanizing and soldering- handling and processing that involve organic solvents- handling of solids and powders – smelting and refining of iron and steel foundries, mining, quarrying- oil and petroleum industry and pharmaceutical industry.

Biological Agents

The principal toxic effects of legionella –humidifier fever-infections of blood borne disease- definition of zoonoses – causes for infection- common examples of anthrax, leptospirosis and salmonellosis-moulds and pandemics – COVID19- genetic modifications. [09]

	Total Hours: 45 Hours
Text	book(s):
1.	"Guidelines on the Prevention of Toxic Exposures", World Health Organization, 2004.
2.	Eula Bingham, Barbara Cohrssen, Charles H Powell, "Patty's Industrial Hygiene and Toxicology", Wiley-
۷.	Interscience, 5 th Edition, 2005.
Refe	rence(s):
1.	Stephen M Roberts, Robert C James, Phillip L Williams, "Principles of Toxicology: Environmental and
١.	Industrial Applications", Wiley, 3rdEdition,2015.
2.	Bonita R, Beaglehole R, Kiellstrom T, "Basic Epidemiology", World Health Organization, 2nd Edition, 2006.
3.	John Timbrell, "Introduction to Toxicology", Taylor and Francis, 3rd Edition,2002.
4.	P L Williams and James L Burson, "Industrial Toxicology", Van nostrand Reinhold Publication, 1985.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO	
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	1		2		2	3	3	3	3	3		3	2	1
50 MO L 00 8 la dustrial	CO2	2		2		3						3	2	2	2
50 MC L02 & Industrial Toxicology	CO3	3	2	1	1			1						3	2
Toxioology	CO4	3	2	1	1	1		2				1		3	2
	CO5	2	2	1	1			1				2		3	2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
					gic Control	lers							
			B.E. Mechat	ronics Eng	ineering								
Semester	He	ours / Week		Total	Credit	M	aximum Ma	arks					
Semester	L	Т	Р	hrs	С	CA	ES	Total					
Open Elective	3												
Objectives	To train tTo familiTo famili	he students arize the stu	to create lad dents in PLO dents in PLO	dder diagram C Timers for C Counters f	ns. industrial pro or industrial	ogic Controll ocess contro process cont	l.						
	At the end o		•										
_						ous industrie	s.						
Course		ıdder diagrar											
Outcomes	Apply PLC timers for industrial process control.												
	4. Apply PLC counters for industrial process control.												
	5. Test the	5. Test the PLC based system and troubleshoot the errors associated with it.											

Basics of PLC

History & Architecture of PLC – Principle operation - Selection criteria – PLCs versus computers – Programming devices. Hardware demonstration. [09]

PLC Programming

Ladder logic symbols - Various Input and Output devices - PLC ladder diagram - Latching relays - Converting simple relay diagram in to PLC relay ladder diagram - Practices on Developing circuits from Boolean Expression.

[09]

Programming Timers

Introduction to timing delay - Mechanical Timing Relays - Timer Instructions - ON Delay - OFF Delay - Retentive Timer - Cascading Timers - Practices on real time applications using timers. [09]

Programming Counters

Introduction to Counters - Types of Counters - UP Counter, Down Counter, UP DOWN and Cascading counters - Practices on real time applications using Counters. [09]

PLC Maintenance and Case Studies

PLC maintenance - internal PLC faults - faults external to PLC - programmed error - watch dogs -safety -hardware safety circuits - troubleshooting. Case Studies: Robot controller, process control-Simple Programs [09]

Total Hours: 45

Text b	ook:
1.	Frank D. Petruzella "Programmable Logic Controller", Tata McGraw-Hill Publication, 5th Edition, 2016.
2.	John W. Webb and Ronald A. Reis "Programmable Logic Controllers: Principles and Applications", Prentice
۷.	– Hall India Publication, 5 th Edition, 2013.
Refer	ence(s):
1.	W. Bolton, "Programmable Logic Controllers", Elsevier Publication, 5 th Edition, 2009.
2.	E.A.Parr "Programmable Controllers An engineer's guide", Elsevier Publication 3 rd Edition, 2014.
3.	Stuart A Boyer, "SCADA Supervisory Control and Data Acquisition, ISA, 4th Revised Edition, 2016.
4.	Krishnakant, "Computer based Industrial Control", PHI, New Delhi,5th Edition, 2017.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO										PSO			
COURSE NAME)	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1		1	3		3		1	3		1		1		2
50 MC L03 &Programmable Logic Controllers	CO2	3		1		1	2	2	1	2	2	3	2	2	
	CO3		2	2	2	1	1	2	2					3	
	CO4	3		2		2	2	3	1	2	3		2		2
	CO5	1	3		1	1	2	2	2	1	2	1	2	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R2018													
	50 MC L04 – Virtual Instrumentation												
	B.E. Mechatronics Engineering												
Semester	ŀ	Hours / Wee	k	Total	Credit	l. N	laximum Ma	arks					
Semester	L	Т	Р	Hrs	С	CA	ES	Total					
Open Elective	3												
Objectives	To proTo imTo lea	 To introduce the architecture and functional description of Virtual instrumentation. To provide an overview of Graphical programming concepts in virtual instrumentation. To impart knowledge in programming structure of the software. To learn about data acquisition and its interfacing technique to software. 											
Course Outcomes	 Explain Summort program Select Formula 	 To familiarize the student with the application. At the end of the course, the students will be able to Explain the architecture of Virtual instrumentation and its elements. Summarize the GSD model and develop programs using the modern tools of graphical programming. Select the appropriate structuring concept to be used in graphical programming Formulate the procedure to install DAQ in various OS and its interfacing methods Develop Applications using Virtual instrumentation tools. 											

Introduction

Historical perspective and traditional bench-top instruments - general functional description of a digital instrument- block diagram of virtual instrument - advantages of virtual instruments over conventional instruments - architecture of a virtual instruments.

Graphical Programming

Lab VIEW - graphical user interfaces- controls and indicators - data types - data flow programming - editing Debugging and running a virtual instrument - graphical programming palettes and tools - front panel objects - function and libraries. [09]

Programming Structure

FOR Loops, WHILE Loops, CASE Structure, Formula nodes, Sequence structures - Arrays and Clusters - Array Operations - Bundle - Bundle/Unbundle by name, graphs and charts - String and file I/O - High level and Low level file I/O's - Attribute modes Local and Global variables. [09]

Data Acquisition

Basics of DAQ Hardware and Software -Concepts of Data Acquisition and terminology - Installing Hardware, Installing drivers -Configuring the Hardware- Digital and Analog I/O function -Real time Data Acquisition-Simple programs in VI-Advanced concepts in Lab VIEW. [09]

Applications

Instrument Control- Development of process Database Management System- Simulation of systems using VI-Development of Control system -Image acquisition and processing -Motion control- Robotics. [09]

Total hours 45 Text book: 1 Jovitha Jerome, "Virtual Instrumentation Using LabVIEW", PHI learning PVT Ltd., New Delhi, 2016. 2. Garry M Johnson, "LABVIEW Graphical Programming", Tata McGraw Hill book Co, New Delhi, 2012.

Reference(s):

1. Jeffrey Travis and Jim Kring, "LabVIEW for Everyone: Graphical Programming made Easy and Fun", Tata

		McGraw Hill book Co, New Delhi, 2011.
	2	Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", Tata McGraw Hill, New Delhi,
	۷.	2010.
	2	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	ა.	Control", Newnes, 2000.
Ī	4.	LabVIEW: Basics I & II Manual, National Instruments, Bangalore, 2011.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО												PSO	
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC L04 & Virtual Instrumentation	CO1	1	3		2	1	2		2		2	1		2	2
	CO2	1		2			2	1		3	3	1	2	3	
	CO3	3	1		3				2		2			3	3
	CO4	2		2	2	1	2	3		1	2	3	3		1
	CO5	3	1		1	2	1	1	3	1	1	1	3	1	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.				gy – Autono		18			
			50			l Automatio	n				
					atronics En	gineering	T				
Semester		H	<u>ours / Week</u>	<u> </u>	Total	Credit	Maximum Marks				
Ocinicator		L	Т	Р	hrs	С	CA	ES	Total		
Open Elective		3	0	0	45	3	50	50	100		
Objectives		 To develop the student's knowledge in various robot structures and their workspace. To develop student's skills in perform kinematics analysis of robot system. To provide the student with knowledge of the singularity issues associated with the operation of robotic systems. To provide the student with some knowledge and analysis skills associated with automated inspection and testing. To provide the student with some knowledge and skills associated with robot control. 									
Course Outcomes	At the end of the course, the student will be able to: 1. Explain the basic concepts of working of robot. 2. Analyze the function of sensors in the robot. 3. Equip students to write programs for automatic functioning of a robot. 4. Solve the problems related to robot design and control. 5. Select and employ suitable robots for a specific application.										

Basic Concepts

Definition and origin of robotics – Different types of robotics – Various generations of robots – Degrees of freedom– Laws of robotics – Dynamic stabilization of robots. [09]

Power Sources and Sensors

Hydraulic, Pneumatic and Electric drives – Determination of HP of motor and gearing ratio – Variable speed arrangements – Path determination – Micro machines in robotics – Machine vision – Ranging – Laser – Acoustic – Magnetic, Fiber optic and tactile sensors. [09]

Automated Materials Handling

The material handling function, Types of material handling equipment, Analysis for material handling systems, Design of the system, Conveyor systems, Automated guided vehicle systems. [09]

Automated Inspection and Testing

Inspection and testing, Statistical quality control, Automated inspection principles and methods, Sensor technologies for automated inspection, Coordinate measuring machines, Other contact inspection methods, Machine vision, Other optical inspection methods. [09]

Applications

Multiple robots—Machine interface—Robots in manufacturing and not-manufacturing application—Robot cell Design—Selection of a robot —PUMA 560 & SCARA robots-Automatic inspection—Computer integrated manufacture—CNC(Computer Numerical Control).

Hands-on Session(s)

- 1. Study of different types of links and joints used in robots, components of robots with drive system and end effectors, classification of robots based on configuration and application.
- 2. Robot programming exercises for pick and place (Point-to-point and continuous path programming).
- 3. Signal conversion of sensing and digitizing the images using sampling and quantization analysis.

Total Hours:45

	l otal Hours:45
Text	book:
1	Saeed B.Niku, "Introduction to Robotics Analysis, Systems, Applications", Wiley India Private limited,
ı	Second Edition, 2011.
2	MikellP.Groover, Mitchell Weiss, Roger N.Nagel Nicholas G.Odrey, "Industrial Robotics Technology,
	Programming and Applications ", McGraw Hill Book Company, 2016.
Refe	rence(s):
1	Mikell P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", Pearson
1	Education Asia, 2015.
2	Deb. S.R., "Robotics Technology and Flexible Automation", John Wiley, USA 2010.
3	Vokissw .Anadham and Y.Narahari, "Performance Modeling of Automated Manufacturing
3	Systems", Prentice Hall India Pvt. Ltd, 2015.
	John, J. Craig, "Introduction to Robotics: Mechanics & Control", Pearson Publication, Fourth Edition,

Pre-requisite: Nil

2018.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & COURSE NAME	СО	PO												PSO	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
50 MC L05 & Robotics and Automation	CO1	3	3	3	2	1	2	2		2	1	2	3	3	2
	CO2	3	3	3	2	1	2	3		2	1	2	3	2	1
	CO3	3	3	3	2	1	2	3		2	1	2	3	3	2
	CO4	3	3	3	2	1	2	3		2	1	2	3	2	1
	CO5	3	3	3	2	1	2	3		2	1	2	3	2	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution