K. S. Rangasamy College of Technology

(Autonomous)

Curriculum & Syllabus of B.Tech. Biotechnology (For the batch to be admitted in 2020 – 2024)

R 2018

Courses Accredited by NBA, Accredited by NAAC 'A++' grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India. The Vision and Mission of the Department of Biotechnology are

Vision

To produce competent Scientists, Technologists, Entrepreneurs and Researchers in Biotechnology through quality education.

Mission

- To be recognized as a place of excellence in teaching-learning through continual improvement process (Place ofexcellence and continual improvement)
- To work in close liaison with the industry to achieve socio-economic development through biotechnological ventures (Socio-economic development)
- To facilitate students to perform as competent professional Biotechnologists (Professional Competence)

The Vision and Mission of K.S.Rangasamy College of Technology are

Vision

To produce the most competent Scientists, Engineers, Technologists, Entrepreneurs, Managers and Researchers through Quality education.

Mission

To achieve academic excellence in Science, Engineering, Technology, Management and Research through objective and innovative teaching methods, dedicated and duty conscious faculty, continual and consistent updating of facilities, welfareand quality improvement of the faculty and a system of continual process improvement.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1	Graduates are professionally competent in Biotechnology to solve problems in environmental, food,
•	biochemical and biomedical engineering and technology

PEO2 Graduates demonstrate proficiency and practice biotechniques through life-long learning.

PEO3 Graduates perform as an individual and or member of a team with professional and ethical behavior.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design /development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions insocietal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports anddesign documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independentand life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

Engineering Graduates will be able to:

PSO1: Design and execute industry oriented experiments in biotechnology using modern tools and technology

PSO2: Apply the knowledge of bioengineering and Technology to demonstrate research skills and the technology for commercialization

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMMEOUTCOMES (POs)

The B.Tech., Biotechnology Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme					Pr	ogramı	ne Out	comes				
Education al Objective s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
PEO 1	3	3	2	3	2	3	1	1	2	1	3	1
PEO 2	2	2	3	2	3	1	3	1	2	1	2	3
PEO 3	3	2	3	2	2	2	1	3	3	2	3	2

Contributions: 1- Some contribution, 2-Average contribution, 3- Strong contribution

MAPPING OF COURSE WITH PROGRAMMEOUTCOMES (POs)

Yea r	Semeste r	Cours e	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
- 1	I	Communication Skills I	1.2	2	1.2	2	1.8	1.8	1.8	1.8	2.8	3	2.6	3
		Calculus and Differential Equations	3	3	2.8	2.4	2.4	0	0	0	0	0	0	0
		Applied Chemistry	3	3	2.8	2.6	2.2	2.4	2.6	2	1.75	1	1.4	2
		Engineering Mechanics	3	2	2	3	0	0	0	0	0	0	0	2

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

BOS - CHAIRMAN Signature

l		ı	1			1		1		1		1	
	Programming for Problem Solving	1	3	0	2.4	2.8	0	0	2	0	0	0	1.8
	Constitution of India								2	2	1		2
	Engineering Chemistry Laboratory	3	3	3	3	3	3	2.4	2	2	0	2.2	1.6
	Programming for Problem solving Laboratory	1	3	0	2.4	2.8	0	0	2	0	0	0	1.8
II	Communication Skills II	2	2.2	1.8	2.4	1.8	2.4	2.4	2.4	2.6	3	2.2	3
	Laplace Transform and Complex Variables	3	3	2.4	2.2	2.8	0	0	0	0	0	0	2
	Applied Physics for Biotechnology	3.0	2.8	2.8	2.2	2.2	2.3	1.8	1.6	1.4	2.0	2.7	2.7
	Basic Electrical Engineering	3.0	3.0	1.7	1.5	2.0	2.0	2.0	2.0	1.7	2.0	2.3	1.5
	Engineering Graphics	3	2.6	3	3	3	1	1	1	0	3	1.4	1.4
	Environmental Science	2.8	2.4	2.6	2.6	2.2	2.8	3	3	2.8	2.8	2.5	2.2
	Engineering Physics Laboratory	3	3	2	3	2	2	1	1	2	2	1	3
	Engineering Practices Laboratory	3	2	2	1	3	2	2	3	1	2	2	1
III	Transform and Numerical Methods	3	3	2.4	2.4	2	0	0	0	0	0	0	3
	Biochemistry	3.0	2.8	2.6	2.8	2.3	3.0	3.0	0.0	2.0	2.3	3.0	2.8
	Microbiology	2.8	2.8	2.4	2.2	2.6	2.6	2	2.8	2.4	2.4	1.6	2.6
	Cell and Molecular Biology	3	3	2	3	2.6	2.5	2.5	3	2	2.25	3	2
	Principles of Chemical Engineering	2.4	2.6	3	1.8	2.8	2	1.6	3	3	3	2.5	2.6
		0	0	0	0	0	3	2	3	3	0	2	3
	Biochemistry Laboratory	2.6	1.8	2.6	2.25	2.8	2	2.5	3	2	2	1.75	2.8
	Microbiology Laboratory	2.6	2.2	2.2	2.4	2	1.8	2.2	2	1.6	2	2	2.4
	Career Competency								_	_	_	_	_
	Development – I	1	1	1	1	1	2	1	2	3	3	2	3
IV		2.6	1.8	2	2.4	1.8	1.6	1.8	1.2	1.6	2	1.8	2
			3	2.6	2.8	3	3	3	3	3	3	2.6	3
	Protein and Enzyme Engineering	2.7 5	2.8	2.8	2.8	2.75	3	2	1	2	2.5	2.2	3
	Biochemical Thermodynamics	2.8	2.3	2.4	2.6	2.6	2.6	2.2	1.5	1.7	2.4	3.0	1.8
	Startups and Entrepreneurship	2.8	2.6	3	2.4	2.4	2.5	2.5	2.3	2.7	2	2.3	2.4
	Genetic Engineering Laboratory	3.0	2.0	2.0	2.0	2.0	2.7	2.5	2.0	1.4	2.0	2.0	2.0
	Protein and Enzyme Engineering Laboratory	2.8	2.8	2.8	2.8	2.6	2.0	2.0	1.0	2.3	2.3	2.2	3.0
	Career Competency Development – II	2	2	1	1	1	2	1	1	2	3	2	3
V	Plant and Animal Biotechnology	3	2		3				2.4	2.4		3	2.2
	Bioinformatics	3.0	2.6	2.7	2.2	2.8			2.0	2.8	2.3	1.8	2.8
	Bioprocess Technology	2.4	2.8	2.8	2.8	2.8	2.8	2.5	1.3	2.0	3.0	3.0	3.0
	Heat and Mass Transfer Operations	2.8	3.0	2.6	2.6	2.2	2.8	2.4	2.3	2.0	2.8	2.2	2.6
		Constitution of India Engineering Chemistry Laboratory Programming for Problem solving Laboratory II Communication Skills II Laplace Transform and Complex Variables Applied Physics for Biotechnology Basic Electrical Engineering Engineering Graphics Environmental Science Engineering Physics Laboratory Engineering Practices Laboratory Engineering Practices Laboratory III Transform and Numerical Methods Biochemistry Microbiology Cell and Molecular Biology Principles of Chemical Engineering Ethics For Engineers Biochemistry Laboratory Microbiology Laboratory Career Competency Development – I IV Statistical Methods Genetic Engineering Protein and Enzyme Engineering Biochemical Thermodynamics Startups and Entrepreneurship Molecular Biology and Genetic Engineering Laboratory Protein and Enzyme Engineering Laboratory Career Competency Development – II V Plant and Animal Biotechnology Bioinformatics Bioprocess Technology Heat and Mass Transfer	Solving Constitution of India Engineering Chemistry Laboratory Programming for Problem solving Laboratory I Communication Skills II Laplace Transform and Complex Variables Applied Physics for Biotechnology Basic Electrical Engineering 3.0 Engineering Graphics Engineering Physics Laboratory III Transform and Numerical Methods Biochemistry Microbiology Cell and Molecular Biology Aprinciples of Chemical Engineering Ethics For Engineers Biochemistry Laboratory Career Competency Development – I IV Statistical Methods Genetic Engineering Biochemical Thermodynamics Startups and Entrepreneurship Molecular Biology and Genetic Engineering Biochemical Thermodynamics Startups and Entrepreneurship Molecular Biology and Genetic Engineering Laboratory Protein and Enzyme Engineering 2.8 Startups and Entrepreneurship Molecular Biology and Genetic Engineering 3.0 Laboratory Protein and Enzyme Engineering Laboratory Career Competency Development — I 2.8 V Plant and Animal Biotechnology Bioinformatics Bioprocess Technology Leat and Mass Transfer Bioprocess Technology Leat and Mass Transfer Bioprocess Technology Leat and Mass Transfer	Solving									

1 1		Universal Human Value	1											
		Universal Human value	3	3	2	2	2	3	3	3	3	3	2	1
		Plant and Animal Biotechnology Laboratory	3	2	2	2	2.5	2.7	2	2	2	2.5	2.7	2
		Bioprocess Technology Laboratory	2.8	2.6	2.4	2.2	2.4	2.4	2.2	2	2	2.4	2.6	2.6
		Career Competency Development – III	2	1	2	2	1	1	1	1	2	3	2	3
	VI	Biopharmaceutical Technology	3	2.4	2.6	2	2	2.7 5	3	2.8	2.4	2	2	3
		Molecular Modeling and Drug Designing	3	2	2.4	2	2.6	2	2.8	3	2.5	2.8	2.3	2.8
		Chemical Reaction Engineering	3	2	2.8	2	2.8	2	2.8	2.5	2.5	2.5	2.5	3
		Bioinformatics and Molecular Modeling Laboratory	2.8	2.2	2.5	2	2.8	2	3	2	2.2	2.6	2.4	2.6
		Chemical Engineering Laboratory	3	2	2	2	2.6	2	2	2	2.5	3	2.7	3
		Career Competency Development – IV	2	1	2	2	1	2	1	1	2	3	2	3
IV	VII	Engineering Economics and Financial Accounting	2.5	2.8	2.5	3	2.8	2	2.2 5	0	2.7 5	2.5	2.2	3
		Immunology	2.6	2.2	2.8	2.2	2	2.4	2.4	2	2.4	2.2	2.6	2
		Downstream Processing	3	3	2.4	2.3	2	2.5	2.5	2.5	2.3	2	2.25	2.8
		Research Skill Development	3	3	2.5	2.2	2	2	2.5	2	2.2 5	3	2.25	2.2
		National Cadet Corps (Air Wing)	3	2	1	1	3	3	3	3	3	3	3	3
		National Cadet Corps (Army Wing)						1		3				
		Immunology Laboratory	2	3	3	3	2.8	3	2.2 5	3	2	2.25	2.2	3
		Downstream Processing Laboratory	2.8	3	2.2	3	2.6	2	3	2.7	2.5	2.3	2.5	3
		Project Work - Phase I	2.8	3	2.2	3	2.6	2	3	2.7	2.5	2.3	2.5	3
		Career Competency Development – V	2	1	2	2	1	2	1	1	2	3	2	3
		Internship	2	3	3	3	2	2	1	1	2	2	2	3
	VIII	Bioethics and Biosafety	2	3	3	2.6	0	3	3	3	0	0	3	0
		Research Skill Development-II	3	3	3	3	3	0	0	3	3	2	3	3
1		Project Work - Phase II	3	3	3	3	3	0	3	3	3	2	3	3

PROFESSIONAL ELECTIVES (PE)

Year	Semester	Course	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
				ELE	CTIV	E – I								
III	V	Environmental Biotechnology	2.8	2.75	2.4	2.7	2.5	2.3	2.25	3	2.8	2	2	2.5
		Biodiversity and itsconservation	3	3	3	2	3	2	3	1				3

1	1					1	1					1		
		Environmental Hazards and Management	1	2	3	1	3	1	3	1	1	1	1	1
		Food Biotechnology		3	3	3	3	2	2	3	2		3	3
		Fermentation Technology	2.4	3	2.2	2.6	2.8	2.8	2.6	2	2.25	2.2	3	2.8
	I.]		ELE	CTIV	E – II	I	l						
III	VI	Cancer Biotechnology		3	2	3	3			1			2	3
		Clinical Immunology		3		3	3						2	3
		Stem Cell Technology		3	2	3	3			2			2	3
		Tissue Engineering	2.8	2.8	2.6	3	2.5	2	2	2.3	3	2.5	2.5	2.5
		Biomedical Instrumentation	3	3	2	3	3						2	3
				ELE	CTIVI	E — III	l	l						
III	VI	Bioresource Technology	3	3	2	3	3						3	3
		Biophysics	3	3	3	2	2	2	2	2	2	1	2	2
		Metabolic Engineering	2	3	2	2	3			1			2	3
		Bioreactor Design	2.6	2.6	2.8	2.6	3	2.6	2.8	2	2	3	2.8	2.8
		Bioprocess Modelingand Simulation	2	3	3	3	3	3	3	1	1	3	3	3
		Simulation		FLF	CTIVI	 = _ I\/								
IV	VII	Nanobiotechnology	2.6	2.3	2.8	2.8	2.7	2	2	2	2.7	2	2.2	2.6
		Bioinstrumentation	3	3	3	3	3	_	_	_ <u>_</u>		_	2	3
		Toxicology		3	2	3	3			2			2	3
		Genomics												-
		and	3	3	3	3	3			1			3	3
		Proteomics												
		Agricultural biotechnology	3	3	3	2	3	2	3	1				3
				ELE	CTIV	<u>E – V</u>								
IV	VII	Research Design andAnalysis	3	2	3	3	3	2		2			2	3
		Marine Biotechnology	2.7	2.5	2.3	2.8	2.5	2	2.3	2	2.3	2	3	3
		Human Physiology and anatomy		3		3	3			1			2	3
		Biofuel Technology		2		3	2			1			2	3
		Systems Biology	3	3	3	3	3							3

SEMESTER I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 EN 001	Communication Skills I	HS	2	1	1	0	2
2.	50 MA 001	Calculus and Differential Equations	BS	4	3	1	0	4
3.	50 CH 001	Applied Chemistry	BS	3	3	0	0	3
4.	50 ME 003	Engineering Mechanics	ES	4	3	1	0	4
5.	50 CS 001	Programming for Problem Solving	ES	3	3	0	0	3
6.	50 MY 001	Constitution of India	MC	2	2	0	0	0
		PRACTICALS						
7.	50 CH 0P1	Engineering Chemistry Laboratory	BS	4	0	0	4	2
8.	50 CS 0P1	Programming for Problem solving Laboratory	ES	4	0	0	4	2
			Total	26	15	3	8	20

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 EN 002	Communication Skills II	HS	2	1	1	0	2
2.	50 MA 002	Laplace Transform and Complex Variables	BS	4	3	1	0	4
3.	50 PH 006	Applied Physics for Biotechnology	BS	3	3	0	0	3
4.	50 EE 001	Basic Electrical Engineering	ES	3	3	0	0	3
5.	50 ME 002	Engineering Graphics	ES	6	2	0	4	4
6.	50 MY 002	Environmental Science	MC	2	2	0	0	0
		PRACTICALS						
7.	50 PH 0P1	Engineering Physics Laboratory	BS	4	0	0	4	2
8.	50 ME 0P1	Engineering Practices Laboratory	ES	4	0	0	4	2
			Total	28	14	2	12	20

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 MA 007	Transform and Numerical Methods	BS	4	3	1	0	4
2.	50 BT 301	Biochemistry	PC	3	3	0	0	3
3.	50 BT 302	Microbiology	PC	3	3	0	0	3
4.	50 BT 303	Cell and Molecular Biology	PC	3	3	0	0	3
5.	50 BT 304	Principles of Chemical Engineering	PC	4	3	1	0	4
6.	50 MY 003	Ethics for Engineers	MC	2	2	0	0	0
		PRACTICALS					I	
7.	50 BT 3P1	Biochemistry Laboratory	PC	4	0	0	4	2
8.	50 BT 3P2	Microbiology Laboratory	PC	4	0	0	4	2
9.	50 TP 0P1	Career Competency Development - I	EEC	2	0	0	2	0
			Total	29	17	2	10	21

SEMESTER IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 MA 013	Statistical Methods	BS	5	3	2	0	4
2.	50 BT 401	Genetic Engineering	PC	3	3	0	0	3
3.	50 BT 402	Protein and Enzyme Engineering	PC	3	3	0	0	3
4.	50 BT 403	Biochemical Thermodynamics	PC	4	3	1	0	4
5.	50 ** L**	Open Elective – I	PC	3	3	0	0	3
6.	50 MY 014	Start-ups and Entrepreneurship	MC	2	2	0	0	0
		PRACTICALS						
8.	50 BT 4P1	Molecular Biology and Genetic Engineering Laboratory	PC	4	0	0	4	2
9.	50 BT 4P2	Protein and Enzyme Engineering Laboratory	PC	4	0	0	4	2
10.	50 TP 0P2	Career Competency Development – II	EEC	2	0	0	2	0
			Total	30	17	3	10	21

SEMESTER V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY	•					
1.	50 BT 501	Plant and Animal Biotechnology	PC	3	3	0	0	3
2.	50 BT 502	Bioinformatics	PC	3	3	0	0	3
3.	50 BT 503	Bioprocess Technology	PC	4	3	1	0	4
4.	50 BT 504	Heat and Mass Transfer Operations	PC	4	3	1	0	4
5.	50 MY 004	Universal Human Value	MC	2	2	0	0	3*
6.	50 BT E1*	Elective – I	PE	3	3	0	0	3
7.	50 ** L**	Open Elective – II	OE	3	3	0	0	3
		PRACTICALS						
8.	50 BT 5P1	Plant and Animal Biotechnology Laboratory	PC	4	0	0	4	2
9.	50 BT 5P2	Bioprocess Technology Laboratory	PC	4	0	0	4	2
10.	50 TP 0P3	Career Competency Development – III	EEC	2	0	0	2	0
			Total	32	20	2	10	24

^{*}UHV extra credit is offered.

SEMESTER VI

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	51 BT 601	Biopharmaceutical Technology	PC	3	3	0	0	3
2.	50 BT 602	Molecular Modelling and Drug Designing	PC	3	3	0	0	3
3.	50 BT 603	Chemical Reaction Engineering	PC	4	3	1	0	4
5.	50 BT E2*	Elective – II	PE	3	3	0	0	3
6.	50 BT E3*	Elective – III	PE	3	3	0	0	3
7.	50 ** L**	Open Elective – III	OE	3	3	0	0	3
	PRACTICALS							

10.	50 TP 0P4	Career Competency Development – IV	EEC Total	2 29	0 18	0	2	0 23
9.	50 BT 6P2	Chemical Engineering Laboratory	PC	4	0	0	4	2
8.	50 BT 6P1	Bioinformatics and Molecular Modelling Laboratory	PC	4	0	0	4	2

SEMESTER VII

S. No.	Course Code	Course Title	Categor y	Contact Periods	L	T	Р	С		
	THEORY									
1.	50 HS 001	Engineering Economics and Financial Accounting	HS	3	3	0	0	3		
2.	50 BT 701	Immunology	PC	3	3	0	0	3		
3.	50 BT 702	Downstream Processing	PC	4	3	1	0	4		
4.	50 BT E4*	Elective – IV	PE	3	3	0	2	3		
5.	50 BT E5*	Elective – V	PE	3	3	0	0	3		
6.	50 ** L**	Open Elective – IV	OE	3	3	0	0	3		
7.	50 AC 001	Research Skill Development -I	AC	1	1	0	0	0		
8.	50 AB 00*	NCC/NSS/NSO/YRC/RRC/Fine Arts	-	2	2	0	2	3		
		PRACTICALS	•							
9.	50 BT 7P1	Immunology Laboratory	PC	4	0	0	4	2		
1	50 BT 7P2	Downstream Processing Laboratory	PC	4	0	0	4	2		
0.										
11.	50 BT 7P3	Project Work - Phase I	EEC	4	0	0	4	2		
12.	50TP0P5	Career Competency Development – V	EEC	2	0	0	2	0		
13.	50 TP 0P6	Internship	EEC	0	0	0	0			
								1		
		Total		36	21	1	18	26		

*NCC/NSS/NSO/YRC/RRC/Fine Arts - 3 credits can be waived or offered as extra credits SEMESTER VIII

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	51 BT 801	Bioethics and Biosafety	PC	3	3	0	0	3
2.	50 AC 002	Research Skill Development- II	AC	1	1	0	0	0
		PRACTICALS						
3.	50 BT 8P1	Project Work - Phase II	EEC	16	0	0	16	8
4.	50 TP 0P6	Internship	EEC	0	0	0	0	1/2\$
			Total	20	4	0	16	11

\$ extra credits will be offered based on the duration of the internship

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 166

Note: HS- Humanities and Social Sciences including Management Courses, BS- Basic Science Courses, ES-Engineering Science Courses, PC-Professional Core Courses, PE-Professional Elective Courses, OE- Open Elective Courses, EEC-Employability Enhancement Courses, MC- Mandatory Courses, AC – Audit Courses& GE – General

HUMANITIES AND SOCIAL SCIENCES (HS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 EN 001	Communication Skills I	HS	2	1	1	0	2
2.	50 EN 002	Communication Skills II	HS	2	1	1	0	2
3.	50 HS 001	Engineering Economics and Financial Accounting	HS	3	3	0	0	3

BASIC SCIENCE (BS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 MA 001	Calculus and Differential Equations	BS	4	3	1	0	4
2.	50 CH 001	Applied Chemistry	BS	3	3	0	0	3
3.	50 CH 0P1	Engineering Chemistry Laboratory	BS	4	0	0	4	2
4.	50 MA 002	Laplace Transform and Complex Variables	BS	4	3	1	0	4
5.	50 PH 006	Applied Physics for Biotechnology	BS	3	3	0	0	3
6.	50 PH 0P1	Engineering Physics laboratory	BS	4	0	0	4	2
7.	50 MA 008	Transform and Numerical Methods	BS	4	3	1	0	4
8.	50 MA 013	Statistical Methods	BS	4	3	1	0	4

ENGINEERING SCIENCES (ES)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 ME 003	Engineering Mechanics	ES	4	3	1	0	4
2.	50 CS 001	Programming for Problem Solving	ES	3	3	0	0	3
3.	50 CS 0P1	Programming for Problem Solving Laboratory	ES	4	0	0	4	2
4.	50 EE 001	Basic Electrical Engineering	ES	3	3	0	0	3
5.	50 ME 002	Engineering Graphics	ES	6	2	0	4	4
6.	50 ME 0P1	Engineering Practices Laboratory	ES	4	0	0	4	2

PROFESSIONAL CORE (PC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 BT 301	Biochemistry	PC	3	3	0	0	3
2.	50 BT 302	Microbiology	PC	3	3	0	0	3
3.	50 BT 303	Cell and Molecular Biology	PC	3	3	0	0	3
4.	50 BT 304	Principles of Chemical Engineering	PC	4	3	1	0	4
5.	50 BT 3P1	Biochemistry Laboratory	PC	4	0	0	4	2
6.	50 BT 3P2	Microbiology Laboratory	PC	4	0	0	4	2
7.	50 BT 401	Genetic Engineering	PC	3	3	0	0	3
8.	50 BT 402	Protein and Enzyme Engineering	PC	3	3	0	0	3
9.	50 BT 403	Biochemical Thermodynamics	PC	4	3	1	0	4

10.	50 BT 4P1	Molecular Biology and Genetic Engineering Laboratory	PC	4	0	0	4	2
11.	50 BT 4P2	Protein and Enzyme Engineering	PC	4	0	0	4	2
12.	50 BT 501	Plant and Animal Biotechnology	PC	3	3	0	0	3
13.	50 BT 502	Bioinformatics	PC	3	3	0	0	3
14.	50 BT 503	Bioprocess Technology	PC	4	3	1	0	4
15.	50 BT 504	Heat and Mass Transfer Operations	PC	4	3	1	0	4
16.	50 BT 5P1	Plant and Animal Biotechnology Laboratory	PC	4	0	0	4	2
17.	50 BT 5P2	Bioprocess Technology Laboratory	PC	4	0	0	4	2
18.	51 BT 601	Biopharmaceutical Technology	PC	4	3	0	1	3
19.	50 BT 602	Molecular Modeling and Drug Designing	PC	3	3	0	0	3
20.	50 BT 603	Chemical Reaction Engineering	PC	4	3	1	0	4
21.	50 BT 6P1	Bioinformatics and Molecular Modeling Laboratory	PC	4	0	0	4	2
22.	50 BT 6P2	Chemical Engineering Laboratory	PC	4	0	0	4	2
23.	50 BT 701	Immunology	PC	3	3	0	0	3
24.	50 BT 702	Downstream Processing	PC	5	3	1	0	4
25.	50 BT 7P1	Immunology Laboratory	PC	4	0	0	4	2
26.	50 BT 7P2	Downstream Processing Laboratory	PC	4	0	0	4	2
27.	51 BT 801	Bioethics and Biosafety	PC	3	3	0	0	3

ROFESSIONAL ELECTIVES (PE)SEMESTER V, ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 BT E11	Environmental Biotechnology	PE	3	3	0	0	3
2.	50 BT E12	Biodiversity and its conservation	PE	3	3	0	0	3
3.	50 BT E13	Environmental Hazards and Management	PE	3	3	0	0	3
4.	50 BT E14	Food Biotechnology	PE	3	3	0	0	3
5.	50 BT E15	Fermentation Technology	PE	3	3	0	0	3

SEMESTER VI, ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 BT E21	Cancer Biotechnology	PE	3	3	0	0	3
2.	50 BT E22	Clinical Immunology	PE	3	3	0	0	3
3.	50 BT E23	Stem Cell Technology	PE	3	3	0	0	3
4.	50 BT E24	Tissue Engineering	PE	3	3	0	0	3
5.	50 BT E25	Biomedical Instrumentation	PE	3	3	0	0	3

SEMESTER VI, ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 BT E31	Bioresource Technology	PE	3	3	0	0	3
2.	50 BT E32	Biophysics	PE	3	3	0	0	3
3.	50 BT E33	Metabolic Engineering	PE	3	3	0	0	3
4.	50 BT E34	Bioreactor Design	PE	3	3	0	0	3
5.	50 BT E35	Bioprocess Modeling and Simulation	PE	3	3	0	0	3

SEMESTER VII, ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	51 BT E41	Nanobiotechnology	PE	4	2	0	2	3
2.	51 BT E42	Bioinstrumentation	PE	4	2	0	2	3
3.	51 BT E43	Toxicology	PE	4	2	0	2	3
4.	51 BT E44	Genomics and Proteomics	PE	4	2	0	2	3
5.	51 BT E45	Agricultural Biotechnology	PE	4	2	0	2	3

SEMESTER VII, ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 BT E51	Research Design and Analysis	PE	3	3	0	0	3
2.	51 BT E52	Marine Biotechnology	PE	3	3	0	0	3
3.	51 BT E53	Human Physiology and Anatomy	PE	3	3	0	0	3
4.	50 BT E54	Biofuel Technology	PE	3	3	0	0	3
5.	50 BT E55	Systems Biology	PE	3	3	0	0	3

MANDATORY COURSES (MC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 MY 001	Constitution of India	MC	2	2	0	0	0
2.	50MY003	Ethics for Engineers	MC	2	2	0	0	0
3.	50 MY 002	Environmental Science	MC	2	2	0	0	0
4.	50 MY 014	Start-ups and Entrepreneurship	MC	2	2	0	0	0
5.	50 MY 004	Universal Human Value	MC	2	2	0	0	3*

SEMESTER VII & SEMESTER VIII, AUDIT COURSES (AC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 AC 001	Research Skill Development- I	AC	1	1	0	0	0
2.	50 AC 002	Research Skill Development-II	AC	1	1	0	0	0

GENERAL ELECTIVE (GE)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 GE 00*	NCC/NSS/NSO/YRC/RRC/Fine Arts	GE	2	2	0	2	3*

OPEN ELECTIVES IV / V / VI (OE)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 BT L01	Agricultural Engineering	OE	3	3	0	0	3
2.	50 BT L05	Basics of Genetic Engineering	OE	3	3	0	0	3
3.	50 BT L06	Animal Studies in Food Research	OE	3	3	0	0	3
4.	50 BT L07	Basics of Bioinformatics	OE	3	3	0	0	3
5.	50 BT L08	Production Technology of Agricultural and Food Processing Machinery	OE	3	3	0	0	3
6.	50 BT L09	Pollution and its management	OE	3	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSES(EEC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	P	С
1.	50 TP 0P1	Career Competency Development - I	EEC	2	2	0	0	-
2.	50 TP 0P2	Career Competency Development - II	EEC	2	2	0	0	-
3.	50 TP 0P3	Career Competency Development - III	EEC	2	2	0	0	-
4.	50 TP 0P4	Career Competency Development - IV	EEC	2	2	0	0	-
5.	50 TP 0P5	Career Competency Development - V	EEC	2	2	0	0	-
6.	50 BT 6P3	Internship	EEC	0	0	0	0	1/2\$
7.	50 BT 7P3	Project Work - Phase I	EEC	4	0	0	4	2
8.	50 BT 8P1	Project Work - Phase II	EEC	16	0	0	16	8

ONE CREDIT/ SKIL BASED/ VALUE ADDED COURSE

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 BT SE01	Medical Coding and Pharmaco vigilance	OC	3	3	0	0	1
2.	50 BT SE02	Phytochemical and Natural products	OC	3	3	0	0	1
3.	50 BT SE03	Quality Control in Biotechnology	OC	3	3	0	0	1
4.	50 BT SE04	Bio business Development	OC	3	3	0	0	1
5.	50 BT SE05	Molecular Diagnostics	OC	3	3	0	0	1

SUMMARY

C No	Category			Cre	edits Pe	r Seme	ster			Total	Percentage
S.No.	Category	ı	II	III	IV	٧	VI	VII	VIII	Credits	%
1.	HS	2	2	-	-	-	-	3	-	07	04.22
2.	BS	9	9	4	4	-	-	-	-	26	15.66
3.	ES	9	9	-	-	-	-	-	-	18	10.84
4.	PC	-	-	17	14	18	14	11	3	77	46.38
5.	PE	-	-	-	-	3	3	3	6	15	09.36
6.	OE	-	-	-	3	3	3	3	-	12	07.23
7.	EEC	-	-	-	-	-	1	2	8	11	06.63
8.	MC	-	MC I	MC II	MC III	-	MC IV	-	-	-	-
7	Total	20	20	21	21	24	21	22	17	166	100

	K.S.Ra	angasamy	/ College of	Technolog	y – Autono	mous (R20	018)					
		50	EN 001 - C	ommunica	tion Skills	l						
			Commor	n to all Brai	nches							
Semester	Hou	ırs/Week		Total	Credit	Maximur	n Marks					
	L	Т	Р	Hours	С	CA	ES	Total				
I	1	1	0	30	2	40	60	100				
Objective(s)	 academic and To help learne To help learne To equip stud To facilitate le 	To help learners improve their vocabulary and to enable them to use words appropriately in different academic and professional contexts To help learners develop strategies that could be adopted while reading texts To help learners acquire the ability to speak effectively in English in real life and career related To equip students with effective speaking and listening skills in English To facilitate learners to enhance their writing skills with coherence and appropriate format effectively										
Course Outcomes	of unfamiliar CO2: Able to sele presentation CO3: Skim & scan skills	Il literacy to r words ct, compile to the textuse eas from s	ools to develone & synthesize all content & iresources to de	op listening of the information	skills & maken using corusing sof unfamerent content	mmunicatio iliar words t t and suppo	n strategies to develop re ort with relev	es to infer meanings for an effective ora eading & vocabulary vant details in write. oud reading				

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Listening

Listening to Short Audios – Watching Short Videos - answering MCQs and Vocabulary Check- Listening to Short Comprehension Passages – Guided Listening – Listening to songs and cognizing the lyrics. [6]

Speaking

Brainstorming – Group Discussion (unstructured) – Self Introduction - Just a Minute (JaM) - Short Narratives – Cue Cards – Picture Cards – Conversational Practices(Preliminary) [12]

Reading Silent Reading – Scanning and Skimming - Reading short and Medium Passages – Cognition of Theme and Inferential Meaning - Academic and Functional Vocabulary List (350 words) – Word Power Check - Loud Reading –Modulation and Pronunciation Check

Writing

Functional Vocabulary and Word Power – Data Interpretation - Paragraph Writing – Letter Writing –Email Writing – Conversational Fill Ups

Total Hours 30

Text book:

- 1 M.Ashraf Rizvi, 'Effective Technical Communication', 2 nd Edition, McGraw Hill Education (India) PrivateLimited, Chennai, 2018
- 2 Norman Lewis, 'Word Power Made Easy The Complete Handbook for Building a Superior Vocabulary Book', Penguin Random House India, 2020

References:

- 1. Paul Emmerson and Nick Hamilton, 'Five Minute Activities for Business English', Cambridge University Press, New York, 2005.
- 2. Arthur Brookes and Peter Grundy,' *Beginning to Write: Writing Activities for Elementary and Intermediate Learners*', Cambridge University Press, New York, 2003.
- 3. Michael McCarthy and Felicity O Dell, 'English Vocabulary in Use: Upper Intermediate', Cambridge University Press, New York, 2012.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	2	2	2	2	2	3	3	3	3	1	2
CO ₂	2	2	1	3	2	2	2	2	3	3	3	3	1	3
CO ₃	1	3	1	2	2	2	2	2	2	3	3	3	1	1
CO4	1	2	2	2	2	2	2	2	3	3	3	3	1	1
CO ₅	1	1	1	1	1	1	1	1	3	3	1	3	1	2

		_			ology – Auto	•	2018)					
		50 N		culus and L nmon to All	Differential E	equations						
		lours / Wee		Total	Credit	M	aximum Ma	rks				
Semester	L	T	P	hrs	C	CA	ES	Total				
I	3	1	0	60	4	50	50	100				
Objectiv e(s)	 traditiona The syllatheengin Matrix Al This courole in the discipline 	 The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling theengineering problems mathematically and obtaining solutions. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. This course deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines. Development of mathematical skills to solve the differential equations. 										
Course Outcome s	At the end of CO1: ApplicO2: Come CO3: Anal CO4: Application	of the cours y Cayley - H pute the equyze Jacobia y various monthing	e, the studer lamilton theo uation of the n methods a ethods in diff	nts will be aborem and to circle of curund constrair erential equality.	le to reduce quad vature, evolu led maxima a	ratic form int ite and enve and minima ve linear and	o canonical lope of the cfunctions.					

Note:The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

MATRICES

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values and Eigen vectors – Cayley-Hamilton theorem (without proof) – Orthogonal transformation of a symmetric matrix to diagonal form –Reduction of quadratic form to canonical form by orthogonal transformation - Nature of quadratic form.

[8]

DIFFERENTIAL CALCULUS

Curvature – radius of curvature (Cartesian and polar co-ordinates) – Centre of curvature – Circle of curvature – Involute and evolute–envelope. [9]

FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation – Homogeneous functions and Euler's theorem – Jacobians – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Constrained maxima and minima : Lagrange's Method of Undetermined Multipliers.

[9]

DIFFERENTIALEQUATIONS

Linear differential equations of second and higher order with constant co-efficient - R.H.S is $e^{\Box x}$, $\sin \Box x$, $\cos \Box x$, $x^n n \Box 0$, $e^{\Box x} \sin \Box x$, $e^{\Box x} \cos \Box x$, $e^{\Box x} x^n$, $x^n \sin \Box x$ and $x^n \cos \Box x$ — Differential equations with variable coefficients: Cauchy's and Legendre's form of linear equation — Methodof variation of parameters — Simultaneous first-order linear equations with constant co-efficients.

INTEGRALCALCULUS

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper Im

Total Hours: 45 + 15 (Tutorial) = 60

Text book:

- Grewal B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. Web site: https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html
- Veerarajan.T., "Engineering Mathematics", for Semesters I and II, Tata McGraw Hill Publishing Co., New Delhi., 2010.

Reference(s):

1 Kreyszig Erwin, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons (Asia)Limited, New

	Delhi, 2	2016.												
2			ons,calc	ulus of v	ariations	and its	application	ons- Dr.	P. N. Ag	rawal, D	r. D. N. I	⊃andey,	NPTEL (online
	videoc		:41 ₅ A	- li 4i	- D. C	· I/ Cum	40 Dr. Co			atris Cal	D	t Cama	th Day N	UDTEL
3	online		with Ap	plication	s - Dr. S	. K. Gup	ita Dr. Sa	anjeev K	umar, ivi	atrix Solv	ers -Pro	oi.Somna	am Roy i	NPIEL
	course													
4		samy P.,	, Thilaga	vathy K.	, Gunav	athy K., '	Enginee	ering Mat	thematic	s-II", S.C	hand &a	amp;Con	npany Lt	d, New
	Delhi.									5040		5010		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3								3	
CO2	3	3	2	2	2								3	
CO3	3	3	3	2	2								3	
CO4	3	3	3	3	2								3	
CO5	3	3	3	2	3								3	

	K.S.R	angasamy	College of	Technology	/ – Autonon	nous (R20	18)	
		50	CH 001 -	Applied Che	mistry			
			Commo	n to all Brar	nches			
Semester	Но	urs/Week		Total	Credit		Maximum	Marks
Semester	L	Т	Р	Hours	С	CA	ES	Total
I	3	0	0	45	3	50	50	100
Objective(s)	 To rationalize electro negative To analyze the methods To help the least of the endow with To recall the best of the electric transfer of transfer o	vity, atomic and the thermody arners to an an overvie	and molections and molections and molecule (manual fundations) also be	ular orbitals ctions, conco ardness of w oscopy princ	ept of cells rater and its iples and its	and corro removal application	sion of met	als and its control
Course Outcomes	diagrams CO2: Analyse the CO3: Recognize CO4: Interpret the	thermodyn the sources e ranges of arious spectr	amic functi ,hardness the electroroscopic tec	ons, cell pote of water and magnetic spe chniques	entials and contials and contia	orrosion w	ith its contro	olecular energy

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Periodic properties

Effective nuclear charge - atomic and ionic sizes - ionization energies - electron affinity – electro negativity - polarizability oxidation states - penetration of orbitals- variations of s, p, d and f orbital energies of atoms - electronic configurations, ionic dipolar and Vander- waals interactions. Hard soft acids and bases (HSAB).

Molecular orbitals of diatomic molecules - plots of the multi centre orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbital of butadiene and benzene. [9]

Chemical equilibria and corrosion

Thermodynamic functions - energy - entropy - enthalpy- free energy - Gibbs-Helmholtz equation - Van 't Hoff isotherm. Cel potentials - Nernst equation - applications - EMF series - applications - Poteniometric and Conductometrictitrations. Corrosion- types of corrosion - chemical and electrochemical corrosion - mechanism - Factors influencing corrosion - Corrosion control methods (impressed current and sacrificial anode methods) –Corrosion inhibitors. [9]

Water chemistry

Sources - Water quality parameters - impurities in water and their effects. Hardness - Estimation of hardness -effect of hard water in various industries-Softening of water- zeolite process- ion-exchange process - reverse osmosis – electro dialysis. Boiler troubles – methods of prevention.

Analytical techniques and applications

Absorption laws - Ultra violet spectroscopy (UV) - Principle - Instrumentation (Block diagram) - applications. Infra red spectroscopy (IR)- Instrumentation (Block diagram) - selection rule - types of fundamental vibrations - applications. Nuclear magnetic resonance spectroscopy (NMR) - Principle - selection rule - Instrumentation (Block diagram) - chemical shift factors influencing the chemical shift -applications. Atomic absorption spectroscopy (AAS) - Principle - Instrumentation (Block diagram)-applications.

Concepts in Organic chemistry

Structural isomerism- types - Stereoisomerism - geometrical (Maleic and Fumaric acids) - optical isomerism (Lactic and Tartaric acids) - symmetry - chirality- enantiomers - diastereomers - optical activity - absolute configurations.

Introduction to reactions - substitution - addition - oxidation - reduction - cyclization and ring openings - mechanism.

[9] Total Hours | 45

-	Tavt	book:	Total flours 43
Ļ	IEVI		and the second s
	1	Jain. P.C. and Monica Jain, "Engineering Chemistry"	, Dhanpatrai publishing co. New Delhi, 14 th edition, 2015.
Ī	2	Vairam, S.and Suba Ramesh, "Engineering	Wiley India Private Limited, 2 nd edition, January 2013.

	Chem	istry",												
Refer	ences													
1.	Puri B 2017.	8. R., Sh	arma L.F	R., and F	Pathania	M.S., "F	rinciples	s of Phy	sical Ch	emistry",	Vishal Pu	ublishing	Compan	y, Delhi,
2.	Dara.	S.S, "A	Text Bo	ok of En	gineerin	g Chemi	stry", S	Chand	& co. Ltd	d., 2014.				
3.	Bahl E	3.S. and	Arun Ba	ahl, "Adv	anced C	rganic C	Chemistr	y", S.Cl	hand, Ne	ew Delhi,	2014			
4.	Sharn	na BK. Ir	nstrumer	ntal meth	nods of o	chemical	analysi	s, Goel	Publishi	ng House	e Meerut,	23 th edit	ion; 2014	٠.
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	2	2	2		1	1	2		1
CO2	3	3	3	2	2	2	3	2	1	1	1	1	3	3
CO ₃	3	3	3	3	2	3	3	3	3	1	2	3	2	2
CO4	3	3	3	3	3	3	3	1	2	1	2	3	3	3
CO ₅	3	3	3	3	2	2	2	2	1	1	1	1	3	3

	K.S.Ran	<u> </u>			/ – Autonom	ous (R20	18)								
		50 N			Mechanics										
			Commor	to all Bran	ches										
Semester	ester Hours/Week Total Credit Maximum Marks														
Semester	L	T	Р	Hours	С	CA	ES	Total							
I	3	1	0	60	4	50	50	100							
Objective(s) Course Outcomes	 To learn a procequilibrium in the equilibrium in the equilibrium in the equilibrium. To learn the equilibrium in the equilibrium	two and the quilibrium of properties ic concepted the concepted the concepted and vector and vector and knowledge	ree dimens of rigid bod s of surface of dynamic ept of frictio e student v analytical te	ions. ies such as s and solids of particle n and elemential be able echniques for c concepts	frames, trust by using diff s. ents of rigid b to: or analysing f	ses, beams ferent theo body dynar forces insta	s. rem. nics. atically dete								
	CO4: Analyse and CO5: Draw a shea calculation o	ar force and	d bending r	moment diag	grams, analy	sis of rigid	body dynar	mics and							

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumber of hours indicated

Basics and Statics of Particles

Introduction -Units and Dimensions-Laws of Mechanics—Principle of transmissibility-Lame's theorem, Parallelogram and triangular Law of forces—Vectors—Vectorial representation of forces and moments.

Vector operations

Addition, subtraction, dot product, cross product-Coplanar Forces–Resolution and Composition of forces– Equilibrium of aparticle–Force in space-Equilibrium of a particle in space-Equivalent systems of forces-Single equivalent force.

Equilibrium of Rigid Bodies

Free body diagram—Types of supports and their reactions—requirements of stable equilibrium—Static determinacy, Moments and Couples—Moment of a force about a point and about an axis—Vectorial representation of moments and couples—Varignon's theorem-Equilibrium of Rigid bodies in two dimensions.

Trusses: Introduction, axial members, calculation of forces on truss members using method of joints-Method of sections.[9] **Properties of Surfaces and Solids**

Determination of Areas and Volumes-Centroid, Moment of Inertia of plane area (Rectangle, circle, triangle using Integration Method; T section, I section, Angle section, Hollow section using standard formula) - Parallel axis theorem and perpendicular axis theorem- Polar moment of inertia -Mass moment of inertia of thin rectangular section -Relation between area moment of inertia and mass momentofinertia.

Dynamics of Particles

Displacement, Velocity, acceleration and their relationship—Relative motion -Projectile motion in horizontal plane—Newton's law—Work Energy Equation – ImpulseandMomentum. [9]

Elements of Rigid Body Dynamics, friction and Beams

Translation and Rotation of Rigid Bodies: Velocity and acceleration—General Plane motion: Crank and Connecting rod mechanism.

Friction

Frictional force-Laws of Coloumb friction-Simple contact friction-Ladder friction-Rolling resistance-Ratio of tension in belt.

Transverse bending on beams

Types of beams: Supports and loads – Shear force and bending moment in beams – Cantilever, simply supported andoverhanging beams. [9]

Total Hours (L:45+T:15)	60
Tayt books	

Text book:

1 Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas PublishingHouse Pvt.

		¹ Edition,												
2	Beer, F.	P and J	ohnson .	Jr. E.R, '	'Vector I	Mechanio	cs for Er	ngineers	", Statics	s and Dy	namics,	McGraw	/-	
	HillInter	national	, 11 th Ed	ition, 20	16.			_						
	Referer	nces:												
1.	Jayakur	mar, V. a	and Kum	ar, M, E	ngineeri	ng Mech	anics, P	HI Learr	ning Priv	ate Ltd,	New Del	lhi, 2012		
2.										, Pearso	n Educa	tion Asia	Pvt.Ltd	., 2016.
3.	Bansal	R.K," En	gineerin	g Mecha	nics" La	xmi Pub	lications	(P) Ltd,	2011.					
	Th													
4.	Irving I	H. Sham	nes, Eng	ineering	Mechan	ics – Sta	atics and	d Dynam	ics, Pea	rson Ed	ucation /	Asia Pvt.	Ltd, 4 E	Edition,
		rving H. Shames, Engineering Mechanics – Statics and Dynamics, Pearson Education Asia Pvt. Ltd, 4 Edition, 2003.												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3								2	3	1
CO2	3	2	2	3								2	3	1
CO3	3	2	2	3								2	3	1
CO4	3	2	2	3								2	3	1
CO5	3	2	2	3								2	3	1

	K.S.R	angasamy	College of	Technolog	y – Autonom	ous (R20)18)	
		50 CS 00	1 - Progran	mming for I	Problem Sol	ving		
			Commor	n to all Bran	nches			
Semester	Но	urs/Week		Total	Credit		Maximu	m Marks
Jennester	L	T	Р	Hours	С	CA	ES	Total
I	3	0	0	60	3	50	50	100
	• To learn the e	volution of c	omputers a	nd examine	s the most fu	ındamenta	al element o	of the C
	language							
Objective(s)	 To examine th 	e execution	of branchin	ng, looping s	statements, a	rrays and	strings.	
	To understand	the concep	t of function	ns , pointers	and the tech	nniques of	putting the	em to use
	 To apply the k 							
	To enhance t					ge and re	trieval of da	ata
	At the end of th	•						
		-		representati	on of probler	n and rec	ognize the	concepts of data
		d expressio						
Course	CO2: Annotate	e the conce	ot of console	e Input and	output featur	es and ex	amine the	execution of
Outcomes	branchin	ıg, looping s	tatements,	arrays and s	strings			
	CO3: Recogni	ze the conc	epts of func	tions, recur	sion, storage	class spe	cifies and p	pointers with its
	features	3						
	CO4: Compre	hend basic	concepts of	structures,	unions ,user	defined d	ata types a	nd preprocessor
	CO5: Interpret	t the file con	cepts using	proper star	ndard library f	functions		

Introduction to Computer and Programming

Introduction to Computers - Evolution of computers - Generations of computers and Programming Languages – Introduction to components of a computer system -Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart—Pseudocode with examples. From algorithms to programs—variables (with data types)— Type Qualifiers - Constants — Operators —expressions and precedence

Suggested Activities:

Knowing the history of computers Developing Pseudocodes and flowcharts for real life activitiesDeveloping algorithms for basic mathematical expressions using arithmetic operations.

Suggested Evaluation Methods:

Group Discussion on Introduction to Computers and its generation Assignments on pseudocodes and flowcharts

I/O ,Branching ,Loops and Arrays

Console I/O– Unformatted and Formatted Console I/O – Conditional Branching and Loops -Writing and evaluation of conditionals and consequent branching -Iteration and loops - Arrays (1-D, 2-D), Character arrays and Strings [9]

Suggested Activities:

Simple programs using I/O statements, arithmetic operations Implementation of

Functions: Scope of a Function – Library Functions and User defined functions - Function Prototypes – Function Categorization - Function Arguments - Arguments to main function - The return Statement -Recursion- Passing Arrays to Functions – Storage class Specifiers. Introduction to Pointer Variables - The Pointer Operators - Pointer Expressions - Pointers and Arrays - Generating a Pointer to an Array - Indexing Pointers – Dynamic memoryallocation [9]

Suggested Activities:

Develop simple applications like Calculator, Various Conversion Process using functions Develop a simple programs by applying pointer cobcepts

Suggested Evaluation Methods:

Tutorial for the above activities

Group discussion on Function and Pointers

Structures, Unions, Enumerations, Typedef and Preprocessors

Structures - Arrays of Structures- Arrays and Structures within Structures - Passing Structures to Functions - Structure Pointers - Unions – Bit Fields - Enumerations – type def – The preprocessor and comments. [9]

Suggested Activities:

Develop simple programs using Structures, Unions, Enumerations, Typedef and PreprocessorsSuggested Evaluation Methods:

Tutorial for the above activities

File

File: Streams – Reading and Writing Characters - Reading and Writing Strings -, File System functions - RandomAccess Files.

Suggested Activities:

Develop simple applications to apply files operations

Suggested Evaluation Methods:

Tutorial for the above activities Group discussion on Files Concepts

												Tota	l Hours	60
Text	book:													
1	Herbe	ert Schild	lt, "The (Complete	e Refere	nce C",	Fourth E	dition,	Tata Mc	Graw Hill	Edition, 2	2010.		
2	Byron	Gottfrie	d, "Prog	ramming	g with C"	, Third E	dition, N	/lcGraw	Hill Edu	cation, 2	014.			
Refer	ences	:												
1.	Balag	urusamy	/ E. "Pro	grammir	ng in AN	SI C", S	eventh E	dition,	Tata Mc	Graw Hill	Edition, I	New Dell	ni, 2016.	
2.	Brian	W. Kern	ighan ar	nd Denn	is M. Rit	chie, "C	Program	nming L	anguage	e", Prenti	ce-Hall.			
3.	Reem	a Thare	ja, "Com	ıputer Fι	undamer	ntals and	l Prograi	mming	in C", Se	econd Edi	tion, Oxfo	ord Edca	tion, 2016	6.
4.	King k	K N. "C F	Program	ming: A	Modern	Approac	ch", Seco	ond Edi	tion, W.\	W.Norton	, New Yo	rk, 2008.		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3		2	2							1		
CO ₂	1	3		3	3			2				2	3	
CO ₃	1	3		2	3			2				2		1
CO4	1	3		3	3			2				2	2	
CO ₅	1	3		2	3			2				2		1

	K.S.Ra		College of 0 MY 001 - C	_	-	nous R20	18)	
				to all Bran				
Semester	Hou	rs/Week		Total	Credit		Maximu	m Marks
Semester	L	T	Р	Hours	С	CA	ES	Total
I	2	0	0	30	-	100	-	100
Objective(s)	andentitlement years of Indiant To address the 1917and its imt To gain knowle To acquire knowle	e growth o t to civil ar n nationalise role of so npact on the edge on bi	f Indian opining economicsm. Decialism in India draft II passing netion of election	on regardir rights as wo dia after the ing of the Ir tion commi	ng modern Incell as the eme e commencer ndian Constit	dian intelle ergence o	ectuals' cor f nationhod	nstitutional role od in the early
	At the end of the CO1: Discuss the					r the bulk (of fns befo	re the arrival of
	Gandhi in Ind	•		ioi oivii rigii	ito ili iliaia 10	. alo baik (5010	
	CO2: Discuss the		•		•		rmed the	
Course			ocial reforms					
Outcomes	CO3: Discuss the Under the le		nces surroun of Jawaharla					

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

History of Making of the Indian Constitution

History - Drafting Committee, (Composition & Working)

[6]

Philosophy of the Indian Constitution

Preamble - Salient Features

[6]

Contours of Constitutional Rights & Duties

Fundamental Rights - Right to Equality - Right to Freedom - Right against Exploitation -Right to Freedom of Religion - Cultural and Educational Rights - Right to Constitutional Remedies - Directive Principles of State Policy - Fundamental Duties.

Organs of Governance

Parliament - Composition - Qualifications and Disqualifications - Powers and Functions Executive - President - Governor - Council of Ministers - Judiciary, Appointment and Transfer of Judges, Qualifications - Powers and Functions.

[6]

Local Administration

District's Administration head: Role and Importance, - Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation - Pachayat raj: Introduction, PRI: Zila Pachayat - Elected officials and their roles, CEO Zila

Text book:

1 The Constitution of India, 1950 (Bare Act), Government Publication

2 S.N, Busi, Ambedkar, B.R., "Framing of Indian Constitution", 1st Edition, 2015.

References:

1. Basu, D.D., "Introduction to the Constitution of India", Lexis Nexis, 2015.

2. M.P. Jain, "Indian Constitution Law", 7th Edition, Lexis Nexis, 2014.

3. S.R. Bhansali, Textbook on The Constitution of India, Universal Publishers, 2015

4. M.P. Jain, Outlines of Indian Legal and Constitutional History, Lexisnexis, 2014

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1								2	2	1		2	1	1
CO2								2	2	1		2	1	1
CO3								2	2	1		2	1	1
CO4								2	2	1		2	1	1
CO5								2	2	1		2	1	1

		30 CH		ngineering C		iboratory		
			Con	nmon to all Br	anches	1		
Semester	H	ours / Weel	(Total Hrs	Credit	M	laximum Mar	ks
Semester	L	Т	Р	TOTAL FILS	С	CA	ES	Total
I	0	0	4	60	2	60	40	100
Objective(s)	 To fa To e sess 	acilitate data nable the le sions.	interpreta arners to g	al skills of the lition. Let hands-on e. Industrial and e	rperience or			d in theory
Course Outcomes	CO1: Estim CO2: Estim CO3: Estim CO4: Estim healt CO5: Estim	nate the amonate t	bunt of hare bunt of bare bunt of ferr bunt of acid verages, s bunt of ferr	lents will be a dness, alkalinit um chloride ar ous ion bypoted by pH metry a oil, effluent and ous ion by speof corrosion by	y, chloride ic ad mixture of ntiometry and apply the d other biolog ctrophotome	f acids by c e knowledg gical samp etry	conductometry ge of pH Dete	

LIST OF EXPERIMENTS

- 1. Estimation of hardness of water by EDTA method.
- 2. Estimation of alkalinity of water sample.
- 3. Estimation of chloride content in water sample (Argentometricmethod).
- 4. Determination of dissolved oxygen in boiler feed water (Winkler'smethod).
- 5. Estimation of barium chloride by conductometric precipitation titration.
- 6. Estimation of mixture of acids by conductometric titration.
- 7. Estimation of ferrous ion by potentiometric titration.
- 8. Estimation of HCI, beverages and other biological samples by pH meter.
- 9. Estimation of iron content by spectrophotometrymethod.
- 10. Determination of corrosion rate and inhibitor efficiency by weight loss method.

Total hours: 60

Lab Manual

- 1 Vairam S and Suba Ramesh, "Engineering Chemistry", Wiley India Private Limited , Delhi, 2nd edition, January 2013.
- Dara S.S. "A Text Book on Experiments and Calculations Engineering", S.Chand & Co., Ltd., 2nd edition,2003

Reference

Mendham. J, Denney. R.C, Barnes. J.D, and Thomas. N.J.K, "Vogel's Text Book of Quantitative ChemicalAnalysis", Pearson Education, 6th edition, 2009.

- Vermani, O P., and A K Narula, "Applied Chemistry: Theory And Practice, New Age International (P) Ltd., Publishers, 2nd edition, January 2020
- 3 Gary D. Christian, "Analytical Chemistry", John Wiley & Sons, 6th edition, 2007.
- 4 Chatwal Anand, "Instrumental Methods of Chemical Analysis", Himalaya Publications, 5th Edition, 2019.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	3	3	2		3	2	2	3
CO2	3	3	3	3	3	3	2	3	1		2	1	1	2
CO3	3	3	3	3	3	3	3	2	3		2	1	3	3
CO4	3	3	3	3	3	3	2	1			2	3	1	2
CO5	3	3	3	3	3	3	2	1			2	1	3	2

V.C. Dan account. Callage of Tachmalage. Autonomous D. 2040

LIST OF EXPERIMENTS

- 1. Implementation of Simple computational problems using various formulas.
- 2. Implementation of Problems involving Selection statements.
- 3. Implementation of Iterative problems e.g., sum ofseries.
- 4. Implementation of 1D Array manipulation.
- 5. Implementation of 2D Array manipulation.
- 6. Implementation of String operations.
- 7. Implementation of Simple functions and different ways of passing arguments to functions and RecursiveFunctions.
- 8. Implementation of Pointers
- 9. Implementation of structures and Union.
- 10. Implementation of Bit Fields, Typedef and Enumeration.
- 11. Implementation of Preprocessor directives.
- 12. Implementation of File operations.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3		2	2							1		
CO2	1	3		3	3			2				2	3	3
CO3	1	3		2	3			2				2	2	2
CO4	1	3		3	3			2				2	3	3
CO5	1	3		2	3			2				2	3	2

		K.S.Ranga	asamy Coll	ege of Techn	ology–Auto	nomous (R	2018)	
			50 EN 00	2 – Communi	cation Skills	s II		
			Coi	mmon to all E	ranches			
Semester		Hours / We	ek	Total hrs	Credit	M	laximum Marl	ks
	L	T	Р		C	CA	ES	Total
<u>ll</u>	1	1	0	30	2	40	60	100
Objective(s)	To heTo he careeImpro	lp learners d lp learners a r related situ ve listening,	levelop stra acquire the a ations. observation	ssional contex tegies that cou ability to speak nal skills, and p and delivery s	uld be adopte and write ef problem solvi	fectively in I	English in real	lifeand
Course Outcomes	CO1: Ident the li CO2: Use effec CO3: Make utiliz CO4: Use conv	tify speaker's stening cont communicat tive or al interior inferences ing digital literations of acentions of acentical controls.	s purpose a cent cion strategi eractions and predict eracy tools accurate se cademic wri	dent will be a and tone, comp es, vocabulary tions, develop on textual con ntence structu ting and use p	rehend relation and appropriate reading speet apprehension res with functional reactions.	riate gramm ed, build aca tional vocab ther feedbac	atical structure ademic vocabu	es for ulary by he writing.

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based onthe number of hours notified against each unit in the syllabus.

Advanced English Listening Module

Extended Listening to Podcasts – Listen and Watch Video Clips - answering Inferential Multiple Choice Questions and Vocabulary Check- Listening to Lengthy Discourses – Structured Listening – Listening to Songs and Cognizing the Lyrics-Listening to popular speeches, news briefs and stories [6]

Oral Communication

Debates – Group Discussion (Structured) and rotate roles – Elevator Speech – Prepared Talk – Extempore – Brief Technical presentations- Spin-a-Yarn – Short Film reviews – talk on silent videos – Dialogues and Role plays (Intermediate & Higher Level)–Interviews

Critical Reading Process

Silent Reading – Scanning and Skimming - Reading comprehension with logical reasoning questions – Cognition of Theme and Inferential Meaning – advanced Academic and Functional Vocabulary List (1000words) – word webs and semantic threads - Loud Reading – Modulation and Pronunciation Check – Mind maps – Note making – Deep Reading Skills

Academic Writing Practices

Sentence Equivalence and Text completion tasks – Data Interpretation - Essay Writing – Letter Writing – Business Emails – Conversational Fill Ups-Rewordify (select a text and simplify/enhance the language)- Reports

Total Hours: 30

Text book:

1 M.Ashraf Rizvi, 'Effective Technical Communication', 2 nd Edition, McGraw Hill Education (India) Private Limited, Chennai, 2018

Norman Lewis, 'Word Power Made Easy - The Complete Handbook for Building a Superior Vocabulary Book', Penguin Random House India, 2020

Reference(s)

- PaulEmmerson and Nick Hamilton , 'Five Minute Activities for Business English', Cambridge UniversityPress, N.York, 2005
- Ruth Wainryb, 'Stories: Narrative Activitiess for The Language Classroom', Cambridge University Press,N.York, 2005
- 3 Stuart Redman, 'English Vocabulary in Use: Upper Intermediate', Cambridge University Press, N.York,2006

4 https://www.khanacademy.org/test-prep/sat/sat-reading-writing-practice

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	1	2	2	2	3	3	2	3	1	2
CO2	2	2	2	3	2	2	2	3	3	3	2	3	1	2
CO3	2	2	2	2	2	2	2	2	2	3	2	3	1	3
CO4	2	3	2	3	2	3	3	2	2	3	3	3	1	2
CO5	2	2	2	2	2	3	3	3	3	3	2	3	1	2

	K. S. F	Rangasamy	College of	Technology	- Autonom	ous R2018								
	50	MA 002 - La	aplace Tran	sform and C	Complex Vai	riables								
		Con	mon to All	Branches										
Samastar	Semester Hours / Week Total hrs Credit Maximum Marks													
Semester	L	T	Р		С	CA	ES	Total						
II	3	1	0	60	4	50	50	100						
	Multiple integration is used to solve problems involving volume and surface area.													
a.			•	•										
Objective(s)	• Introduce the fundamental ideas of the functions of complex variables and developing a clear													
			damental co	ncepts of co	omplex analy	/sis such a	s analytic fu	nction and						
	understanding of the fundamental concepts of complex analysis such as analytic function and complex integral.													
		Identify and construct complex - differentiable function.												
				ilicientiy solv	ing the probl	ems that oc	cur in various	s branches						
	of engineering At the end of th			will be able	to									
	CO1: Evaluate do					na functions								
	CO2: Analyze the		•	•										
Course	divergencet		opio oi vocio	i daldalad to	vomy Groon	o, otolio o i	and Oddoo							
Outcomes	CO3: Construct th		unction and b	oilinear trans	formation.									
	CO4: Apply Cauc					em to evalua	ate the compl	ex						
	integrals.	,												
	CO5: Apply Lapla	ce transforn	n techniques	for solvina d	differential ed	uations.								
Note: The hou	urs given against e	each topic ar	e of indicative	e. The facul	ty have the f	reedom to d	lecide the ho	urs required						
for each topi	ic based on impo	ortance and	depth of co	overage req	uired. The r	marks allott	ed for quest	tions in the						

MULTIPLE INTEGRALS

examinations shall not depend on the numbers hours indicated.

Double integration – Cartesian and polar coordinates – Change of order of integration – Area between two curves – Area as double integral – Triple integration in Cartesian coordinates. Beta and Gamma functions:

Relationshipbetween Beta and Gamma functions – Properties–Problems.

VECTOR CALCULUS

Introduction - gradient of a scalar point function - directional derivative - angle of intersection of two surfaces — divergence and curl(excluding vector identities) - solenoidal and irrotational vectors - Green's theorem in the plane - Gauss divergence theorem -Stokes' theorem(without proof)- verification of the above theorems and evaluation of integrals using them.[9]

ANALYTIC FUNCTIONS

Analytic functions – Necessary conditions (Cauchy–Riemann equations)- Polar form of Cauchy–Riemann equations Sufficientconditions(withoutproof)–Properties of analytic functions – Harmonic function – armonic conjugate Construction of analytic functions – Conformal mapping: w = z + a, az, 1/z-Bilinear transformation. [9]

COMPLEX INTEGRATION

Cauchy's Integral theorem (without proof) – Cauchy's integral formula – Taylor's and Laurent's series (without proof) – Classification of singularities – Cauchy's residue theorem – Contour integration – Circular and semi-circular contours (excluding poles on realaxis)..

LAPLACE TRANSFORMS

Conditions for existence – Transform of elementary functions – Basic properties – Shifting theorems- Derivatives and integrals of transforms — Transform of unit step function – Dirac's delta function- Initial and final value theorem— Transform of periodic functions. Inverse Laplace transform – Convolution theorem(excluding proof) – Solution of second order ordinary differential equation with constant co-efficients – simultaneous equations of first order withconstantco-efficients.

withconst														[10]
Total Ho	urs: 45 +	· 15(Tuto	orial) = 6	60										
Text boo	k:													
1	Grewa	I B.S, "H	igher En	gineerin	g Mathe	matics",	43 rd Ed	ition, Kh	anna Pu	blishers,	Delhi, 2	2014.		
2	Kreysz Delhi,2	•	, "Advan	ced Eng	ineering	Mathem	natics", 1	0 th Edit	on, Johi	n Wiley a	ind Sons	s (Asia	ı), New	
Reference	e(s):													
1	Bali.N. (P)LTE		r.Manish	Goyal,"	A text bo	ook of Er	ngineerin	g Mathe	matics",	8 th edition	on,Laxm	i Publ	ications	5
2		ajan.T., elhi.,201		ering Ma	thematio	cs", for S	emester	s I and I	I , Tata I	McGraw	Hill Publ	lishing	Co.,	
3		samy, P. w Delhi.	., Thilaga	avathy,K	., Guna	/athy, K.	, "Engine	eering M	athemat	ics -II", S	S.Chand	&	; Comp	any
4	SWAY	AM onlin	ne video	courses	.(www.s	wayamp	rabha.gc	v.in)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PS O2
CO1	3	3	3	2	3							2	3	2
CO2	3	3	2	2	3							2	3	2
CO3	3	3	3	2	2							2	3	2
CO4	3	3	2	2	3							2	3	2
CO5	3	3	2	3	3							2	3	2

	K.S.R	Rangasamy	College	of Technology-	-Autonomo	us R2018		
		50 PF	1 006 Ap	plied Physics F	or Biotechr	nology		
			E	3.Tech Biotechn	ology			
Compoter		Hours/w	eek		Credit	Ma	aximum m	arks
Semester	L	T	Р	Total hrs	С	CA	ES	Total
II	3	0	0	45	3	50	50	100
Objectives	 To study the b To explain Que Eigen function To obtain fund To introduce a 	asics of ultra uantum Mec as of a partic lamental cor advanced ma	asonic's, hanics t le. ncepts an aterials a	nd current knowle and nanotechnolo	rasonic wav ave particle edge of biom	es and no dualism.	n destructi Evaluate t nd their bic	
Course Outcomes	· ·	lifferent type orinciple, pro owledge of the dits application he propertie	s of lase duction, pasic quaic to a so of natu	ers and application properties and a santum mechanical matter wave systems.	pplications on the set up of t	of ultrason one dimen	siona ISch	rodinger's wave al devices, Implants

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

LASER TECHNOLOGY

Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion-different types of lasers: gas lasers (CO2), solid-state lasers (Nd: YAG), dye lasers, Semiconductor laser (Homojunction and Hetero junction)-Properties of laser beams-applications of lasers in science and engineering. [8]

ULTRASONICS AND APPLICATIONS

Introduction-Properties-Production: Magnetostriction effect, Magnetostriction generator – piezoelectric effect, piezoelectric generator — Ultrasonic detection- acoustical grating-Applications: Cavitation, cleaning, SONAR – Non destructive testing: Pulse echo system, through transmission, resonance system- Medical applications: cardiology, neurology, ultrasonic imaging (A, B andTM-Scan).

QUANTUM PHYSICS

Introduction to Quantum mechanics-Wave nature of Particles- de-Broglie hypothesis –Matter waves - Time- dependent and time independent Schrodinger equation for wave function- Applications: Particle in a box (one dimensional and three dimensional)- Uncertainty principle and its applications- Electron microscope: Scanning electronmicroscope. [10]

BIO MATERIALS

Introduction-Biocompatibility -Biofunctionality-Metals and Alloys in biomaterials- Ceramic biomaterials- Composite biomaterials- polymer biomaterials-biopolymers-tissue grafts-soft tissue applications- biomaterials in ophthalmology-Dentalmaterials. [9]

ADVANCED MATERIALS AND NANOTECHNOLOGY

NewEngineeringMaterials: Metallicglasses—preparation, properties and applications—Shapememory alloys characteristics, properties of NiTi alloy applications—advantages and disadvantages of SMA

Nano Materials: Properties—Top-down process: Ball Milling method—Bottom-up process: VapourPhaseDepositionmethod-CarbonNanoTube(CNT): Properties, preparation by electricarc

method, Applications. [9]

													Total Ho	urs: 45
Text I	3ook:													
1.	Raj	endran,	V., "Engi	ineering	Physics"	, Tata Mo	Graw Hi	ill, New D	elhi. 200	00.				
2	Arur	nugam l	M, "Engir	neering F	hysics II	" Anurad	ha Publi	cations, I	Kumbako	nam, 20	10.			
Refer	ence	(s):												
1.	Datt	uprasac	I , Ramar	nlal Josh	i. "Engine	eering Ph	nysics" T	ata McG	raw Hille	ducation	, 2016.			
2.	Sha	rma, B.Ł	۲., "Spec	troscopy	", Goel P	ublishing	House,	Meerut,l	JP. 2001					
3.	Pala	nisamy	, P.K., "P	hysics of	Materia	ls", Scite	chPublic	ations,Cl	nennai. 2	012.				
4.	Pilla	i, S.O. "	Solid Sta	ite Physi	cs", 5 th (edition, N	lew Age	Internation	onal (P) l	_tdDelhi.	2002			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	2	2	1	1	2	3	3	3	3
CO2	3	3	3	2	2	3	2	2	2	3	3	3	3	2
CO3	3	3	3	2	2	2	1	2	1	1	2	2	2	1
CO4	3	2	2	2	2			1	1	1			1	
CO5	3	3	3	3	3	2	2	2	2	3			3	1

	K.S.R	angasamy Co 50 EE 001	llege of Te	chnology - A ectrical Engi	utonomous neering	R2018									
	Common to all branches														
0	Hours / Week Total hrs Credit Maximum Marks														
Semester	L	T	Р		С	CA	ES	Total							
II	3	0	0	45	3	50	50	100							
	 To familiarize 	To familiarize the basic DC and AC networks used in electrical circuits.													
	To explain the	e concepts of e	electrical ma	chines and th	neir characte	ristics.									
	To explore the	•					er plant.								
	To identify the						o. p.a								
Objective(s)	To describe v			-			mercial pu	rpose.							

	At the end of the course, the students will be able to
	CO1: Apply the basic laws of electric circuits to calculate the unknown quantities.
Course	CO2: Acquire knowledge about the constructional details and principle of operation of DC
Outcomes	machines and AC machines
	CO3: Impart the knowledge of generation of electricity based on conventional
	andnon-conventional energy sources
	CO4: R ecognize the significance of various components of low voltage electrical installations.
	CO5: Create awareness of energy conservation and electrical safety

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each

topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall notdepend on the number of hoursindicated.

Prerequisite : Physics

DC and AC Circuits

Electrical circuit elements (R, L and C), Voltage and current sources - Kirchhoff's current and voltage laws - Serial and parallel circuits - Analysis of simple circuits with DC excitation. Representation of sinusoidal waveforms, Peak and RMS values, Phasorrepresentation, Real power, Reactive power, Apparent power, Power factor. Analysis of single phase AC circuits consisting of R, L, C, RL, RC, RLC combinations.

[12]

DC&AC Machines

Construction, Types and Operation-Faraday's laws of electromagnetic induction - Transformers: Construction, Working principle, Types, Losses in transformers, Regulation, Efficiency and applications-Simple Problems - Applications Generation of rotating magnetic fields - Three phase induction motor: Construction, working principle, Characteristics, Starting

- Single phase induction motor: Construction, working principle and applications - Synchronous generators: Construction, Working principle and applications.

[14

Electrical Power Generation Systems - Sources of electrical energy: Renewable and non-renewable - Principles and schematic diagram of Hydroelectric power plant, Thermal power plant, Nuclear power plant, Solar PV system and Wind energyconversion systems.

[5]

Electrical Installations and House Wiring - Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB - Types of Batteries, Important Characteristics for Batteries - UPS.

Single phase and three phase systems: Three phase balanced circuits, Phase sequence, voltage and current relations in starand delta connections - Basic house wiring tools and components - Domestic wiring: Service mains, meter board, distribution board, energy meter. Different types of wiring: staircase, fluorescent lamp and ceiling fan.

Electrical Energy Conservation & Safety - Elementary calculations for energy consumption - BEE Standards - Electrical energy conservation - Methods. Electric shock, Precautions against shock, Objectives of earthing, Types of earthing - Basic

electrical safety measures at home and industry.

[6]

Total Hours 45

Tex	t book(s	<u>, </u>												
1							ngineerin			Hill, 2017	7.			
2	Kulshreshtha, D. C., "Basic Electrical Engineering", McGraw Hill, 2017.													
Refe	erence(s	s):												
1	Bobrow	i, L. S., "I	undame	entals of I	Electrical	Enginee	ring", Ox	ford Univ	ersity Pr	ess, 201	1.			
						·			•	•				
2	Hughes	s, E., "Ele	ectrical ar	nd Electro	onics Ted	chnology	", Pearso	n, 2016.						
	•					•								
3	Toro, V	. D., "Ele	ctrical Er	ngineerin	g Fundai	mentals",	, Prentice	Hall Ind	ia, 2015.					
4	Vincent	t Del Tord	o, Electri	cal Engin	eering F	undamer	ntals Pre	ntice Hall	, 2006.					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1	PSO	PSO2
		. 02		. • .	. ••	. ••			. 00		. •	2	1	
CO1	3	3			2					2	3		3	
CO2	3	3	1	1			2		2		2	1	3	
CO3	3	3	2	2			2	2	1			1	3	
CO4	3	3		2		2					2	2	3	
CO ₅	3	3	2	1	2	2			2		2	2	3	

	K. S. Rangasamy College of Technology – Autonomous R2018													
	50 ME 002– Engineering Graphics													
	Common to EEE, ECE, E&I, CSE, IT, Bio-Tech, NST and FT branches													
Semester	Hours	/ Week		Total hrs	Credit	N	laximum Marks							
Semester	L	Т	Р		С	CA	ES	Total						
II	2	0	4	90	4	50	50	100						
	To learn Cor	To learn Computer Aided Drawing skills to enable graphical communication.												
Objectiv	To learn drawing formats and conversion of pictorial views into orthographic views.													
e(s)	To emphasize skills to project simple solids and sectional views.													
	To impart the knowledge on use of drafting software to draw the isometric projection.													
	 To acquire g 	raphical skill	s to illustra	ate design proje	ect.									
	At the end of the	course, the	student v	will be able to:										
	CO1: Demonstra	ate the Impac	t of comp	uter technologie	es on graphi	cal commun	ication							
Course Outcomes	CO2: Convert th	e pictorial vie	ws in to o	rthographic vie	ws using dra	afting softwa	ıre							
Outcomes	CO3: Draw the p	rojection of	simple soli	ds and true sha	ape of section	ns								
	CO4: Construct	the isometric	projection	s of objects usi	ing draftings	oftware								
	CO5: Demonstra	ate a design p	oroject illus	strating enginee	ering graphic	alskills								

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Computer Aided Drafting (CAD) software

Theory of CAD software – Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension) – Drawing Area (Background, Crosshairs, Coordinate System) – Dialog boxes and windows – Shortcut menus (Button Bars) – The Command Line and Status Bar – Different methods of zoom as used in CAD – Select and erase objects. [5+12]

Orthographic Projection

Theory of projection – Terminology and Methods of projection – first angle and third angle projection – Conversion of pictorial views into orthographic views.[6+12]

Projection of Solids and Sections of Solids

Projections of simple solids: prism, pyramid, cylinder and cone (Axis parallel to one plane and perpendicular to other, axis inclined to one plane and parallel to other).

Sections of simple solids: prism, pyramid, cylinder and cone in simple positions (cutting plane is inclined to one of the principal planes and perpendicular to the other) — True shape of sections. [6+12]

Isometric Projection

Principles of Isometric projection – Isometric scale, Isometric views, Conventions – Isometric views of lines, Planes, Simple and compound Solids – Conversion of Orthographic views in to Isometric view. [6+12]

Application of engineering graphics

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids – Geometric dimensioning and Tolerancing– Use of solid modeling software for creating associative models – Floor plans: windows, doors, and fixtures such as water closet (WC), bath sink, shower, etc. — Applying colour coding according to building drawing practice — Drawing sectional elevation showing foundation to ceiling – Introduction to Building Information Modelling (BIM).[7+12]

Total Hours: 90

Text	Book(s):													
1.	Bhatt N.D., "Engineering Drawing", Charotar Publishing House Pvt. Ltd., 53 rd Edition, Gujarat, 2014.													
2.	Venugopal K., "Engineering Graphics", New Age International (P) Limited, 2014.													
Refer	Reference(s)													
1.	1. Shah M.B., Rana B.C., and V.K.Jadon., "Engineering Drawing", Pearson Education, 2011.													
2.	Natarajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2014.													
3.	Agrawal B. & Agrawal C. M., "Engineering Graphics", TMH Publication, 2012.													
4.	4. Narayana, K.L. & P Kannaiah, "Text book on Engineering Drawing", Scitech Publishers, 2008.													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS
														02
CO1	3	2	3	3	3	1	1	1		3	2	2	1	3
CO2	3	3	3	3	3	1		1		3	1	1	1	3
CO3	3	3	3	3	3	1		1		3	1	1	1	3
CO4	3	3	3	3	3	1		1		3	1	1	1	3
CO5	3	2	3	3	3	1	1	1		3	2	2	1	3

K. S. Rangasamy College of Technology (An Autonomous Institution - Affiliated to Anna University, Chennai)												
Department	Programme	anches)										
Cours	Perio	ds / We	ek	Credit		Maximu	ım marks					
Cours	e Code & Course Name	L	Т	Р	С	CA	ES	Total				
50 MY 00	2 & Environmental Science	2	0	0	0	100	100					
Objective(s)	 To help the learners to analyze the importance of ecosystem and biodiversity. To familiarize the learners with the impacts of pollution and control. To enlighten the learners about waste and disaster management. To endow with an overview of food resources and human health. To enlighten aware`ness and recognize the social responsibility in environmental issues. 											
Course Outcomes	CO1. Recognize the concepts ar CO2. Analyze the source, effects CO3. Enlighten of solid waste and CO4. Awareness about food reso	To enlighten aware`ness and recognize the social responsibility in environmental issues. At the end of the course, the student will be able to: CO1. Recognize the concepts and issues related to environment, ecosystem and biodiversity. CO2. Analyze the source, effects, and control measures of pollution. CO3. Enlighten of solid waste and disaster management. CO4. Awareness about food resources, population and health issues. CO5. Analyze the social issues and civic responsibilities.										

ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY

Environmental studies - Scope and multidisciplinary nature - Need for public awareness - Ecosystem - Food chain - Food web- Structure and function. Biodiversity - Values of biodiversity - Endangered and endemic species - Hot spots - India a mega biodiversity nation - Threats - Conservation - In-situ and ex-situ - Case studies.

ENVIRONMENTAL POLLUTION

Pollution - Air, water, soil, noise and nuclear - sources, effects and control measures - Impacts of mining. - Environment protection act- bio accumulation and bio magnification - Case studies.

WASTE AND DISASTER MANAGEMENT

Waste – wealth from waste - carbon foot print - Solid waste - e-waste - sources, effects and control measures. Disaster management - Earth quakes - Landslides - Floods - Cyclones - Tsunami - Disaster preparedness - Case studies.

FOOD RESOURCES, HUMAN POPULATION AND HEALTH

World food problems - over grazing and desertification - effects of modern agriculture. Population - Population explosion and its impacts - HIV/AIDS - Cancer- Role of IT in environment and human health - Case studies.

SOCIAL ISSUES AND THE ENVIRONMENT

Unsustainable to sustainable development - Use of alternate energy sources - Wind - Geothermal - Solar - Tidal - energy calculation and energy audit - Rain water harvesting - Water shed management - Deforestation - Green house effect - Global warming - Climate change - Acid rain - Ozone layer depletion - Waste land reclamation. Consumerism and waste products - Role of an individual in conservation of natural resources - Case studies.

Text book

1 Tyler miller. G, "Environmental Science", 15th Edition Cengage Publications, Delhi, 2016.

Reference Books

- Gilbert M.Masters and Wendell P. Ela, "Environmental Engineering and Science", Phi learning private limited, New Delhi, 3rd Edition, 2013. Learning private limited, New Delhi, 3rd Edition, 2013.
- 2 Rajagopalan. R, "Environmental Studies" Oxford University Press, New Delhi, 2nd Edition, 2012.
- 3 Deeksha Dave and Katewa. S.S, "Environmental Studies" 2nd Edition, Cengage Publications, Delhi, 2013.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO1	PSO2
CO1	3	2	3	3	3	1	1	1		3	2	2	1	3
CO2	3	3	3	3	3	1		1		3	1	1	1	3
CO3	3	3	3	3	3	1		1		3	1	1	1	3
CO4	3	3	3	3	3	1		1		3	1	1	1	3
CO5	3	2	3	3	3	1	1	1		3	2	2	1	3

K.S.Rangasamy College of Technology - Autonomous R2018

50PH0P1 Engineering physics Laboratory

Common to - MECH, MCT, TXT, FT, BT, NST, CIVIL

Semester		Hours/week		Total Hours	Credit		num marks						
	L	T	Р	60	С	CA	ES	Total					
II	0	0	4		2	60	40	100					
Objectives	theory. To dem measurer To intro and electr To enab To ana	nonstrate an abinents oduce different eronics. ble the students	lity to make experiments to correlate or and chara	physical to test ba the theor cteristics	measuren asic under etical prin of various	nents and ur standing of p ciples with a	nderstand to ohysics co application	orrelate with the Physics the limits of precision in ncepts applied in optics oriented studies. num utilization					
Outcomes	CO1: Kno CO2: Gra CO3: Ha CO4: Gai CO5: Acc	• To analyze the behavior and characteristics of various materials for its optimum utilization At the end of the course, Students will able to CO1: Know the concept stress, strain and elastic limit of a given sample. (1-3) CO2: Grasp the knowledge of dependency of viscosity and surface of a liquid. (4-6) CO3: Have a knowledge of diffraction property of light through grating and fiber optic cable (7-8) CO4: Gain the dielectric constant of a given material. (9) CO5: Acquire the knowledge of semiconductor photovoltaic solar cells. (10)											

LIST OF EXPERIMENTS

- 1. Determination of Young's modulus of a steel bar by uniform bending method.
- 2. Determination of Young's modulus of a cantilever (Pin & Microscope method).
- 3. Determination of rigidity modulus of a wire by torsional pendulum.
- 4. Comparison of co-efficient of viscosity of two different liquids by Poiseuille's method.
- 5. Co-efficient of viscosity of highly viscous liquids.
- 6. Comparision of surface tension of two different liquids by capillary rise method.
- 7. Determination of NA, acceptance angle, and wave length of a given laser by using optical fiber.
- 8. Determination of wavelength of mercury spectral lines spectrometer grating.
- 9. Determination of dielectric constant.
- 10. V-I characteristics of solar cell.

Lab Manual:

"Physics Lab Manual", Department of Physics , KSRCT

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO12	PSO1	PSO2
CO1	3	3	2	2	2	2	2	2	2	2		2	2	
CO2	3	3	3	2	2		2	2	2	1	1	2	1	2

CO3	3	2	3	2	2	1	2	1		2	2		2	1
CO4	3	3	3	1	3	2	2	2	1	1		1		1
CO5	3	3	3	2	2	3		1	1	1	2		1	1

	K.S.Ra	angasamy C	college o	f Technology	- Autonomo	ous R 2018					
		50 ME 0F	1 - Engir	neering Practi	ices Labora	tory					
			Comm	on to All bran	ches						
	Hours / W	eek			Credit	M	aximum Mar	ks			
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total			
II	0	0	4	60	2	60	40	100			
Objective(s)	 To acquire skills in basic engineering practices. To identify the hand tools and instruments. To provide hands on experience in Fitting, Carpentry, Sheet metal, Welding and lathe shop. To provide practical training on house hold wiring and electronic circuits. To offer real time activity on plumbing connections in domestic applications. 										

CO1: Perform facing, plain turning, drilling. CO2: Make a model of fitting and carpentry: Square, Dovetail and Cross lapjoints. CO3: Fabricate the models of sheet metal and welding joints. CO4: Construct and demonstrate electrical and electronic wiring circuit.		At the end of the course, the student will be able to:
1 000. Construct the water pipe line in plantoning shop.	se Outco	CO2: Make a model of fitting and carpentry: Square, Dovetail and Cross lapjoints. CO3: Fabricate the models of sheet metal and welding joints.

Machine shop

Safety aspects in machine shop, Study of Lathe and Radial drilling machine, Turning, Facing and Drilling.

Fitting and Carpentry

Safety aspects in Fitting and Carpentry, Study of tools and equipment's, Preparation of models- Square, Dove tail joint, Cross Lap.

Sheet Metal and Welding

Safety aspects in Sheet metal and Welding, Study of tools and equipment's, Sheet metal models - Scoope, Cone, Tray, Preparation weld joints -Lap, butt, T-joints. Study of Gas Welding and Equipments.

Electrical Wiring & Electronics

Safety aspects of Electrical wiring, Study of Electrical Materials and wiring components, Wiring circuit for a lamp using single and stair case switches. Wiring circuit for fluorescent lamps, Basic electronic circuit.

Plumbing

Study of plumbing tools, assembly of G.I. pipes/ PVC and pipe fittings, Cutting of threads in G.I.Pipes/PVC by thread cutting dies.

											Total ho	urs = 60		
Lab M	anual :													
1.	"Engin	eering P	ractices	Lab Man	ual", De _l	partmen	of Med	chanic	al Eng	ineering, I	KSRCT.			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	1	3	2	2	3	1	2	2	1	1	2
CO 2	3	2	2	1	3	2	2	3	1	2	2	1	1	2
CO 3	3	2	2	1	3	2	2	3	1	2	2	1	2	2
CO 4	3	2	2	1	3	2	2	3	1	2	2	1	1	2
CO 5	3	2	2	1	3	2	2	3	1	2	2	1	1	2

	ŀ	(.S.Rang	jasamy	College of Te	chnology -	Autonomous	R 2018						
		50	0 MA 0	7 - Transform	and Nume	rical Methods	S						
	Commo	n to B.Te	ech Bio	technology an	d B.Tech F	ood Technol	ogy						
Semester		Hours/	Week	Total Hrs	Credit	Ma	ximum Mai	rks					
	L	T	Р		С	CA	ES	Total					
III	3	1	0	60	4	50	50	100					
	• To teach students how to use Fourier series and Fourier transform for engineering discipline.												
Objective(s)	• To ac	 To acquire analytical skill in the areas of one dimensional boundary valueproblems. 											
, , ,	• To fa	To familiarize the students with the concepts of Fourier transform											
	To describe the concepts of solving system of equations.												
	• To so	olve initia	l value	problems of ord	linary differe	ential equation	snumericall	ly.					
	At	the end	of the c	ourse, the stu	dents will b	oe able to							
	CO1: Obt	ain the F	ourier s	series expansio	n for the per	riodic function	S.						
Course	CO2: Cor	npute the	e solutio	on for one-dime	nsional wav	re equation ar	nd one-dime	ensional heat equation					
Outcomes	.CO3: Ap	ply Fouri	er trans	form technique	s for the co	ntinuous func	tions.						
	CO4: Ana	ılyze vari	ous itera	ation techniques	to solve the	e algebraic, tr	anscendenta	al and linear equations.					
	CO5: App	oly differe	ent integ	ration techniqu	es to evalua	ate single defi	nite integral	ls and compute the					
	solu	ition for i	nitial va	lue problem us	ing single ar	nd multi-step	methods.						
				•									

Fourier Series

Dirichlet's conditions – Fourier series – Odd and Even functions – Half range Fourier series – Root mean square value of a function – Parseval's identity –Harmonic analysis

Boundary Value Problems

Classification of second order quasi-linear partial differential equations—Solution of one-dimensional heate quation

[9].

Fourier Transform

Fourier transform pair – Fourier transform of simple functions – Fourier sine and cosine transform – Properties –Convolution theorem –Parseval'sidentity

.[9_.

Solution of Equations and Eigen Value Problem

Newton-Raphson method – Regulafalsi method – Horner's method – Solution of linear system: Gauss elimination method – Gauss-Jordan method – Iterative methods: Gauss-Jacobi method – Gauss-Seidel method – Eigen values of a matrix by power method.

[9]

Numerical Integration And Differentiation

Numerical integration by Trapezoidal and Simpson's 1/3 and 3/8 rules – Romberg's method – Single step methods: Taylor series method – Euler and modified Euler methods – Fourth order Runge-Kutta method for solving first order equation – Multi step methods: Milne's predictor and corrector method – Adam's predictor and corrector method.

Total hours (45+15) =60

Text book(s):

1. Grewal B.S, "Higher Engineering Mathematics", 43rdEdition, Khanna Publishers, Delhi, 2014.

2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10thEdition, John Wiley & Sons (Asia) Limited, New Delhi, Reprint 2012.

References:

1. GrewalB.S and Grewal J.S, "NumericalmethodsinEngineeringandScience",9thEdition,Khanna Publishers, New Delhi, 2007.

2. Veerarajan T, "Engineering Mathematics-III", 2ndEdition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2008.

3. Kandasamy P, Thilagavathy K and Gunavathi K, "Numerical Methods", 3rd Edition, S.Chand& Company Ltd, New Delhi, 2003.

4. 5.	Pvt. L	Bali N.P and Manish Goyal, "A Text book of Engineering Mathematics", 9 th Edition, Lakshmi Publications Pvt. Ltd.22, New Delhi, 2014. Numerical methods – Dr. Ameeya Kumar Nayak, Dr. Sanjeev Kumar, NPTEL online video courses.													
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 PSO PSO2													
CO1	3 3 2 2 2 3 3 2														
CO2	3	3 3 2 2 2 3 3 2													
CO3	3	3	2	2	2							3	2		
CO4	3	3	3	3	2							3	2		
CO5	3	3	3	3	2							3	2		

			50 B	Γ 301 - Biochem	istry			
			B.Te	ch. Biotechnolo	gy			
Semester	Н	ours/Wee	k	Total Hrs	Credit	Maxi	mum Marks	5
Semester	L	T	Р	10tai nis	С	CA	ES	Total
III	3	0	0	45	3	50	50	5
								0
Objective (s)	To imTo illuTo dis	part knowle minate the sipate the	edge on metabo knowled	ical structure and role of biomolect blism of essential dge on formations f bioenergetics a	ules for orderly biomolecules t s of specialized	structures of th hat are indispe products from	e cells/tissuensable for life	e.

Course Outcomes

CARBOHYDRATES

Carbohydrates: Basic chemical structure, Classification - Monosaccharide, Disaccharides, polysaccharides structure and function - Anaerobic pathway of glucose metabolism: Glycolysis - Aerobic pathway of glucose metabolism: Citric acid cycle - Alternate pathways of carbohydrate metabolism: Pentose phosphate pathway - Synthesis of carbohydrates

from

varioussources:Gluconeogenesis

[9]

LIPIDS

Lipids: structure and function of fatty acids and lipids, classification, major lipid subclasses - phospholipids, glycolipids, sphingolipids and steroids - Lipoproteins: Types and functions - Lipid metabolism: Biosynthesis of Fatty acid, Oxidation of fattyacids - Beta oxidation, Other types of fatty acid oxidation - Alpha and omega oxidation - Biosynthesis of lipid and cholesterol.

[9]

PROTEINS AND VITAMINS

Amino acids: Structure and Classification. **Proteins:** Structure and Classification: Primary, Secondary, Tertiary and Quaternary structure. Properties - Denaturation and Renaturation. Oxidative degradation of amino acids: Transamination, oxidative deamination, decarboxylation, Biosynthesis of urea, conversion of amino acids in to specialized products: DOPA, Dopamine, Epinephrine and Nor epinephrine. **Vitamins:** Classification, sources, functions anddeficiencydiseases

[9]

NUCLEIC ACIDS

Nucleic acids: Structure of nitrogenous bases: purines and pyrimidines, nucleosides, nucleotides, formation of phosphodiesterbonds - Structure of DNA and RNA - Biosynthesis of Purine and pyrimidine nucleotides: Denovo and salvage pathway - Purine and pyramid inedegradation.

[9]

BIOENERGETICS

Electrochemical potential and redox reaction, Mitochondrial electron transport chain: electron carriers, sites of ATP production, inhibitors of electron transport chain - Oxidative phosphorylation: structure of ATPase complex, chemiosmotic theory, un couplers and inhibitors of oxidative phosphorylation. [9]

Text book(s): Lehninger, "Principles of Biochemistry", David L. Nelson and Michael M. Cox. Palgrave Macmillan, Freeman, Low F Edition. Harpers "Illustrated Biochemistry", Victor Rodwell, David Bender, Kathleen M. Botham, Peter J. Kennelly, P. Antho WeilMcGraw Hill Lange, International edition, 30th edition, 2015. References: Koolman J. and Roehm K.H. Color Atlas of Biochemistry, Georg ThiemeVerlag publishers, 2nd Edition, 2005. Berg Jeremy M.; John L. Tymoczko; Lubert Stryer, "Biochemistry", W. H. Freeman and Co., New York, USA, 7th 2 edition.2010. 3 Voet Donald and Judy G Voet, "Biochemistry", 4th edition, John Wiley & Sons Inc., 2012. 4 Denise R. Ferrier, "Biochemistry-Lippincott Illustrated Reviews Series" 7th edition, Wolters Kluwer Law & Business PO1 **PO2** PO₃ **PO4 PO5 PO6 PO7 PO8 PO9** PO1 PO11 **PO12 PSO** 0 1 CO1 3 3 2 3 3 3 2 3 3 2 CO2 2 3 3 3 3 3 3 2 CO3 2 3 1 2 3 3 3 3 3 3 CO4 3 3 3 3 3 3 3 2 2 CO5 3 2 3 2 1 3 3 3

Chairman - BOS

Total hours = 45

	K.S.Ran	gasamy (College of	Technology -	Autonomo	us R 2018		
		į.	50 BT 302	– Microbiolo	ЭУ			
			B.Tech. B	iotechnology	1			
Semester	Н	ours/Wee	k	Total Hrs	Credit	Maxi	mum Marks	
Semester	L	T	Р	Totallis	С	CA	ES	Total
III	3	0	0	45	3	50	50	100
	To imp	art the kno	owledge an	d developmer	nt of microbio	ology		
Objective(s)	To imp	art the kno	owledge ab	out the micro	organisms ar	nd its classifica	itions	
Objective(s)				•		nd its identifica	tion system	
		•		irements for tl	•			
						ment and its c	ontrol	
				tudents will				
				biology and s	tructural orga	anization of va	rious microorg	anisms
Course		smultiplica		otion avatama	and know t	ha haaisa of m	iaraaaany taah	niguos
Course Outcomes				by staining me		he basics of m	icroscopy tech	riiques
Outcomes						growth patterr	า	
						tion and action		f
	•	crobialage	•		,			
				rial applicatior	of microorg	anisms and ro	le in bioremed	iation
Note: Hours noti	fied easingt a	ach unit in	the ovillabi	io oro only inc	licativa but a	ro not docicive	Eaculty may	dooido tho

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the

INTRODUCTION TO MICROBIOLOGY

History and scope of microbiology - basic concepts, spontaneous generation, contributions of Leeuwenhoek, Louis Pasteur, Robert Koch, Elie Metchnikoff and Fleming - Classification systems - phenetic, numerical, phylogenetic, major characteristicsused in taxonomy, Bergey's manual of determinative bacteriology.

[9]

MICROSCOPY AND IDENTIFICATION OFMICROBES

Microscopy-Simple and compound microscope, Phase contrast, Dark field, Fluorescent, Electron microscope - Identification of bacteria - Stain and staining techniques - Simple, Differential (Gram's, spore and AFB) and special (capsule staining, flagellar staining) -fungalstaining.

[9]

STRUCTURAL ORGANIZATION AND MULTIPLICATION OF MICROBES

Morphology and reproduction - Bacteria (cell wall, flagella, pili, capsule, endospore) - mycoplasma — Actinomycetes - archeabacteria - viruses - bacteriophage (lytic and lysogeny) - algae - microalgae - fungi - yeast - lichens- protozoan. [9]

MICROBIAL NUTRITION AND GROWTH

Nutritional requirements of bacteria - Nutritional classification of bacteria - Media preparation - solid and liquid, Types of media

- Pure culture techniques - anaerobic culture techniques - Kinetics of growth - generation time, mean generation time (g) and mean growth rate constant (k) - calculations- Influence of environmental factors on microbial growth - pH, temperature, pressure, oxygen and salt- measurement of microbial growth - cell mass and cell numbers. [9]

CONTROL OF MICROORGANISMS

Diseases caused by bacteria (Typhoid) - sterilization and disinfection - Physical methods and Chemical methods; assessment of chemical disinfectant - phenol co-efficient test, sterility testing- preservation and maintenance of microorganisms. Mechanism and mode of actions of anti-bacterial, anti-fungal and anti-viral agents - drug resistance — antibiotic sensitivity test.

[9]

Total hours = 45

Text book(s):

Prescott, L.M., Harley, J.P. and Klein, D.A. "Microbiology", 7th Edition, Tata McGraw-Hill Publications, New Delhi, India, 2010.

Pelczar, M.J., Chan, E.C.S. and Krieg, M.R. "Microbiology: An application Based Approach". Tata McGraw-Hill Publications, New Delhi, India, 2005.

References:

Black, J.G. "Microbiology: Principles and Explorations". 6th Edition. John Wiley and Sons, Inc, Singapore, 2004.

number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

- 2. Kamal, Rao, G.P. and Modi, D.R. "Concepts of Microbiology". International Book Distributing Co., Lucknow, India, 2005.
 - 3. Gerard J. Tortora Berdell R. Funke Christine L. Case Derek Weber Warner Bair, "Microbiology: An Introduction", 4th

edition, Pearson Education (US), 2019.

4. Surinder Kumar, "Essentials of Microbiology", First edition, Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, 2016

	,													
	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO1 1	PO 12	PSO1	PSO2
CO1	3	2	2	2	3	3	2	3	2	3	3	3	3	3
CO2	3	3	2	2	2	2	2	3	2	2	1	3	3	3
CO3	2	3	3	2	3	3	2	3	3	3	1	2	3	2
CO4	3	3	3	3	2	3	2	2	2	1	1	2	2	3
CO5	3	3	2	2	3	2	2	3	3	3	2	3	3	2

					Technology - A Cell and Molec				
					ch. Biotechno				
Comos		Ηοι	ırs/Week		Total Hrs	Credit		Maximum	Marks
Semes ter		L	T	Р	Total mrs	С	CA	ES	Total
III		3	0	0	45	3	50	50	100
bjective(s	•			edge of cell	structure and fu	inctions of pro	okaryotes	and eukary	otes at
bjective(s		Molecula							
	•				ess of eukaryo	tic cell divisio	n, regulation	on of cellul	ar
		•	s viasignalin	•					
	•				ring rule, its und	derlying reaso	on and its	effect on th	ie DNA
			and mechani	•					
	•				om genes to pro	oteins and the	e molecula	r events of	prokaryotic
			ryotic gene tr		4:		. d :4'	leties	
	•				tic code, gene		ia it s regu	iation.	
ourse					ents will be ab		trananart	of malesul	00
utcomes	CO		nembrane	ceii membra	ane and types in	ivoived in the	e transport	oi moiecui	es
	-			of call avala	and cell division	in prokanyat	oc and out	carvotos ill	uctrata tha
					and cell division ar signaling rec				ustrate trie
	CO^{2}				icture, base pai				3
					rganization in p				-
	CO_2	•	•		sm of DNA repli	•	•		
	-				an or british repli	oation and the	anounpuon		
		DIOKAIW	nes anneuk:						
	CO^{p}		otes andeuka ne importance		e in phylogenet	tic analysis a	nd explain	the decodi	na

CELL STRUCTURE PERMEABILITY AND TRANSPORT

Present day prokaryotes, Development of multicellular organisms, cell as experimental models, Cell wall structure of plants, Plasma membrane structure and models, cell permeability - concentration gradient and partition coefficient, transport of small molecules - active, passive, ion channels and facilitated diffusions. [9]

CELL DIVISION, CELL SIGNALING AND PROTEINLOCALIZATION

Process of cell cycle and its regulation, Bacterial cell division, Eukaryotic cell division, mechanics of cell division, Cell signaling - signaling molecules, G protein coupled receptors, Ion-channel receptors, enzyme linked receptors, protein sorting, nuclear localization, mitochondria and chloroplast import and export mechanism.

MOLECULAR STRUCTURES OF GENES ANDCHROMOSOMES

Structure and physiochemical properties of elements in DNA and RNA, Primary and Secondary structure: base pairing rule, Watson & Crick model, stabilizing forces, Hogsteen base pairing, Tertiary structure: super twisting, mathematical description of super twisting, levels of DNA packaging, molecular events of prokaryotic and eukaryotic chromosome organization, exon- intron structure, CpG islands and its importance. [9]

REPLICAT

ION ANDTRANSCRIPTION

Basic rules of replication, replication genes and enzymology of replication, processivity and fedility of DNA replication, rolling circle replication, importance of telomerase in eukaryotic replication. DNA mutation and repair mechanism. Molecular events of Prokaryotic and Eukaryotic Transcription - initiation, elongation and termination. Post transcriptiona Imodification. [9]

GENE EXPRESSION AND REGULATION

Genetic code, Ribosome of prokaryote and eukaryote - evolutionary importance, mechanism of translation: initiation,

elongation and termination. Inhibitors of Translation. Post translational modification. Regulation of gene expression and operon, araoperon. trp operon [9] Total hours= 45 Text book(s): Lodish, H., Berk, A., Zipurursky, S. L., Matsudaria, P., Baltimore D, and Darnell, J, "Molecular Cell Biology", W. H. FreeMan and Company, England, 2000. Freifielder, Essentials of Molecular Biology, 4th edition by Malacinski, Jones & Barlett, 2015. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P, "Molecular Biology of the Cell", Garland Science., New York, 2002 Benjamin Lewin, "Gene IX", Oxford University Press, New Delhi, India, 2000. Jacobs M., "Cell And Molecular Biology" Vol.1., CBS Publishers and Distributors, 2016 Vyas S.P. and Mehta A., "Cell And Molecular Biology" CBS Publishers and Distributors, 2020 PO12 PSO1 PO₃ PO₁ PO₂ PO4 PO₅ PO6 PO7 **PO8** PO9 PO10 PO11

2

3

3

2

2

3

2

2

2

	K.S	.Rangasan	ny College	of Technology	- Autonomo	ous R 2018	}	
	_	50 BT	304 - Princ	iples of Chemic	al Engineer	ing		
			B.Ted	ch. Biotechnolo	gy			
Semester	F	lours/Wee	k	Total Hrs	Credit		Maximum M	arks
Semester	L	T	Р	Totalilis	С	CA	ES	Total
III	3	1	0	60	4	50	50	100
Objective(s)	To leaTo impTo undTo kno	rn about moart the bas derstand thow fluid tran	aterial bala sics of energe e basic con asport and f	on unit conversion nce calculations gy balance calcu cept of fluids an low through colu	Ilations. d fluid flow umns.	chemical c	alculations.	
Course Outcomes	CO1: review CO2: exect CO3: interpl CO4: summ	withe basis ute materia ret energy narize the b	of unit convolutions of unit convolutions of the convolutions of t	tudents will be version, unit ope alculations with a culations and er d flow and its ap f fluid transporta	rations and u and without cl othalpy chango oplications	hemical rea	actions panying cher	

О

3

3

2

2

3

2

3

2

2

2

2

3

CO1

CO₂

CO₃

CO4

CO₅

3

3

3

3

3

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

2

2

2

3

Fundamentals of Chemical Engineering

Over view of process industries, units and dimensions, basic laws, unit conversion, methods of expressing composition of mixtures and solutions, average molecular weight of gas mixture, uVNt operations and unit processes.[9]

Material Balance calculations

Guidelines for material balance calculations - material balance with and without chemical reactions - stoichiometry of microbial growth and product formation - Recycling and bypass operations. [9]

Energy Balance calculations

Basics energy balance calculations, first law of thermodynamics, sensible and latent heat, heat capacities, mean molal heat capacities, enthalpy changes accompanying chemical reactions, adiabatic process, heat of solution and mixing.[9]

Flow of Fluids

Nature of fluids, classification of fluids; concept of viscosity, laminar and turbulent flow, equation of continuity, Bernoulli's equation and its applications, friction factor, multiphase flow.

[9]

Fluid Transport and flow through packed and fluidizedbed

Pumps: Centrifugal pump and positive displacement pumps; compressor; Packed bed: flow through porous media- pressure drop calculations, Erguns equation, Fluidization: principle; types, minimum fluidization velocity and applications. [9]

										Total h	ours 45	+ 15 (Tu	torial)	60
Text	book(s)	:												
1	Bhatt, E	3.I. and ∖	ora S.M	., "Stoich	iometry".	5th Edit	ion, Tata	McGraw	/-Hill Pub	lication,	New Dell	hi, 2004.		
2			Introduct											
Refe	rences:													
1.			Shyamal v Delhi, 2		al and Si	ddhartha	Datta, "	Introducti	ion to Ch	emical E	ngineerir	ng", Tatal	McGraw	- Hill
2.	Geanko	plis C.J.	, "Transp	ort Proce	esses an	d Unit Op	perations	", Prentic	e Hall In	dia, New	Delhi, 20	002.		
3	Geankoplis C.J., "Transport Processes and Unit Operations", Prentice Hall India, New Delhi, 2002. McCabe, W.L., Smith, J.C and Harriot, P., "Unit Operations In Chemical Engineering", 7th Edition, McGraw – HillInc., New Delhi, 2004.													
4	Vikas Z	averi an	d P. Vish	wanatha	n, "A text	tbook of	Chemica	I Engine	ering", Mo	edtec, 20	14			
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	3		1			3	3	3	3	3
CO2	2	3	3	2	3	2	1	3			2	2	3	3
CO3	2	3	3	2	3		2			3	2	3	3	3
CO4	2	3	3	1	2	2	2		3			2	3	3
CO5	3	2	3	2	3		2	3			3	3	3	3

	ŀ	(.S.Rangasam	y College of	Technology	– Autonomou	s R2018							
			50MY003 E	Ethics for Eng	ineers								
Semester	Hours / Week Total Credit Maximum Marks												
Semester	L	Т	Р	Hrs	С	CA	ES	Total					
II	2	0	0	45	-	100	-	100					
Objective(s)	ToTo	 To achieve holistic perspective towards life and profession To acquire ethical human conduct, trustful and mutually fulfilling human behaviour 											
Course Outcomes	CO1: Becon CO2: Respo CO3: Maint CO4: Comr	ain human rela	e of themselv and in handlin ationships and human value	res, and their s ng problems w d human natur s, human rela	urroundings ith sustainable e ionship and hu								

Introduction to value Education

Understanding value Education-Self exploration as the process for value education-Continuous Happiness and prosperity-the basic human aspirations-right understanding-relationship and physical facility –happiness and prosperity - current scenario – method to fulfill the basic human aspirations.

[9]

Harmony in the Human Being

Understanding Human being as the Co-Existence of the self and the Body-Distinguishing between the needs of the self and the body-the body as an instrument of the self-understanding harmony in the self-harmony of the self with the body – programme to ensure self-regulation and health. [9]

Harmony in the Family and Society

Harmony in the Family –the basic unit of human interaction-values in human- to - human relationship –'Trust' the foundation value in relationship –'Respect'- as the right evaluation-understanding harmony in the society –vision for the universal human order .[9]

Harmony in the Nature/Existence

Understanding harmony in the Nature-Interconnectedness, self-regulation and mutual fulfilment among the four orders of nature – realizing existence as co-existence at all levels –the holistic perception of harmony in existence .[9]

Implications of the Holistic Understanding

Natural Acceptance of human values- definitiveness of human conduct- a basis for humanistic education, humanistic constitution and universal human order- competence in professional ethics –holistic technologies, production systems and management models-typical case studies – strategies for transition towards value base life and profession.

[9]

Total Hours: 45

lext	Book(s):
1.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised
	Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
2.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P
	Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2
Refer	rence(s)
1.	Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
2.	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1	3	2	2	2	3	3	2	3	3	3	2	3	3	3
CO2	2	3		3	3	3	2	3	3	2	2	3	3	3
CO3	3		3	2	2	3	2	3	3	2		3	3	2
CO4	2			3	3	2	3	3		2	3	2	3	3
CO5	3			3		3	2	3	3	3	2	3	2	2

		K.S.Ranga	samy Co	lege of Technol (R2018)	logy - Auton	omous			
		50	BT 3P1 -	Biochemistry L	aboratory				
			B.Te	ch. Biotechnolo	gy				
Semester	Hou	ırs/Week		Total Hrs	Credit	Maximum Marks			
Semester	L	Т	Р	Totalilis	С	CA	ES	Total	
III	0	0	4	60	2	60	40	100	
	To learn t	he fundamenta	l approach	nes for experime	ntal investiga	ition.			
Objective(s)	To learn t	he theoretical f	oundation	s for the methods	s used for bid	ochemical a	nalysis.		
Objective(s)		nine the charac	teristics fe	atures of various	molecules v	vith referen	ce to its ana	alytical	
	characters	S.							
	 To evalua 	te and estimate	e the biolo	gical molecules t	through vario	us methods	S.		
				ments through su		ards.			
		•		nts will be able t			_		
		e the calibratior s andbuffers	n of glass-	wares and under	stand the pre	eparation of			
	00.0		ntal analys	sis of carbohydra	tae and linide	e qualitativa	lv		
Course			-	rate, protein, cho	•	•	•	cid	
Outcomes	quantita		carbonya	rate, proteiri, eric	olesteroi, ere	atimino, urce	a and unc a	oid	
		•	the results	by estimating th	e amount of	DNA using	diphenylam	iine	
	method								
	CO5: Analyze	the amount of		nents in soil sam		me photom	eter		
			Lis	t of experiments	S				

- 1. Calibration of glass wares- pipettes, burettes and volumetric flasks (demonstration) and Preparation of solutions:1)percentage solutions, 2) molar solutions, 3) normal solutions
- 2. Standardization of pH meter (demonstration) and preparation of buffer of a given pH and molarity
- 3. Qualitative analysis of Carbohydrates
- 4. Qualitative analysis of Lipids Determination of Acid number of an edible oil (coconut oil)
- 5. Determination of total Carbohydrate content in cereals by Anthrone method
- 6. Estimation of protein by Lowry's method
- 7. Estimation of cholesterol by Zak'smethod
- 8. Estimation of creatinine by Jaff'smethod
- 9. Estimation of sugars by Nelsson's somogy method
- 10. Estimation of A/G ratio of protein by Biuret method
- 11. Extraction and estimation of lipids by Folch et al., method
- 12. Determination of urea in the urine sample by Dam method
- 13. Evaluation of uric acid by Caraway's method
- 14. Estimation of DNA by diphenylamine method
- 15. Estimation of microelements by Flame photometer

References:

- 1. Shawney, S.D., "An Introduction to Practical Biochemistry", Narosa Publishing Home, New Delhi, 1996.
- 2. Palanivelu, P., "Analytical Biochemistry and Separation Techniques", Kalaivani Printers, Tamil Nadu, 2001.

3.	2019.	ravally F	kajendira	an, Pooja	a Dnima	n, "Biocr	nemistry	Practica	ai Manua	ai", RELA	(Elsevi	er) india	PVt. Ltd	i., New Deini	
4.		Benjamin F,Lasseter, "Biochemistry in the Lab: A Maual for Undergraduates", CRC Press, Taylor & Francis Group,FL, 2019													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	2	3	2				2	2	3	2	3	
CO2	3	1	3	2	3	2	3			2	2	3	3	3	
CO3	2	2	3	2	3	2		3	2		2	3	2	2	
CO4	2	2	2	3	3		2		2		1	2	3	2	
CO5	3	2	2		2	2		3		2		3	3	3	

		K.S.Ranga	asamy Colle	ege of Technol	ogy - Auton	omous (R	2018)				
			50 BT 3P2	2 - Microbiolog	y Laborator	у					
			В.	Гесh. Biotechn	ology						
Semester	Hours/Week L T P 0 0 4 To understand the growth and devel To observe the differences in staini To learn the culture conditions of an To understand the concept of quali To identify the effective method to an accept of the course, the stude CO1: Perform the aseptic methods to be solid media and cultivation of mice CO2: Interpret the differential staining to CO3: Demonstrate anaerobic microbe and CO4: Analysis for physiological identific CO5: Examine the quality of water and	Total Hrs	Credit	Maximum Marks							
Semester	L	T	Р	TOTAL FILS	С	CA	ES	Total			
III	0	0	4	60	2	60	40	100			
Objective(s)	 To understand the growth and development of microbes through various culturing methods To observe the differences in staining reactions in bacteria and fungi To learn the culture conditions of anaerobic microbes To understand the concept of quality analysis of water and milk samples To identify the effective method to control microbes 										
Course Outcomes	CO1: Performance Solid records: Interpolation CO3: Democion CO4: Analy	rm the ase media and ret the diff onstrate an sis for phy	ptic method cultivation o erential stair aerobic mic siological ide	s to be followed if microorganism ning techniques robe culture tec entification of m	in laboratory ns for identifica hniques icroorganism	tion of bac	teria and fu	ngi			
	•	•		ist of experime							

- 1. Laboratory Precautions, principles of aseptic techniques
- 2. Preparation of Liquid and solid nutrient media
- 3. Preparation and observation of bacteria by using various selective media
- 4. Cultivation of microorganisms Pour plate, spread plate and streak plate
- 5. Gram's staining Gram positive and Gram negative bacteria
- 6. Fungal staining Lacto phenol cotton blue staining of Mold
- 7. Determination of Microbial growth-viable count and turbidity method
- 8. Cultivation of anaerobic bacteria
- 9. Physiological characterization of microbes Carbohydrate fermentation test and catalase test
- 10. Starch and casein hydrolysis test
- 11. IMViC test
- 12. Enumeration of Bacteria, fungi and Actinomycetes (Design experiment)
- 13. Rapid detection of bacteriological quality of water Most Probable Number test
- 14. Quality analysis of Milk samples Methylene Blue Reduction Test
- 15. Antibiotic resistance / sensitivity test

References:

 Cappuccino, J.G. and Sherman, N. "Microbiology: A Laboratory Manual", 11th Edition. Pearson Education, New Delhi, India, 2018.

- 2. Amita Jain, Vimala Venkatesh, Jyotsna Agarwal, "Microbiology Practical Manual, (ELSEVIER) RELX India Pvt.Ltd., 2018
- 3. James G, Cappuccino, Natalie Sherman, "Microbiology: A Laboratory Manual", Seventh Edition, Pearson Education, Inc. and Dorling Kindersley Publishing, Inc., 2012
- 4. Kalaichelvan, P.T., "Microbiology and Biotechnology: A Laboratory Manual, MJP Publishers, Chennai, 2019.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO 2
CO1	3	2	3	3	2	1	2	3	2	3	2	3	3	2
CO2	2	3	2	2	2	2	3	1	2	2		2	2	3
CO3	3	2	2	3	2	2	2		1	2	2	2	3	3
CO4	3	2	2	2	2	2	2		2	2	2	3	2	3
CO5	2	2	2	2	2	2	2	2	1	1	2	2	3	2

			30 1F 0F1	- Career Compete	ency Develop	ment i		
				Common to all	branch			
Compoter		Hours/We	ek		Credit	Max	cimum Ma	rks
Course Objectives Course Outcomes 2 3	L	Т	Р	Total Hrs	С	CA	ES	Total
III	0	0	2	30	Credit Maximum Marks C CA ES Total 0 100 00 100 ectness and vocabulary efficacy in the academic and of sentences and comprehend the meaning of on, draft letters and correct usage of foreign words and express their opinion in a conducive way. to and vocabulary efficacy in the academic and express their opinion in a conducive way. to and vocabulary efficacy in the academic and express in the reading passages effectively ion, letter drafts, and interpret the appropriate usage of			
	prof To he read To he with To he	essional conte lp the learners lingpassages lp learners to correct spellir lp the learners	exts. Is to frame syleffectively Indeptly sequence In and punct In to introduce	ntactical structures ence the informatic uation. e themselves and ir	of sentences and draft letters	and compr and corre	ehend the of the officer control of the offic	meaning of foreign words ofessionally
	 Reir prof Ger Reo fore 	force the essessional conte erate syntacti rganize and c ign words with	sential gramments cat structure can structure can correct spe	s and infer the sem sequential informat lling and punctuatio	and vocabule antics in the roon, letter draft on	eading pasts, and inte	sages effe rpret the a	ctively

- InstructorcancoverthesyllabusbyClassroomactivitiesandAssignments (5Assignments/week)
- Instructor Manua Ihas Classwork questions, Assignmentquestions and Rough workpages
- EachAssignmenthas 20questionsfromUnit1,2and Unit5 and 5questions fromUnit3 and4 Evaluation has to be conducted as like Lab Examination.

Evaluation has to be conducted as like Eab Examination.	
Unit-1 Written Communication-Part1	Hrs
Usage of noun, pronoun, adjective (Comparative Forms), Verb, Adjectives, Adverb, Tenses, Articles and	
Preposition - Change of Voice - Change of Speech - Synonyms & Antonyms - One Word Substitution- Using the	8
Same Wordas Different Parts of Speech- Odd Man Out	
Materials: Instructor Manual, Word Power Made Easy Book	
Unit-2 Written Communication-Part1	

Analogies - Sentence Formation - Sentence Completion - Sentences, Letter Drafting (Formal Letters) - Reading Communication - Materials:Instructor Manual, Word Power Made Easy Book		
Unit-3 Written Communication -Part3		
JumbledSentences,LetterDrafting(FormalLetters)-ForeignLanguag	WordsusedinEnglishSpelling&	4
Punctuation(Editing)		
Materials:InstructorManual,NewsPapers		
Unit-4 Oral Communication-Part1		
Self-Introduction-SituationalDialogues/RolePlay(TelephonicSkills)-	OralPresentations-Prepared-'JustA Minute	6
'Sessions (JAM)		
Materials:InstructorManual,NewsPapers		
Unit-5 Oral Communication-Part2		
DescribingObjects/Situations/People,InformationTransfer-Pictur	eTalk-NewsPaperandBookReview	6
Materials:InstructorManual,NewsPapers	·	
<u>'</u>	Total	30

Evaluation Criteria

S.No.	Particular	Test Portion	Mar ks
1	Evaluation 1 Written Test	50Questions- 30QuestionsfromUnit1&2,20QuestionsfromUnit3,(ExternalEvaluation)	50
2	Evaluation 2 - Oral Communication	Self-Introduction, Role Play & Picture Talk from Unit- 4(ExternalEvaluationbyEnglish and MBA Dept.)	30
3	Evaluation 3 – Oral Communication	Book Review & Prepared Speech from Unit- 5(ExternalEvaluationbyEnglishandMBADept.)	20
		Total	10

Reference Books

- 1. Aggarwal,R.S."AModernApproachtoVerbalandNon-verbalReasoning",RevisedEdition2008,Reprint2009,S.Chand&CoLtd.,NewDelhi.
- 2. WordPowerMade EasybyNormanLewisW.R.GOYAL Publications

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							3	3	
CO2	3	3	2	2	2							3	3	
CO3	3	3	3	3	3							3	3	
CO4	3	3	3	3	3							3	3	
CO5	3	3	3	3	3							3	3	

K.S.Rangasamy College of Technology – Autonomous R 2018 50 MA 013 - Statistical Methods Common to B.Tech., Biotechnology and B.Tech., Food **Technology** Hours / Week Credit **Maximum Marks** Semester **Total Hrs** Ρ Т С CA Total L ES 1 100 3 0 60 50 50 V To acquire skills in handling situations involving one random variable and distributions. To teach the students in handling situations involving more than one random variable and Objective(s) functions ofrandom variables. To familiarize the students with various methods in hypothesis testing To get exposed to statistical methods designed to make scientific judgments in the face of uncertainty and variation. To learn basic statistics and how to use control charts to monitor discrete data. At the end of the course, the students will be able to CO1: Apply discrete and continuous distributions concepts to calculate the probability. CO2: Compute marginal and conditional distributions, and calculate correlation and regression. Course CO3: Test the statistical hypothesis using Student's t test, F test and Chi-square test. Outcome CO4: Analyze the design of experiments using CRD, RBD and Latin square. S CO5: Apply the concepts in descriptive statistics to calculate measures of central tendency and measures Of dispersion, and analyse the control charts. PROBABILITY AND DISTRIBUTIONS Random variable - Discrete random variable - Continuous random variable - Moment generating function Standard Distributions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. TWO DIMENSIONAL RANDOMVARIABLES Joint distribution – Marginal distribution – Conditional distribution – Covariance – Correlation – Rank Correlation – Regression.[8] **TESTING OF HYPOTHESIS** Test of significance of small samples - Student's 't' test - Single mean and Difference of means - F- test - Chisquare test -Goodness of fit - Independenceofattributes. [9] **DESIGN OF EXPERIMENTS** Analysis of variance - One way classification - Completely randomized design - Two way classification -Randomized blockdesign -Latin square. [8] Statistics and Quality Control Measures of Central tendency - Mean - Median - Mode - Measures of Dispersion - Quartile deviation - Mean deviation -Standard deviation – Coefficient of variation – Skewness – Kurtosis – Control charts – Mean $\Box X \Box$ chart – Range (R) chart Ρ chart nΡ -Cchart. chart [10] Total hours 45+15 60 Text Book: Gupta S.C and Kapoor V.K., "Fundamentals of Mathematical Statistics", 11th Edition, S Chand & Company Ltd, New Delhi, 2007. Richard A Johnson, "Miller & Freund's Probability and Statistics for Engineers", 7th Edition, Pearson Education, New Delhi. 2005. References: Veerarajan T., "Probability, Statistics and Random Process", 2nd Edition, Tata McGraw-Hill Publishing Company Ltd, New Delhi. 2008.

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approxed in Academic Council Meeting held on 03/06/2023

2	Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying Ye., "Probability and Statistics for																									
	Engine	ers and			-		-																			
	Scientists", 9th Edition, Pearson Education, New Delhi, 2011.																									
3	Sheldon Ross, "A first course in Probability", 8th Edition, Pearson Education, New Delhi, 2010.																									
4	Lipschutz, Seymour, Schiller, John. J., "Schaum's outlines – Introduction to Probability and Statistics", Taata																									
	McGraw-																									
	Hill, Nev	v Delhi,	1998.																							
5	Probal	oility and	Statistic	s - Dr. S	Somesh I	Kumar, N	NPTEL o	nline vid	leo cours	ses.			Probability and Statistics - Dr. Somesh Kumar, NPTEL online video courses.													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2																									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2												
CO1		PO2 2	PO3 3	PO4 3	PO5 2	PO6	PO7 2	PO8	PO9 2	PO10	PO11 2	PO12	PSO1 3	PSO2												
CO1 CO2	3	PO2 2 3				PO6 1 2	1	PO8 1 1			. •	. •														
	3	2	3	3	2	1	2	PO8 1 1 1	2	3	2	. •		2												

CO5 2

 in genome analysis. The student would learn about various aspects of Genetic Engineering, its application and ethic issues. To determine the strategies involved in gene cloning with the help of genomic libraries, cDNA librariand other libraries. 		K.S.Rangasamy College of Technology - Autonomous R 2018 50 BT 401 - Genetic Engineering														
Notable Semester Hours / Week L T P Total Hrs C C CA ES Total					50 BT 401 -	Genetic E	Engineering	g								
IV 3 0 0 45 3 50 50 100					B.Tech	. Biotech	nology									
IV 3 0 0 45 3 50 50 100	Semester	Но	urs / We	ek		Credit		Max	cimum Marks							
To discuss the methods, tools and techniques involved in genome analysis, expression of clongenes in different host system. To understand the production of recombinant proteins, mutation analysis and the importance of PC in genome analysis. The student would learn about various aspects of Genetic Engineering, its application and ethic issues. To determine the strategies involved in gene cloning with the help of genomic libraries, cDNA librariand other libraries. To discuss the production of useful molecules like cytokines, vaccines and antibiotics and define the safety guidelines for recombinant. At the end of the course, the students will be able to CO1: Describe restriction and modification system and their role in genetic engineering and illustrate the different types of blotting techniques. CO2: Characterize the cloning vectors used in manipulation of genes like plasmids, phagemids, cosminatificial chromosomes, plant and animal vectors. CO3: Determine the strategies involved in gene cloning with the help of DNA libraries and methods involved in screening of cloned genes to identify the target gene from the library. CO4: Illustrate the PCR based techniques involved in genetic manipulation including mutagenesis and demonstrate various sequencing techniques		L	Т	Р	Total Hrs	С	CA	ES	Total							
 genes in different host system. To understand the production of recombinant proteins, mutation analysis and the importance of PC in genome analysis. The student would learn about various aspects of Genetic Engineering, its application and ethic issues. To determine the strategies involved in gene cloning with the help of genomic libraries, cDNA librariand other libraries. To discuss the production of useful molecules like cytokines, vaccines and antibiotics and define the safety guidelines for recombinant. At the end of the course, the students will be able to CO1: Describe restriction and modification system and their role in genetic engineering and illustrate the different types of blotting techniques. CO2: Characterize the cloning vectors used in manipulation of genes like plasmids, phagemids, cosminantificial chromosomes, plant and animal vectors. CO3: Determine the strategies involved in gene cloning with the help of DNA libraries and methods involved in screening of cloned genes to identify the target gene from the library. CO4: Illustrate the PCR based techniques involved in genetic manipulation including mutagenesis and demonstrate various sequencing techniques 	IV	3	0	0	45	3	50	50	100							
At the end of the course, the students will be able to CO1: Describe restriction and modification system and their role in genetic engineering and illustrate the different types of blotting techniques. CO2: Characterize the cloning vectors used in manipulation of genes like plasmids, phagemids, cosming artificial chromosomes, plant and animal vectors. CO3: Determine the strategies involved in gene cloning with the help of DNA libraries and methods involved in screening of cloned genes to identify the target gene from the library. CO4: Illustrate the PCR based techniques involved in genetic manipulation including mutagenesis and demonstrate various sequencing techniques	Objective(s)	ge in Tr iss To ar	 genes in different host system. To understand the production of recombinant proteins, mutation analysis and the importance of PCR in genome analysis. The student would learn about various aspects of Genetic Engineering, its application and ethical issues. To determine the strategies involved in gene cloning with the help of genomic libraries, cDNA libraries and other libraries. To discuss the production of useful molecules like cytokines, vaccines and antibiotics and define the 													
Interference technology in gene expression studies.		CO1: I CO2: 0 CO3: I CO4: I	Describe different t Characte artificial c Determin nvolved i Illustrate demonstr	restrice ypes of rize the hromogen the send the	ction and modification for blotting technique e cloning vectors upsomes, plant and a strategies involved ening of cloned geone based technique rious sequencing to applications of respective process.	on systemes. sed in mananimal vecin gene clanes to ide es involved echniques	and their ronipulation of ctors. In the target in genetic cology and design	f genes like he help of Dl get gene froi manipulatio	plasmids, phagemids, cosmids, NA libraries and methods m the library. n including mutagenesis and							

FUNDAMENTAL TECHNIQUES OF GENE MANIPULATION

Restriction enzymes: types and mechanisms, DNA modification systems, Restriction mapping, Design of linkers and adapters, Joining of DNA molecules, Basics of cloning, Nucleic acid blotting: Southern blotting, Western Blotting and Northern Blotting. [9]

BIOLOGY OF CLONING VECTORS

Characteristics of cloning vectors, Types of vectors, Selectable markers, and Experimental applications of vectors: Plasmids- pBR322, pUC, λ vectors, cosmids, M13 vectors, Phagemids, Artificial Chromosomes: YAC, PAC, BAC, HAC, Expression vectors, Insect, Yeast and Mammalian vectors. [9]

GENE CLONING STRATEGIES ANDSCREENING

Cloning of genes: Genomic libraries, cDNA libraries, Directional cDNA cloning, PCR based libraries-RACE, Subtraction libraries, Screening: Nucleic acid probe hybridization, Immuno screening and Functional screening. [9]

AMPLIFICATION AND SEQUENCING OF DNA

PCR: Mechanism, Types- Nested, Hot start, colony PCR, Taqman assay, Molecular beacons, Site directed mutagenesis: primer extension - Strand selection -Cassette mutagenesis - PCR based, Methods of nucleic acid sequencing: Sanger's method, Automated sequencing. Next Generation sequencing method: Illumina and Ion Torrent. [9]

APPLICATIONS OF RDNA TECHNOLOGY

Differential display, Microarrays, FISH, Knock-out analysis, Antisense and RNA interference, Yeast two hybrid system, RAPD, RFLP, VNTRs and SSR; Production of useful molecules: cytokines, vaccines and antibodies, improving agronomic traits. Safety guidelines for recombine ant DNA technology.

[9]

												Total h	ours	45
Tex	t book:													
1	Smita F	Rastogi a	nd Neela	am Patha	ak, "Gene	etic Engir	neering",	Oxford I	Publication	on, 2010				
2	Ragago 2012.	opal K., "	Recomb	inant DN	IA Techr	nology ar	nd Gene	tic Engin	eering",	Tata Mc	Graw Hil	I Educat	ion Priva	ite Ltd.,
Ref	erences	:												
1	Primros 2006.	se S.B. &	Twymar	n R.M., "F	Principles	s of Gene	e Manipu	llation an	d Genor	nics", 7 ^{tr}	¹ Edition,	Blackwe	ell Publis	hing.
2	Richard	J. Reed	e., "Anal	lysis of G	enes an	d Genon	nes", Joh	n Wiley	and Son	s Ltd., Si	ngapore	, 2004.		
3	Desmo 2008.	nd S.T. N	Nicholl, "A	An Introd	uction to	Genetic	Engine	ering", Th	nird Editio	on Camb	ridge Un	iversity F	Press Ne	wYork,
4	Gyana 2018.	Ranjan F	Rout, K,√	/, Peter,	" Genetic	Engine	ering of H	Horticultu	ıral crops	" Acade	mic Pres	s An imp	rint of El	sevier,
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3			3		3	2	3	3	3
CO2	3	3	2	3		3	3	3		3		3	3	2
CO3	3	3	3	3				3	3		3	3	3	2
CO4	3	3	3	3	3	3	3			3		3	3	2
CO5	3	3	3	3		3	<u>'</u>		3		3	3	3	3

		K.S.Ranga	asamy Col	lege of Techr	nology - Auto	onomous R 20	018	
		5	0 BT 402 -	Protein and I	Enzyme Engi	ineering		
			I	3.Tech. Biote	chnology			
Semester	Hours /	Week			Credit	I	Maximum Ma	rks
	L	Т	Р	Total Hrs	С	CA	ES	Total
IV	3	0	0	45	3	50	50	100
	To im	part basic c	oncept abo	out Protein and	d Enzyme str	uctures.		
Objective(s)	To kn	ow the basi	cs of enzyr	me substrate i	nteraction an	d its product fo	ormation	
	To lea	arn basic pr	inciples of	enzyme purific	ation.			
						zyme engineei		
	To an	alyze the a	oplication o	of proteins and	enzymes in	various industi	ries	
	At the en	d of the co	ourse, the	students will	be able to			
	CO1: Know	the basic,	types and	structural conf	irmation of pr	oteins and en	zymes	
	CO2: Ident	ify the enzy	me active s	site and its ca	talysis			
Course	CO3: Illustr	ate the pro	tein/ enzym	ne purification	methods and	factors affecti	ing immobiliza	ation
Outcomes	CO4: Demo	onstrate the	protein/ ei	nzyme engine	ering strategi	es		
1	CO5: Ident	ify the appli	cations of p	orotein/ enzym	nes in various	domain		

INTRODUCTION TO PROTEINS AND ENZYMES

Introduction - Basic structural principles: amino acids and their conformational accessibilities - Motifs of protein structures and their packing - Structural characterization of proteins: Primary and three dimensional structure determination - Ramachandran Plot - Protein folding: Structure of chaperones and role of chaperones in protein folding - Enzymes: definition, nomenclature and types (constitutive and induced enzyme), intracellular and extra cellular enzymes.[9]

MECHANISM AND KINETICS OF ENZYME CATALYSIS

Concept of active site -Mechanism of enzyme action - specificity of enzyme action - Enzyme inhibition - Mechanism and kinetics of single substrate reaction: Michaelis Menton equation and its Transformations, turn over number - Mechanism and kinetics of Multi substrate reaction MCW model - Analytical problems in single substrate reactions, turn over number, transformations of MM equations, MC Wmodel. [9]

PRODUCTION AND PURIFICATION OF PROTEINS AND ENZYMES

Production and Purification of enzyme from plant, animal and microbial source: extraction, precipitation, dialysis, lon exchange chromatography, Hydrophobic interaction chromatography, Gel filtration chromatography. Types of Enzyme immobilization. [9]

STRATEGIES FOR PROTEIN AND ENZYME ENGINEERING

Protein engineering cycle, protein splicing, random and site directed mutagenesis, pepti domimetics, *in vitro* protein evolution (DNA shuffling, Error prone PCR), cell surface display technology - Rational enzyme Design: Reshaping enzyme specificity, reengineering catalytic mechanisms, engineering by molecular assembling. [9]

APPLICATION OF PROTEINS AND ENZYMES

Importance of recombinant enzymes and proteins, Industrial applications of enzymes, design of enzyme electrodes - Case studies on protein engineering applications in food, detergent, environment and health care industries. [9]

	Total haura
Tov	Total hours 4
IEX	
1.	Palmer, T. and Bonner, P., "Enzymes: Biochemistry, Biotechnology and Clinical chemistry", Affiliated East - West Press Pvt. Ltd., New Delhi, India, 2008.
2.	Devasena T., "Enzymlogy", Second Edition, Oxford University Press, New Delhi, India, 2014.
Refe	erences:
1.	Branden, C. and Tooze, J., "Introduction to Protein structure", Second Edition, Garland Publishing, New York, US 1999.
2.	Anton Torres, "Handbook of Protein Engineering" Calisto Reference, 2015.

3.	Preeth	i Kartan,	"Enzym	e Engine	eering", .	Arcler Ed	ducation	Incorpo	rated, 20)17.				Preethi Kartan, "Enzyme Engineering", Arcler Education Incorporated, 2017.														
4.	Allan Svendesen, "Understanding Enzymes — Function, Design, Engineering and Analysis" Pan Stanford Publishing, 2016.																											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2																											
CO1																												
CO2	3	3	3	3	3			1	2		2	3	3	3														
CO ₃	3	3	3	3	3	3		1			2	3	3	3														
CO4	3	3	3	3	3			1		3	2	3	3	3														
CO ₅	2	2	2	2	2		3				2	3	3	3														

		K		<u> </u>	Technology - A		2018	
			50 E		emical Thermo			
		/ 14/		B. I ech.	Biotechnology			
Semester	НС	ours / Wee			Credit		<u>Maximum Marl</u>	
	L	Т	Р	Total Hrs	С	CA	ES	Total
١٧	3	1	0	60	4	50	50	100
		•		•	iples and relatio	ns.		
Objectiv	•	To unders	stand partial	molar propertie	es of solutions.			
e(s)	•	To unders	stand the pha	ase equilibrium	concepts and its	s applications.		
	•	To learn a	about chemic	al reaction equ	illibrium principle	es.		
	•	To know t	the application	ns of thermody	namics in biolog	gical systems.		
	At th	ne end of	the course,	the students	will be able to			
	CO1	: Interpre	t laws of ther	modynamics to	predict the ther	modynamic pro	perties of pure f	luids
Course	CO2	2: Review	various therr	nodynamic pro	perties of solution	ons		
Outcomes	CO3	3: Analyze	the criteria o	of phase equilib	ria for single an	d multicompone	nt systems	
	CO4	: Apply th	e concept of	chemical react	tion equilibria an	d equilibrium co	nversion	
	COS	5: Compre	hend bioene	rgetics and the	rmodynamics of	biochemical rea	actions	

THERMODYNAMIC PROPERTIES OF PURE FLUIDS

Basic concepts and laws of thermodynamics - basics of entropy - volumetric properties of fluids - estimation of

thermodynamic properties using equations of state, calculations involving actual property changes, Maxwell's relations and applications, residual properties,refrigerationcycles. [9]

SOLUTION THERMO DYNAMICS

Partial molar properties - concept of chemical potential and fugacity in solutions - activity - activity coefficients - effect of pressure and temperature - Gibbs-Duhem equations - property changes of mixing - heat effects of mixing in biologicalbroths.

PHASE EQUILIBRIA

Criteria for phase equilibria - phase equilibria in single and multicomponent systems - Duhem's theorem. V-L-E calculations for binary and multi component systems. Liquid-liquid equilibria and solid-liquid equilibria. [9]

CHEMICAL REACTION EQUILIBRIA

Chemical reaction equilibrium: evaluation of equilibrium constant, effect of temperature and pressure on equilibrium

constant, equilibrium conversion for single andmultiplereactions.

[9]

BIOCHEMICALTHERMODYNAMICS

Thermodynamics and energetics of metabolic pathways, oxygen requirement and heat generation in aerobic growth, energy coupling (NADH and ATP), Thermodynamics of oxidation-reduction reactions, Energetics of DNA-protein interactions, Protein folding and receptor-ligandbinding.

CO3

CO₄

CO₅

Total hours (45+15)	60
10tai nours (45+15)	bι

Text b	ook:													
1.	Smith 3 2001.	J.M., Va	n Ness	H.C., Ab	bot M.M	. Chemi	cal Enginee	ering	Thermod	dynamics	s, Sixth e	dition, N	ИсGraw-	·Hill,
2.	Narayanan K.V., "AText Book of Chemical Engineering Thermodynamics", Second Edition, Prentice Hall of India, New Delhi, 2016.													
Refere	ences:													
1.	Gopina 2009.	th Halde	er, "Intro	duction t	to Chem	ical Eng	ineering The	ermo	dynamic	s", PHI I	_earning	Pvt. Ltd	l., New [Эelhi,
2.	Sandle 2006.	r S. I., C	hemical,	Biocher	nical and	I Engine	ering Therm	odyn	amics, F	ourth Ec	lition, Joh	nn Wiley	& Sons	Inc.,
3.	Gavhai	ne K.A, "	Chemica	al Engine	ering the	ermodyn	amics-1", N	irali F	rakasan	Publica	tions, Pu	ne, 2013	3.	
4.	Alberty	, "Bioche	emical TI	nermody	namics /	Applicati	ons of Math	emati	ca with	CD (HB)	', John W	/iley, 200	06.	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	3	2	2	2	3	3	3	1	1	2	3	1	3	2
CO2	3	2	3	3	3	3	3			3	3	2	2	3

		K.S. Rar	gasamy Col	lege of Techi	nology – Aut	onomous R	2018	
			50 MY 014 ·	- Start-ups an	d Entrepren	eurship		
			E	3. Tech. Biote	chnology			
Semester		Hours / Wee	ek	Total Hrs	Credit		Maximum Ma	ırks
Semester	L	Т	Р	TOTAL FILS	C	CA	ES	Total
IV	2	0	0	30	ı	100	-	100
Objective(s)	for	others. build a winnin impart practic inculcate the	g strategy, he al knowledge habit of beco		unique value opportunities neur	proposition,	duct or service	thatcreates value
Course Outcomes	CO1: Tra it in CO2: Ide bas CO3: Re stra CO4: Ap CO5: Ap	ansform ideas a growing, entify the majo sis of an innoverse ach creative stategies, integribly the 10 entiply methods a	into real prod profitable and r steps and restative project. solutions via a ating feedback repreneurial tand strategies	d sustainable equirements in an iteration of ck, and learning tools in creating learned from	and processed business. In order to estimate a virtually ending from failured a business interviews wi	mate the poted dless stream of the wall of a new the startup ent	ential of an innovertial of world changing vay. w innovative verepreneurs and	nture.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

INTRODUCTION TO ENTREPRENEURSHIP & ENTREPRENEUR

Meaning and concept of Entrepreneurship, the history of Entrepreneurship development, Myths of Entrepreneurship, role of Entrepreneurship in Economic Development, Agencies in Entrepreneurship Management and Future of Entrepreneurship. The Entrepreneur: Meaning, the skills required to be an entrepreneur, the entrepreneurial decision process, Role models, Mentors and Support system.

[5]

BUSINESS OPPORTUNITY IDENTIFICATION AND PREPARING A BUSINESS PLAN

Business ideas, methods of generating ideas, and opportunity recognition, Idea Generation Process, Feasibility study, preparing a Business Plan: Meaning and significance of a business plan, components of a business plan.

[5]

INNOVATIONS

Innovation and Creativity - Introduction, Innovation in Current. Environment, Types of Innovation, School of Innovation, Analysing the Current Business Scenario, Challenges of Innovation, Steps of Innovation Management, Experimentation in Innovation Management, Participation for Innovation, Co-creation for Innovation, Proto typing to Incubation. Blue Ocean Strategy-I, Blue Ocean Strategy-II. Marketing of Innovation, Technology Innovation Process.

[5]

FINANCING & LAUNCHING THE NEW VENTURE

Importance of new venture financing, types of ownership, venture capital, types of debt securities, determining ideal debtequity mix, and financial institutions and banks. Launching the New Venture: Choosing the legal form of new venture, protection of intellectual property, and formation of the new venture.

[5]

MANAGING GROWTH & REWARDS IN NEW VENTURE

Characteristics of high growth new ventures, strategies for growth, and building the new ventures. Managing Rewards: Exit strategies for Entrepreneurs, Mergers and Acquisition, Succession and exit strategy, managing failures – bankruptcy.

<u>M</u>

_

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approximation Academic Council Meeting held on 03/06/2023

Total Hours: = 30 Text book(s):															
Text	book	(s):													
1			•			•		preneurs		ur Drean	ns and Cr	eate You	ır Own Pr	ofitable	
				•				w Delhi, 2							
2					•			URSHIP	: The Ar	t, Scienc	e, and P	rocess for	or Succe	ss", 2 nd	
<u> </u>	Edition, Tata McGrawhill Company, New Delhi, 2016.														
Refer	erence(s): Philip Auerswald, The Coming Prosperity: How Entrepreneurs Are Transforming the Global Economy, Oxford														
1		•	rswald, Press, 2		ning Pro	sperity: I	How Ent	repreneu	irs Are 1	ransform	ing the	Global E	conomy,	Oxford	
2								liss, Entre	epreneur	ial Finan	ce: Strate	egy, Valu	ıation, ar	nd Deal	
	Stru	ıcture,	Stanford	l Econon	nics and	Finance,	2011.								
3	Edv	vard D.	Hess, C	Prowing a	an Entrep	reneuria	I Busines	ss: Conce	epts and	Cases, S	Stanford	Business	Books, 2	2011.	
4	Hov	vard Lo	ve, The	Start-Up	J Curve	: The Six	Steps to	Entrepre	eneurial	Success,	Book Gr	oup Pres	s, 2011.		
	Р	РО	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO	PSO	
CO1	3	3	3	3	2	3	3	2	3			2	2	2	
CO2	2	3	3	2	2		2	2	2			2	3	3	
CO3	3	2	3	1	2				3	2	1	3	3	3	
CO4	3	3	3	3	3	2	3	3		2	3	3	2	3	
CO5	3	2	3	3	3		2	2			3	2	2	3	

	K.S	.Rangasamy	College of	Technology	– Autonomou	us R2018		
		50 GE	001 - Natio	nal Cadet Co	orps-Air wing			
Compotor		Hours / Weel	<	Total	Credit	Max	imum Marks	3
Semester	L	Т	Р	Hrs	С	CA	ES	Total
IV	2	0	2	60	4	50	50	100
Objective(s)	• In- • Er • Id- • Im- lal	prove qualition out in the ca	line, secular of adventures service ames such as sedets.	outlook e, sportsman ongst cadets elf-discipline,	by working in self-confidence		ice and digr	nity of
Course Outcomes	CO1: Disp who CO2:Demo and t CO3: Illust CO4:Outlin	will carry out onstrate the s heir use and trate various to ne the concep	patriotism, s nation buildi ense of disci handling orces and m ots of aircraft	ecular values ng through n pline with sm oments actin engine and i	s and shall be ational unity a artness and ha	ind social col ave basic kno ion	nesion. wledge of w	

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the

number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

NCC Organization & National Integration

NCC Organization - History of NCC- NCC Organization- NCC Training- NCC Uniform - Promotion of NCC cadets - Aim and advantages of NCC Training- NCC badges of Rank- Honors' and Awards - Incentives for NCC cadets by

central and state govt. History and Organization of IAF-Indo-Pak War-1971-Operation Safed Sagar. National Integration- Unity in diversity- contribution of youth in nation building- national integration council- Images and Sloganson National Integration.

Drill&WeaponTraining

Drill- Words of commands- position and commands- sizing and forming- saluting- marching- turning on the march and wheeling- saluting on the march- side pace, pace forward and to the rear- marking time- Drill with armsceremonial drill- guard mounting.(WITH DEMONSTRATION). Main Parts of a Rifle- Characteristics of .22 rifleloading and unloading - position and holding- safety precautions - range procedure- MPI and Elevation- Group and Snap shooting- Long/Short range firing (WITH PRACTICE SESSION)

Principles of Flight

Course Code &

Laws of motion-Forces acting on aircraft-Bernoulli's theorem-Stalling-Primary control surfaces - secondary control surfaces-Aircraft recognition.

Aero Engines

Introduction of Aero engine-Types of engine-piston engine-jet engines-Turboprop engines-Basic Flight Instruments- Modern trends.

Aero Modeling [9]

History of aero modeling-Materials used in Aero-modeling-Types of Aero-models – Static Models-Gliders-Control line models-Radio Control Models-Building and Flying of Aero-models.

Total Hours: 45 Text Book(s): "National Cadet Corps- A Concise handbook of NCC Cadets" by Ramesh Publishing House, New Delhi.2014. "NCC OTA Precise" by DGNCC, New Delhi,2014 Reference(s) 'Cadets Handbook – Common Subjects SD/SW" by DG NCC, New Delhi,2019 "Cadets Handbook – Specialised Subjects SD/SW" by DG NCC, New Delhi,2017 **POs**

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

BOS - CHAIRMAN Signature

Couse Name	COs	1	2	3	4	5	6	7	8	9	10	11	12
50 GE 001 -	CO1						3	3	3	3	3		3
National Cadet Crops-Air wing	CO2					3						3	2
Cropo / iii willig	CO3	3	2	1	1								
	CO4	3	2	1	1								
	CO5	3	2	1	1								

	K.S	.Rangasam	/ College of	Technology	– Autonomo	us R2018		
		50 GE 0	02 - Nationa	I Cadet Cor	ps (Army Win	g)		
Semester		Hours / Wee	k	Total	Credit	Maxi	mum Marks	3
Semester	L	T	Р	Hrs	С	CA	ES	Total
IV	2	0	2	60	4	50	50	100
Objective(s)	• Ind • Er • Idd • Im	culcate discipation the spirited the spirited selfles of selfles iprove qualiticour in the care	es such as se adets.	outlook e, sportsman longst cadets elf-discipline,	s by working in self-confidence		ce and dign	ity of
Course Outcomes	CO1: Disp who CO2:Demo turno CO3: Basic CO4:Awar such CO5: Acqu	lay sense of will carry our onstrate Heaput, develop to knowledge e about social evils and warring, expose	t nation buildi Ith Exercises the quality of of weapons a al evils and sl ays to eradica & provide kr	ecular values ing through n , the sense o immediate al and their use hall inculcate ate such evils nowledge abo	and shall be the ational unity and inscipline, im and implicit obe and handling.	and social con nprove bearing edience of orcestle blowing a // Air force an	nesion. g, smartnes ders. gainst ad to acquire	ss,
Note:Hours no decide the num asked based o	tified agains	t each unit ir s for each ur	the syllabus	are only ind upon the co	icative but are	not decisive	. Faculty ma	ay

NCC Organization & National Integration

[9]

NCC Organization – History of NCC- NCC Organization- NCC Training- NCC Uniform – Promotion of NCC cadets – Aim and advantages of NCC Training- NCC badges of Rank- Honors' and Awards – Incentives for NCC cadets by central and state govt.

National Integration - Unity in diversity- contribution of youth in nation building- national integration council-Images and Slogans on National Integration.

Basic Physical Training & Drill

[9]

Basic physical Training – various exercises for fitness(with Demonstration)-Food – Hygiene and Cleaniness .Drill- Words of commands- position and commands- sizing and forming- saluting- marching- turning on the march and wheeling- saluting on the march- side pace, pace forward and to the rear- marking time- Drill with arms- ceremonial drill- guard mounting.(WITH DEMONSTRATION)

Weapon Training [9]

Main Parts of a Rifle- Characteristics of .303 rifle- Characteristics of .22 rifle- loading and unloading – position and holding- safety precautions — range procedure- MPI and Elevation- Group and Snap shooting-Long/Short range firing(WITH PRACTICE SESSION) - Characteristics of 5.56mm rifle- Characteristics of 7.62mm SLR- LMG- carbine machine gun — pistol.

Social Awareness and Community Development

[9]

Aims of Social service-Various Means and ways of social services- family planning – HIV and AIDS- Cancer its causes and preventive measures- NGO and their activities- Drug trafficking- Rural development programmes - MGNREGA-SGSY- JGSY- NSAP-PMGSY-Terrorism and counter terrorism- Corruption – female foeticide - dowry –child abuse-RTI Act- RTE Act- Protection of children from sexual offences act- civic sense and responsibility

Specialized Subject (ARMY)

[9]

Basic structure of Armed Forces- Military History – War heroes- battles of Indo-Pak war- Param Vir Chakra-Career in the Defence forces- Service tests and interviews.

Total Hours: 45

Text Book(s):

- 1. National Cadet Corps- A Concise handbook of NCC Cadets by Ramesh Publishing House, New Delhi, 2014
- 2. Cadets Handbook- Specialized Subjects SD/SW published by DG NCC, New Delhi ,2014

Reference(s)

- 1. Cadets Handbook Common Subjects SD/SW" by DG NCC, New Delhi,2019
- 2 "Cadets Handbook Specialised Subjects SD/SW" by DG NCC, New Delhi,2017

Course Code &	00-						P	Os					
Couse Name	COs	1	2	3	4	5	6	7	8	9	10	11	12
	CO1						1		3				
	CO2								2				
50 GE 002 -	CO3						1		3				
National Cadet Crops- Army Wing	CO4								2				
	CO5								3				

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

BOS - CHAIRMAN Signature

		K.S	.Ranga	asamy College of	Technolo	gy - Auton	omous R 20	018
		50 BT	4P1 - N	Molecular Biology			ering Labo	ratory
				B.Tech.	Biotechn	ology		
Semester	Н	ours / We			Credit			mum Marks
	L	T	Р	Total Hrs	С	CA	ES	Total
IV	0	0	4	60	2	60	40	100
Objective(s)	• T	o unders	tand st	eps involved in the	isolation of	of DNA form	n Bacteria, F	ungi and Plant.
Objective(3)	• T	o unders	tand th	e concepts of plasi	mid DNA e	xtraction a	nd transform	ation
	• T	o provide	hands	on experience in	performing	basic reco	mbinant DN	A techniques
	• T	o develo	p the al	oility to design, con	duct, anal	yze and int	erpret data r	elated to genetic
		ngineerir	•					
				esearch aptitude a	nd technic	al skills to	fulfill the nee	d of both industry and research
	re	equireme	nts.					
				course, the stude				
				edge of DNA extra				
					ned from t	he agarose	gel using gr	aphical, UV spectrophotometric
Course		and softw			.44.4.			to discot the wester DNA that
Outcomes								to digest the vector DNA that m it with <i>E.coli</i> DH5αcells
								and operate the thermocycler to
		amplify th			on at appi	opriate coi	icentiation a	ind operate the thermocycler to
					digestion	ligation tra	nsformation	and PCR to design experiment
								ither by PCR or by cloning and
				terpret the data ob				and

List of experiments

- 1. Isolation of genomic DNA from bacterial cells
- 2. Isolation of genomic DNA from fungal cell
- 3. Isolation of DNA from Blood by high salt method
- 4. Quantification of DNA by UV spectrometer and agarose gel electrophoresis
- 5. Extraction of Plasmid DNA
- 6. Isolation of total RNA from prokaryotes
- 7. Extraction of DNA from Agarose gel
- 8. Restriction Enzyme Digestion of Vector and genomic DNA
- 9. Ligation of restricted DNA to constructrDNA
- 10. Competent cell preparation- Calcium Chloride method
- 11. Transformation by heat-shock inductionmethod
- 12. PCR- 16S rDNA amplification
- 13. Random Amplification of Polymorphic DNA
- 14. Isolate DNA from any five different sources, quantify it and interpret your result by comparing the data obtained
- 15. Make a recombinant DNA of your own gene of interest using the given vector and confirm it by the any one of the following techniques:
 - (i) Transformation and blue-white screeningColony PCR

References:

- Sambrook, J., Russsel, D.W., "Molecular cloning A laboratory manual", Third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001.
- Ansubel, F.M., Brent, R., Kingston, R.E. and Moore, D.D., "Current Protocols in Molecular Biology", GeonePublication Associates, New York, USA, 1988.
- 3 Isil Aksan Kurnaz, "Techniques in Genetic Engineering", CRC Press, Taylor & Francis Group, New York, 2015
- 4 Gupta P.K., "Molecular Biology and Genetic Engineering", Rastogi Publications, Meerut, India, 2008

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2		2	2	3	2	2	2	2	3
CO2	3	2	2	2		3	3	2	1		2	2	3	3
CO3	3	2	2	2	2		3	2	1		2	2	3	2
CO4	3	2	2	2		2		2	1	2		2	2	3
CO5	3	2	2	2		3	2	2	1		2	2	3	2

		K.S.Ranga	asamy Co	ollege of Tech	nology - Au	tonomous R 2	2018	
		50 BT 4P	2 - Protei	n and Enzyme	Engineerir	ng Laboratory		
			Е	3.Tech. Biotec	hnology			
Semester	Hours /	Week			Credit		Maximum Maximu	arks
	L	T	Р	Total Hrs	С	CA	ES	Total
IV	0	0	4	60	2	60	40	100
	To imp	art basics	of intra ar	nd extra cellulai	r protein and	enzyme extra	ction.	
Objective(s)				characterizatio	•	•		
				enzyme and p	•			
			•	ino acids using			hod.	
				mechanism of				
	At the en	d of the co	ourse, the	e students will	be able to	-		
	CO1: Analy	ze the ext	raction an	d estimation of	intra cellula	rproteins		
Course				perature and <i>h</i>		•	zyme	
Outcomes				pattern through		•	•	PAGE
				duction, estima				_
		,		odification of a			,	

List of experiments

- 1. Extraction and estimation of extra cellular proteins from bacteria and fungi
- 2. Production and estimation of protease
- 3. Digestion of milk protein into amino acids with quantification
- 4. Effect of pH and Temperature on Acid phosphatase activity
- 5. Kinetic characterization (Km & Vmax) of Acid phosphatase LB plot

- 6. Identification of inhibition types of Acid phosphatase
- 7. Purification of protein by ion exchange chromatography
- 8. SDS PAGE analysis for partial purification of protein sample
- 9. Identification of isozyme pattern of Peroxidase by Native-PAGE analysis
- 10. Immobilization of enzymes using gel entrapment method
- 11. Comparative kinetic characterization of free and immobilized enzymes
- 12. Engineering the active site using chemical modification method
- 13. Western blot Analysis of protein expression pattern

2

2

2

14. Fabrication of enzyme sensors and demonstration of their functions

'-	T. I abiic	ation of	CHZyIIIC	3013013	and den	ioristratio		ii idiletio	113					
15	5. Quant	ification	of purifie	d proteir	n in High	Perform	ance Lic	uid Chro	matogra	ıphy				
Lab N	/lanual:													
1							anual", C	•						
2	Hans B	Bisswang	er and L	eonie Bu	ubenheim	າ, "Enzyr	ne Kinet	ics: Princ	ciples an	d Method	ds", April	2002.		
3	Richard	d F. Tayl	or, "Prote	ein Immo	bilization	า: Funda	mentals	and appl	ications'	' 1991.				
4	Tuck S	eng Wor	ng, "A Pr	actical G	uide to F	Protein E	ngineerii	ng", Sprii	nger Nat	ure, ISBI	N: 97830	305689	2020, 36)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC
CO1	3	3	3	3	2	2	1		2	2	3	3	3	3
CO2	3	3	3	3	3		2	1	2		2	3	3	3
CO3	3	3	3	3	3	2		1		2	2	3	3	3
CO4	3	3	3	3	3		3	1	3		2	3	3	3

2

				echnology - Au				
	5	0 TP 0P2 - C		COMPETENC		MENT II		
	_		СОММС	ON TO ALL BR	ANCH			
Semester	Hours/Week				Credit	Ma	ximum Mark	(S
Semester	L	T	Р	Total Hrs	С	CA	ES	Total
IV	0	0	2	30	0	100	0	100
Course Objectives	texts in the a To help the left for effective pro To help the left requirements o To help the left placement and To help the placement a	academic and earners to acopessional present to enfect the corporate arners to competitive clearners to competitive and competitities.	d profess equire the esentatio rich their tes emprehen online ex omprehe ve online	sional contexts phonetic skills r verbal reasoni ad the prelimina cams and the Pre - Interese exams	of the languing and ability ry level of appermediate le	draft continuous age and express y to match the e otitude skills requivel of aptitude s	s themselves mployability uired to atten	precisely
Course Outcomes	CO1: Interpret a texts both CO2: Adapt to a CO3: Interpret ti	nd infer the r academically nd demonstra he various c	meaning and pro ate the perone	fessionally. honetic skills ac	cassages, or ecurately for oning and re	effective presen	tations profes	ssionally.

CO₅

2

2

2

3

3

3

- CO4: Infer the concepts of preliminary level of aptitude skills pertaining to competitive exams and companyrecruitments.
- CO5 Infer the concepts of pre-intermediate level of aptitude skills pertaining to competitive exams and company recruitments.

Unit–1	Written Communication-Part3		Hrs						
Newspaperand	Book Review Writing - Skimming a	oems) - Letter Drafting - Email Writing - Paragraph Writing - nd Scanning - Interpretation of Pictorial Representations. iion-Jumbled Sentences-Synonyms&Antonyms -	6						
	e Word as Different Parts of Speech								
	uctor Manual, Wordpower Made Ea								
Unit-2	Oral Communication-Part3								
	n-Miming(BodyLanguage)-Introduct	Consonants,	4						
	Stress and Intonation - Extemp aterial:Instructor Manual,NewsPap	ore - News Paper and Book Review- Technical Paper							
Unit-3	Verbal Reasoning–Part1	eis							
			8						
Analogies-AlphabetTest-ThemeDetection-FamilyTree-Blood Relations(Identifying relationships among group of people) -Coding &Decoding-Situation Reaction Test -Statement&Conclusions									
Material:Instructor Manual ,Verba ReasoningbyR.S.Aggarwal									
Unit-4	Quantitative Aptitude –Part1	.S.Aggarwar							
ProblemonAges-Percentages-ProfitandLoss-Simple&CompoundInterest-Averages-Ratio ,Proportion									
	ctor Manual, Aptitude Book								
Unit-5	Quantitative Aptitude –Part2		e						
Speed,Time&W Streams	orkandDistance-PipesandCisterns-	MixturesandAllegations-Races-ProblemonTrains - Boats and	6						
Practices: Puz:	zles, Sudoku, Series Completion, P	roblem on Numbers							
Material: Instru	ctor Manual, Aptitude Book								
		Total	30						
Evaluation Cri	teria								
S. No.	Particular	Test Portion	Marks						
1 Evalua	tion1 - WrittenTest	15Questions EachfromUnit1,3,4&5(ExternalEvaluation)	50						
2 Evalua	tion2 - OralCommunication	Extempore&Miming–Unit 2 (ExternalEvaluationbyEnglish,MBADept.)	30						
3 Evalua Presen	tion3 - TechnicalPaper tation	InternalEvaluationbytheDept.	20						
•		Total	100						

Reference Books

- 1. Aggarwal, R.S. "AModern Approach to Verbaland Nonverbal Reasoning", Revised Edition 2008, Reprint 2009, S. Chand & CoLtd., New Delhi.
- 2. Abhijit Guha, "QuantitativeAptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B.Lal & Goswami Upkar Publications.
- 4. WordPowerMade Easy by Norman Lewis W.R.GOYAL Publications

Note:

- InstructorcancoverthesyllabusbyClassroomactivitiesandAssignments(5Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- EachAssignmenthas 20questionsfromUnit1,3,4andUnit5and5questionsfromUnit2.

Evaluationhasto beconductedaslikeLabExamination

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	1	1	1	1	1	1	3	2	3		2

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

BOS - CHAIRMAN Signature

CO2		1		1	1	1	1	1	2	3	2	3		
CO3	1	1	1	1	2	3	1	1	2	3	2	3	1	1
CO4	3	2	2	2	1	2	1	1	2	3	2	3	2	2
CO5	3	2	2	2	1	2	1	1	2	3	2	3	2	2

	K.S.F			chnology – A		R 2018					
50 BT 501 - Plant And Animal Biotechnology B. Tech. Biotechnology											
Camaatar	Н	ours / Week		Total Hrs	Credit	Ma	Maximum Marks				
Semester	L	Т	Р	Total nrs	С	CA	CA ES				
V	3	0	0	45	3	50	50	100			
Objective(s)	 To develop the skills of the students in the area of Plant Biotechnology and its wide applications. To widen the knowledge about the production and applications of Transgenic plants and its uses. To produce potential biofertilizers using valuable native microbial strains for sustainable agriculture. To widen the knowledge about production and applications of transgenic animals. To understand the importance of ethical issues involved in the production of transgenic animals. 										
Course Outcomes	At the end of the course, the students will be able to CO1: Describe the concepts of plant tissue culture, media preparation in the field of <i>in vitro</i> culture of plants. CO2: Investigate the process of conservation of plants for future posterity and Production of Hybrid plants.										

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

PLANT TISSUE CULTURE

History of Plant tissue culture, preparation of Plant tissue culture media and Plant growth regulators, Sterilization of explants, Callus and suspension cultures, Micropropagation, meristem culture, organogenesis, regeneration of shoots and roots. Embryo culture, Somatic embryogenesis, Synthetic seeds, Haploid plant production: Anther, pollen and ovary culture, Protoplast culture, Somatic hybrids and Cybrids, Transfer and establishment of whole plants to greenhouse and field.

[9]

TRANSGENIC PLANTS

Organization and expression of chloroplast genome and mitochondrial genome- Gene transformation techniques: Direct gene transformation: Electroporation, particle gun method, Lipofection, Microinjection, Fibre mediated DNA delivery and Laser induced DNA delivery. Biological gene transfer: Agrobacterium mediated gene transformation Transgenic plants: Disease resistance; Insect resistance, virus resistance, Biotic and abiotic stress resistance, GM Crops- Prospects and problems.

[9]

APPLICATIONS OF PLANT BIOTECHNOLOGY

Production of antibodies and biodegradable plastics in plants. Applications of secondary metabolites: Isolation, characterization and drug development, Plant derived vaccines: Edible vaccines and Plantigens. Applications of Antisense RNA technology. Organic agriculture, precision farming and hydrophonics. Phytoremediation

[9]

INTRODUCTION TO ANIMAL CELL LINE

Introduction to Animal cell culture, Basic tissue culture techniques, Animal cell culture media and its preparations, Types of primary culture – Chicken embryo fibro blast culture – Chicken liver and kidney culture- Secondary culture –Trypsinization, Suspension cultures, dependent culture, Continuous flow cultures, Immobilized cultures, Role of serum and supplements, Mass transfer in mammalian cell culture. Maintenance and preservation of animal cell cultures; Measurement of viability and cytotoxicity.

TRANSGENIC ANIMALS AND APPLICATIONS OF ANIMAL BIOTECHNOLOGY

Cloning techniques in animals, Gene transformation techniques in animals. Transgenic animals: Transgenic mice, transgenic rabbits, Transgenic cattle, Transgenic Pig and Transgenic Fish, Ethical issues related to transgenic animals.

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

BOS - CHAIRMAN Signature

Organ culture technology- production of complete organ. Biotechnology in animal production, manipulation of growth hormone, somatotropic hormone.

Text b	Text book(s):													
1	Singh, B.D., "Biotechnology", First Edition, Kalyani Publishers, New Delhi, India, 2015.													
2	Ranga, M.M., "Animal Biotechnology", Third Edition, Agrobios India limited, Jodhpur. India, 2013.													
Refer	Reference(s):													
1	Purohit, S. S., "Plant Tissue Culture", Student Edition, Jodhpur, India, 2010.													
2	Singh,E	3.D., "Bic	technolo	gy", Firs	t Edition,	Kalyani	Publishe	ers, New	Delhi,Ind	dia,2005.				
3	lan fres	hney, R.	, "Cultur	e of Anim	nal Cells"	, Fifth th	Edition,	Wiley Pu	ublication	s, New D	Delhi, Ind	ia, 2006.		
4	Suresh Kumar Gahlawat, Joginder Singh Duhan, Raj Kumar Salar, Priyanka Siwach, Suresh Kumar, Pawan Kaur, " Advances in Animal Biotechnology and its Applications", Springer Nature Singapore Pvt. Ltd., 2018													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	3	2	3	3			3	3	2		3	3	3	3
CO2	3	2	3	3	3			2	2	3		2	3	3
CO3	3	2	3	3	2	2	3	3	3		3	2	3	3
CO4	3	2	2	3	2	3	3	2	3		3	2	3	3
CO5	3	2	3	3	2		2	2	2		3	2	3	3

			50 BT 5	02 – Bioinforr	natics						
B. Tech. Biotechnology											
Compoter		Hours / Week		Total Ura	Credit	M	aximum Mar	ks			
Semester	L	T	Р	Total Hrs	С	CA	ES	Total			
V	3	0	0	45	3	50	50	100			
Objective(s)	 To develop inter disciplinary skills in the application of computers in biotechnology and learn about the biological databases and machine learning techniques To learn about the bioinformatics databases, databanks, data format and data retrieval from the online sources. To Analyze the structure and functions of protein and DNA using <i>in silico</i> tools To understand the concepts involved in biological macromolecular structures and structure predictionmethods. 										
				Knowledge in		ogy					
At the end of the course, the students will be able to CO1: Get acquainted with various biological primary databases, secondary databases and different sequence formats. CO2: Characterize the optimal alignment of sequences either by local or global algorithm and apply B and FASTA algorithms in similarity search											
Outcomes	 and FASTA algorithms in similarity search. CO3: Classify the phylogenetic analysis, and categorize the protein and RNA structure prediction algorithms. CO4: Describe and deduce soft computing algorithms that are applied in gene prediction and in protein structure patterns. CO5: Write, compile, and run Perl programs, Analyze the effects of using Perl structures that implement decisions, loops, and store arrays 										

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

INTRODUCTION TO BIOINFORMATICS

Introduction to Operating Systems, Linux Commands, File transfer protocols, telnet. Definition, Scope of Bioinformatics, Biological Sequences, Characteristics and categories of Biological databases, Data file formats, Data life Cycle and Database ManagementSystem models.

[9]

PATTERN MATCHING

Pairwise sequence alignment: Dot matrix analysis, Local vs global alignment; Substitution matrices: PAM and BLOSUM, Dynamic programming: Needleman Wunch and Smith waterman algorithm; BLAST-PSI and PHI, FASTA; Multiple sequence alignment, Generating motifs and profiles. [9]

PHYLOGENY AND HOMOLOGY MODELING

Phylogenetic analysis: Distance based method; Character based method, Boot Strapping, Protein Secondary structure and tertiary structure prediction methods. Homology modelling, ab initio approaches, Threading, CASP and Structural genomics. [9]

MACHINE LEARNING AND APPLICATIONS OF BIOINFORMATICS

ANN in protein secondary structure prediction. HMM for gene finding, Decision trees, Support Vector Machines. Introduction to System Biology and Synthetic Biology, Microarray data analysis, DNA computing, Molecular Docking. [9]

PERL PROGRAMMING

Basics of PERL programming for Bioinformatics: Datatypes, scalars and collections, operators, Program control flow constructs, Library Functions: String specific functions, User defined functions and File handling. [9]

	Total Hours = 45 hours
Text book(s):	

1 Arthur K. Lesk, "Introduction to Bioinformatics" Oxford University Press. ,4thedition 2014

2 Rastogi, S.C., "Bioinformatics – Concepts, skills and applications", CBS Publishers and Distributors, New Delhi, India, 2003.

Reference(s):

1	David W. Mount., "Bioinformatics Sequence and Genome Analysis", 2nd Edition, Cold Spring Harbor Laboratory Press,New York, US, 2004.													
2	EijaKorpelainen, JarnoTuimala, PanuSomervuo, Mikael Huss and Garry Wong, "RNA-Seq Data Analysis: A Practical Approach", CRC Press, 2014													
3	Xinkun Wang, "Next Generation Sequencing Data Analysis", CRC Press, 2016													
4	Durbin R., Eddy S., Krogh A., Mitchison G., "Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids", Cambridge University Press, 2013													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO 2
CO1	3	3		2	3			2	3	3	2	3	3	2
CO2	3	3		2	3	3	3	2	3	3	2	3	3	2
CO3	3	2	3	2	3		3		3		1	2	3	3
CO4	3	2	3	2	3		1		2	1	1	3	3	3
CO5	3	3	2	3	2		2			2	3	3	3	3

K.S.Rangasamy College of Technology – Autonomous R 2018													
	50 BT 503 - Bioprocess Technology												
B. Tech. Biotechnology Hours / Week Credit Maximum Marks													
Semester	F	Hours / Week		Total Hrs	Credit	M	S						
	L	T	Р	Totalilis	С	CA	ES	Total					
V	3 1 0 60 4 50 50 10												
	 To learn th 	he historical o	development	in bioprocess	s technology	of production	and recovery	process.					
	To design a bioreactors and the strategy of scale up reactor for commercial prospects.												
	To develop and predict the construction of ancillaries for fermentor system.												
Objective(s)	To enable the knowledge of fluid behavior and analyze the biodynamic property.												
	To understand the important concepts of software's in monitoring and validation of Bioprocess												
	Technology												
	At the end of the course, the students will be able to												
	CO1: Enumerate the historical development, types of fermentation process and bioproduct recovery												
Course Outcome	CO2: Design a kinetic parameters of cell growth of structured and unstructured model												
S	CO3: Illustrate the concept of design and construction of reactor with its controlling strategies												
	CO4: Determ	nine the scale	up of the bi	oreactors wit	h respect to	mixing and p	ower consump	otion					
	CO5: Simula	te and validat	e the protoco	ol of bioproce	ss technology	y through sof	t wares.						
	ırs given again:	•			•			•					
each topic bas	sed on importa	nce and depth	of coverage	required. The	e marks allotte	ed for questio	ns in the exam	inations					

shall not depend on the numbers hours indicated.

INTRODUCTION TO BIOPROCESS TECHNOLOGY

Introduction to Bioprocessing: Historical development of Bioprocess technology, General requirements and types of fermentation processes, Designing of media for fermentation process, aerobic and anaerobic fermentation process. Bioproduct recovery process: Filtration, sedimentation, centrifugation, precipitation, cell disruption, chromatography, crystallization, lyophilization and drying.[9]

FERMENTATION PROCESSES

Medium requirements for fermentation processes, batch growth, balanced growth, effect of substrate concentration. Monod model. Determining cell kinetic parameters from batch data. Kinetics of cell growth- Structured and unstructured models. Growth associated (primary) and non-growth associated (secondary) product formation kinetics [9]

PROCESS DESIGN AND CONTROL OF BIOREACTORS

Bioreactor design and construction - Reactor Engineering in perspective. Types of Reactors (Batch, Fed Batch and Continuous). Design of Stirrers and impellers. Principles and Strategies for Control of Bioreactors (feedback, feed forward, adaptive and statistical, fuzzy logic control). Bioprocess design for Plant and Animal cell reactor [9]

RHEOLOGY AND SCALE UP OF FERMENTATION

Newtonian and Non Newtonian fluids, Effect of scale on oxygenation, mixing, sterilization, nutrient availability and supply. Bioreactor scale up based on constant power consumption per volume, mixing time, impeller tip speed (shear), Oxygen transfer in bioreactors, Measurement of volumetric mass transfer coefficient, Scale-up criteria for bioreactors based on oxygen transfer

SIMULATION AND VALIDATION IN BIOPROCESS TECHNOLOGY

Simulation techniques (Software): Reactor design (Autocad, ANSYS Fluent,) and evaluation of Design of experiments (DOE), Steady state material and energy balance programs (FLOWTRAN); Dynamic simulation of the bioreactor. Simulation of CSTR in continuous and batch reactor using MATLAB. Application of modelling and

simulationin bioprocess industries

[9] Total Hours: 45 + 15(Tutorial) = 60 hours

Text book(s):

- Rao, D.G., "Introduction to Biochemical Engineering", Second Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, India, 2010.
- 2 Ashok Kumar verma, Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering, CRCPublication press. 2014.

Reference(s):

- Shuler,M.L. and Kargi, F.," Bioprocess Engineering Basic Concepts", Prentice Hall of India, Pvt. Ltd., New Delhi, India, 2003.
 - Chien Wei Ooi, Pau Loke Show, Tau Chuan Ling, "Bioprocess Engineering Downstream Processing", CRC Press 2019
 - 3 Kim Gail Clarke, "Bioprocess Engineering An Introductory Engineering and Life Science Approach", Elsevier Science, 2013.
- 4 Elsevier Science, "Bioprocess Technology Kinetics and Reactors", Springer New York, 2012

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO11	PO12	PSO	PSO
										0			1	2
CO1	2	3	3	3	3	3	3	1		3	3	3	3	3
CO2	2	3	3	3	2	3	2		2	3	3	3	3	3
CO3	2	3	3	2	3	3	2	2	1		3	3	3	3
CO4	3	2	3	3		2	3			3	3	3	3	3
CO5	3	3	2	3	3	3		1	3	3	3	3	3	3

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

	50 BT 504 - Heat and Mass Transfer Operations
	B. Tech. Biotechnology
Compostor	Hours / Week Credit Maximum Marks
Semester	L T P Total Hrs C CA ES Total
V	3 1 0 60 4 50 50 100
Objective(s)	 To understand the heat transfer principles with phase change operations. To learn mass transfer principles for diversified applications. To understand different types of mass transfer operations. To apply heat and mass transfer principles for biological systems.
Course Outcomes	 At the end of the course, the students will be able to CO1: Demonstrate the different modes of heat transfer and estimation of heat transfer coefficient. CO2: Quantify heat transfer for phase change operations and know types of heat exchangers and flow arrangements. CO3: Intrepret the principle of molecular diffusion, continuous rectification and gas absorption CO4: Demonstrate the operations of extraction, leaching, adsorption and drying.

Basics of Heat Transfer Operations

Modes of heat transfer operation: Fourier's law of heat conduction, heat transfer resistance and conductance, thermal conductivity, steady state conduction, heat flow through plane wall, composite wall, cylindrical surface and sphere; convection; individual heat transfer coefficient and overall heat transfer coefficient. [9]

Heat Transfer with Phase Change and Heat Exchangers

Heat exchangers-shell and tube and double pipe heat exchangers, flow arrangements in heat exchangers, energy balance, LMTD, single and multiple effect evaporators; natural and forced circulation evaporators; heat transfer with phase change. Case studies.

Diffusion, Vapour-liquid and Gas-liquid operations

Molecular diffusion in gas, liquid and solids, mass transfer coefficients, Interphase mass transfer, diffusivity and flux calculations; Simple distillation, Continuous rectification- Binary systems, McCabe Thiele analysis and calculations. Absorption: principle; minimum liquid-gas ratio; Industrial absorbers. Case studies. [10]

Liquid-liquid, Solid-liquid and Solid-fluid operations

Liquid-liquid extraction-distribution co-efficient, Solvent selection criteria for extraction, extraction equipment. Solid-liquid extraction –principle, operation and equipment. Adsorption: principle; batch and fixed bed adsorption. Drying: basic principle, drying curve and industrial dryers. [10]

Applications of Heat and Mass Transfer in Biological Systems

Heat transfer in bioreactors, Relationship between heat transfer, cell concentration and stirring conditions; Role of diffusion in bioprocess, Factors affecting oxygen transfer in fermenters, Mass transfer correlations for oxygen transfer. Case studies.

	Total Hours: 45 + 15(Tutorial) = 60 hours
Tex	t book(s):
1	McCabe, W.L., Smith, J.C., and Harriott, P. "Unit Operations of Chemical Engineering", 7 th Edition., McGraw Hill
'	International Edition, 2005.
2	Kern, D.Q., "Process Heat Transfer" McGraw -Hill International Book Company,1999.
Ref	erence(s):
1	Sachdeva R.C., "Fundamentals of Engineering Heat and Mass Transfer" New Age Science, 2009.
2	Geankoplis, C.J., "Transport Processes and Unit Operations", Prentice Hall Inc.,1993.
3	· · · · · · · · · · · · · · · · · · ·
4	Kurt Rolle, "Heat and Mass Transfer", 2 nd edition, Cengage Learning, 2015

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	3	2	3		3	2	3	3	3
CO2	2	3	3	3	2	3	2		2	2	2	2	2	3
CO3	3	3	3	3	2	3	3	2	2	3	2	3	3	3
CO4	3	3	2	2	2	2	3			3	3	3	3	3
CO5	3	3	3	3	3	3	2	2		3	2	2	3	2

				50 MY 004 - U	Jniversal Hu	man Values	6	
				Common to a	III branches			
Semester		Hours/We	ek	Total	Credit		Maximum Ma	rks
Comocio	L	Т	Р	Hours	С	CA	ES	Total
V	2	1	0	45	3	50	50	100
Objective(s)		To act To acc To end and of the o	nieve holist quire ethica rich interact course, the	tion with Natur e students wi	towards life a uct, trustful ar re ill be able to	and profession mutually	on fulfilling humai	n behavior
Course Outcomes	CO2: Res CO3: Ma CO4: Cor	sponsible i intain hum mmitted to	in life, and nan relation wards hum	themselves, a in handling pr iships and hur nan values, hund apply it day	oblems with s nan nature Iman relations	sustainable s		

Introduction to value Education

Understanding value Education-Self exploration as the process for value education-Continuous Happiness and prosperity-the basic human aspirations-right understanding-relationship and physical facility –happiness and prosperity - current scenario – method to fulfill the basic human aspirations

Harmony in the Human Being

Understanding Human being as the Co-Existence of the self and the Body-Distinguishing between the needs of the self and the body-the body as an instrument of the self-understanding harmony in the self-harmony of the self with the body – programme to ensure self-regulation and health

Harmony in the Family and Society

Harmony in the Family –the basic unit of human interaction-values in human- to - human relationship –'Trust' the foundation value in relationship –'Respect'- as the right evaluation-understanding harmony in the society – vision for the universal human order.

[9]

[9]

[9]

Harmony in the Nature/Existence

Understanding harmony in the Nature-Interconnectedness, self-regulation and mutual fulfillment among the

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

Chairman - BOS

BOS - CHAIRMAN Signature

four orders of nature – realizing existence as co-existence at all levels –the holistic perception of harmony in existence.

Implications of the Holistic Understanding

Natural Acceptance of human values- definitiveness of human conduct- a basis for humanistic education, humanistic constitution and universal human order- competence in professional ethics –holistic technologies, production systems and management models-typical case studies – strategies for transition towards value

[9]

[9]

	Total hours: 45
Text	books
1	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria,
'	2 nd Revised Edition, Excel Books, New Delhi, 2019, ISBN 978-93-87034-47-1
2	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R
	Asthana, G P Bagaria, 2 nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2
Refer	ences:
1	Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

	PO													PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2	
CO1	3	3	3	2	2	3	3	3	2	3	3	1			3	
CO2	3	3	3	2		3	3	3	2	3	2	1			3	
CO3	3	3	2			3	3	3	3	3	2	1			3	

	K	.S.Rangasar	ny College o	f Technology	/ – Autonom	ous R 2018		
			<u> </u>	Animal Biote				
				h. Biotechnol	logy			
Semester	Н	ours / Week		Total Hrs	Credit	M	aximum Mark	
	L	Т	Р	Totalilis	С	CA	ES	Total
V	0	0	4	60	2	60	40	100
Objective(s)	transgenic To experim To understa To experim molecular of	animal produ ent the techn and the applicent the techn diagnostic of a about anima	ction. iques involve cations of ger iques in steril Animal diseas	d in Plant tiss netic engineeri lization and m ses and transo	ue culture. ing in plants a aintenance o genic Animal	and to develop f various Anir production.	c of animal dis o transgenic planal cell culture es and transge	ants. e for
Course Outcomes	witheffer CO2: Illustrate in vitro of CO3: Experim propaga CO4: Adapt th process	ne preparation ctive and safe the steps invaluturing of plate the aseptation, he preparations for various as	n of plant tissue operation. volved in devel ants. ic explant pro n of animal ce	ue culture medeloping a reliand a re	dia for plant c ble protocol a gh <i>in vitro</i> sec lia and to kno chnology.	and required hed germination was about tryps	d organ culture normonal comb n and micro inization, sub clation of Prima	oination for

from Chicken fibroblast.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

List of experiments

PLANT BIOTECHNOLOGY

- Preparation of stock solutions of MS basal medium and plant growth regulator stocks and safety regulations.
- 2. Aseptic culture techniques for establishment and maintenance of cultures
- 3. Micropropagation of plants through meristematic explants.
- 4. Multiplication of plant through Micropropagation using phytohormones
- 5. Micropropagation of Rice by indirect organogenesis from embryo
- 6. Haploid plant production (Ovary and Pollen culture)
- 7. Agrobacterium mediated gene transformation and hairy root culture
- 8. Preparation of synthetic seed

ANIMAL BIOTECHNOLOGY

- 9. Basic Animal handling methods
- 10. Preparation of various animal cell line media
- 11. Sterilization procedures followed in cell line laboratory
- 12. Cytotoxicity assay (MTT assay)
- 13. Cell counting method using heamocytometer
- 14. Isolation of Primary cells from Chicken fibroblast
- 15. Scaffold preparation for 3-D culture (Bovine pericardium)

Total Hours = 60 hours

Text book(s):

Gamborg, O.L. and Philips G.C., "Plant Cell, Tissue and Organ Culture fundamental Methods", Narosa Publishing House, New Delhi, India, 2018.

2 | Ian Freshney, R., "Culture of Animal Cells", Fifth Edition, Wiley Publications, New Delhi, India, 2006.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2		2	2	2	2	2	3	3
CO2	3	2	2	2		3		2	2			2	3	3
CO3	3	2	2	2		3	2	2	2		3	2	3	3
CO4	3	2	2	2	3			2	2	3		2	3	3
CO5	3	2	2	2				2	2		3	2	3	3

	K	.S.Rangasar	ny College	of Technology	y – Autonom	ous R 2018						
		50 BT :				itory						
				ch. Biotechno	logy							
Semester Hours / Week Total Hrs Credit Maximum Marks												
Semester Hours / Week Total Hrs Credit Maximum Marks		Total										
Semester Hours / Week Total Hrs Credit Maxi C CA			40	100								
	To under	erstand the in	dustrial requ	uirement of ferr	mentation pro	cess for bio-p	roduct.					
	To stud	ly the differen	factors affe	ecting the yield	and biomass	of product.						
Objective(s)	To emp	ower the kno	wledge of m	ixed flow react	or and its est	imation of KL	a value.					
	To illus	trate the vario	us unit oper	ation involved	in product de	velopment.						
	To dem	onstrate the a	spects of m	odelling and s	imulation in B	Bioprocess Te	chnology.					
	CO1: Hand biopro CO2: Illustr CO3: Demo oxida CO4: Valid biore	lle the techniques rate the concernstrate the kationmethod ate the biomale	ues of medi ept of microb netics of mi ss coefficier	a optimization pial growth and xed flow reactous nt of yeast and	and determin tits thermal dor and the role demonstrate	leath kinetics e of Kla throu	n software for					
	CO5: Demo	onstrate the p	roduction of	industrial enzy	ymes through	modelling in	the system					

List of experiments

- 1. Media optimization Plackett Burman design
- 2. Determination of Kla value by gassing out method
- 3. Evaluation of parameters on Monod model for growth of microorganism
- 4. Thermal Death Kinetics of microorganisms
- 5. Study of Mixed flow reactor and its kinetics design of reaction
- 6. Determination of Kla by sodium sulphide oxidation method
- 7. Determination of yield and biomass coefficient of Yeast on glucose
- 8. Simulation of Batch and continuous Reactor by SIMULINK
- 9. Modelling of Batch, Fed Batch and Continuous using Berkeley Madonna software.
- 10. Solid state fermentation process of production of industrial enzymes.
- 11. Production of secondary metabolites in synthetic media using fermentor
- 12. Extraction and Production of protease enzyme activity from microbial source
- 13. Solvent extraction technique for product recovery
- 14. Production and estimation of bioethanol from different sources

15.	Reside	ence time	e distribu	ition											
	Total Hours = 60 hours														
Text I	oook(s	s):													
1										imental l nai, India		res in Bi	oprocess	3	
2			verma, l CRC Pul				imulation	in Cher	nical, Bi	ochemica	al and Eı	nvironme	ental		
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2	3	2	2	2		3	2	2	3	3	
CO2	2	3	2	3	2	2	3			2	2	3	3	3	
CO3	3	3	2	2	2	3	2		2	2	3	3	3	3	
CO4	3	2	3	2	3	3	2			2	3	2	3	3	
CO5	3	3	3	2	2	2	2	2		3	3	3	3	3	

			-	ege of Technol			8	
		30 11 01		TO ALL BRNA				
Semester		Hours/We	ek		Credit	N	laximum Marl	s
Semester	L	T	Р	Total Hrs	С	CA	ES	Total
V	0	0	2	30	0	100	0	100
Course Objectives	professio To help the requirement To help the placement To help the equations To help the	nal contexts ne learners to entsof the context the learners and compete learners to see the learners to se	o enrich their vompanies to comprehen etitive online expension enhance their to augment the	ritten and oral co verbal and logical d the Intermedia kams r knowledge in the e core technical	al reasoning a ate level of a se quantitative	bility to mee ptitude skills aptitude ski	t out the emplor required to at	tend and linear
Course Outcomes	CO1: Examine CO2: Interpret competit CO3: Infer the compan CO4: Assess t	the written the concepts of concepts of yrecruitmen heir comprehe core tech	and oral comms of verbal reasond employabilitifintermediate ts. hension in the anical and codi	level of aptitude quantitative apting skills of their	for the conce skills pertain tude skills in	epts to the re ing to compo algebraic an	quirements of t etitive exams a d linear equation	nd ons. g contests
Unit-1								Hrs
Structured Practices: Sthe Debate.Mat	and Unstructur Sentence Comp SameWordas erials:Instructo	ed GDs Psy pletion- Sent DifferentPar prManual,Wo	/chometric Ass tence Correction tsofSpeech- ordpowerMade	ion - News Pa sessment — Tyl on - Jumbled Se Interpreta EasyBook,News	oes & Strate entences - Sy tionofPictoria	gies to answ nonyms & A	er the questio	ns ng 6
	Verbal & Logi		•					
identifyingStr	ongArguments	andWeakAr	guments-State	ts and AssumementsandConclements. Practice asoning by R.S.	usions-Cause	eandEffect-		

Unit-3	Quantitative Aptitude-Pa	irt3	
Probab	oility-Calendar-Clocks-Logarithm	s –Permutations and Combinations	6
	ials: Instructor Manual, Aptitude		
Unit-4	Quantitative Aptitude-Pa	ırt4	
		quations –Polynomials . Practices: Problem on Numbers -Ages-Train Iterials: Instructor Manual, Aptitude Book	6
Unit-5			
Core S	Subject-1,23		4
	•	.Materials:TextBook,GateMaterial	
		Total	30
Evalua	ation Criteria		
S.No.	Particular	Test Portion	Mar
			ks
1	Evaluation1WrittenTest	15Questions each from Unit1,2,3,4&5(External Evaluation)	50
	Evaluation2-	GD and Debate	
2	Oral Communication	(External Evaluation by English, MBA Dept & External Trainers)	30
	Evaluation3-		
3	Technical Paper Presentation	Internal Evaluation by the Dept.	20
		Total	100

Reference Books

- 1. Aggarwal,R.S."AModernApproachtoVerbalandNon-verbalReasoning",RevisedEdition2008,Reprint2009,S.Chand& Co Ltd., NewDelhi.
- 2. AbhijitGuha, "QuantitativeAptitude", TMH, 3rdedition
- 3. Objecti velnstant Arithmetic by M.B.Lal & Goswami Upkar Publications.
- 4. Word Power Made Easy by Norman LewisW.R.GOYAL Publications

Note:

- ☐ Instructor can cover the syllabus by Class room activities and Assignments(5Assignments/week)
- $\begin{tabular}{ll} \hline & Instructor Manual has Class work questions, Assignment questions and Roughwork pages \\ \hline \end{tabular}$
- EachAssignmenthas20QuestionsfromUnit1,2,3,4and5and5QuestionsfromUnit1
- ☐ Evaluation has to be conducted as like LabExamination.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	1	1	1	1	1	1	1	1	2	3	2	3	1	2
CO2	2	1	2	2	1	2	1	1	2	3	3	3	1	1
CO3	2	1	2	2	1	1	1	1	2	3	2	3	2	2
CO4	2	1	2	2	1	1	1	1	2	3	2	3	2	2
CO5	2	2	2	2	2	2	2	2	2	3	2	3	3	3

	51 BT 601 – Biopharmaceutical Technology										
B. Tech. Biotechnology											
Compoter		Hours / Wee	k	Total Hrs	Credit	Ma	ximum Mark	S			
Semester	L	T P		Total HIS	С	CA	ES	Tota			
VI	3	0	0	45	3	50	50	100			
Objective(s)	To knowTo learnTo under	w about the d n about the b erstand the c	rug manufac iopharmaceu oncepts of d	ots of pharmace eturing process utical quality as osage forms onsibilities of di	and kinetics surance	atory bodies i	n manufactur	ing of			

	At the end of the course, the students will be able to
	CO1: Describe the classification of drugs and the different routes for drug administration andpatenting of drugs.
	CO2: Illustrate the manufacturing facilities of drugs and and quality control in drug
Course	manufacturing process.
Outcomes	CO3: Explicate the concepts of adsorption, distribution, biotransformation process and bioavailability of drugs.
	CO4: Designate the classification of pharmaceutical dosage forms, use of semi-solid dosage form and inhalants.
	CO5: Determine the role of Quality assurance and regulatory affairs in biological evaluation of the drug.

INTRODUCTION TO PHARMACOLOGY

Drug- definition, Classification, physiochemical properties, Pharmaceutical substances of plant origin, Pharmaceuticals of animal origin, Pharmaceutical substances of microbial origin, Routes of administration of drug [9]

THE DRUG MANUFATURING PROCESS

The manufacturing facility, Cleaning, decontamination and sanitation (CDS), Documentation, Specifications, Records. Compression and granulation of tablets, Coating of pharmaceutical dosage forms- film coating, modified release film coating-coating procedure and equipment. Quality control and practice. [9]

PHARMACOKINETICS AND BIOTRANSFORMATION

Basic concepts of pharmacokinetics: Absorption- Mechanism of drug absorption, Distribution- Biotransformation of drug-Non synthetic and synthetic reaction Elimination, Organ clearance- hepatic clearance, renal clearance, Bioavailability and Bioequivalence [9]

PHARMACEUTICAL DOSAGE FORMS

Definition of Dosage forms, Classification of dosage forms -solid unit dosages — Tablets, capsules, pills, troches, cachets, liquids – solutions, lotions, suspension, elixirs, emulsions, ointments semi-solid – ointments, creams, gels. Inhalations and inhalants. Extracts- Tinctures and fluid extracts.

BIOPHARMACEUTICALS QUALITY ASSURANCE

The role of FDA (food and drug administration process)-role of centre for biological evaluation and research (CBER)-role of centre for drug evaluation and research -Global harmonization of regulatory affairs-European medicine evaluation agency (EMEA)-Indian pharmacopeia (IP)-United states pharmacopeia (USP). [9]

Total Hours:= 45 hours

ı	ext	bo	ok	(S):

- 1 Remington, "The Science and Practice of Pharmacy". Lippincott Williams and Wilkins, 20th edition, 2001.
- 2 Gary Walsh, "Biopharmaceuticals", John Wiley & Sons Ltd, UK, Second Edition, 2003.

Reference(s):

- Goodman & Gilman's "The Pharmacological Basis of Therapeutics",11th edition, Mc Graw-Hill Medica I Publishing Division New York, 2006.
- Gunter Jagschies, Eva Lindskog, Karol Lacki, Parrish Galliher, "Biopharmaceutical Process: Development, Design and Implementation of Manufacturing Processes", Elsevier Publications, 2018
- 3 Gary Walsh, "Biopharmaceuticals: Biochemistry and Biotechnology", Second edition, Wiley, 2013
- Kenneth E. Acis, Vincent L. Wu, "Biotechnology and Biopharmaceutical Manufacturing, Processing and Preservation". Drug Manufacturing Technology series-Vol.2, CRC Press, 2020

		,	- 3		3			, -	,					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2
CO1	3	2	3	2		3		3	3	2	2	3	3	3
CO2	3	3	2	2	2	2	3	3	2	2	2	3	3	3
CO3	3	2	3	2	2	3		2	3	2		3	3	3
CO4	3	3	2	2			3	3	2		2	3	3	3
CO5	3	2	3	2		3		3	2	2		3	3	3

	K			f Technology				
	50 BT 602 - Molecular Modelling and Drug Designing B. Tech. Biotechnology Hours / Week Credit Maximum Marks							
0	He	ours / Week			Credit	N	Maximum Mark	(S
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total
VI	3	0	0	45	3	50	50	100
Objective(s)	 system. To understate To learn the molecules. To comprehe structurebate To apply the system. 	and the drug and the different for the known sed de novo	stereochemis orce field me wledge on the ligand design skills to unde	try drug desigethods and are basic conce	n and molecunalysing the	lar modeling dynamics and and expound	molecules in the details on drug design the details on drug design	mation of the
Course Outcomes	CO2: Determine andnon-CO3: Understan temperature CO4: Analyze the CO5: Identify the	he basic cond mechanics. the features bonded intera d the different e and pressu e methods co	of force field actions. It models of mire. Incorred in did principle of	dinate systems calculations w nolecular dyna ocking studies QSAR and de	s and the com with their basic amics and the as and the prin escriptors use	: laws on the simulation priciple involved for pharma	behaviour of be rocess under co	onded onstant gning.

CONCEPTS IN MOLECULAR MODELLING

Introduction, Coordinate System, potential energy surfaces, Introduction of molecular mechanics and quantum mechanics, Schrodinger wave equation - Born-Oppenheimer approximation, Components of Molecular Graphics hardware and software; Mathematical concepts.

[9]

MOLECULAR MECHANICS AND ENERGY MINIMIZATION

Features of molecular mechanics, force fields; Bond structure and bending angles – electrostatic, Vander Waals and non-bonded interactions, hydrogen bonding in molecular mechanics; Derivatives of molecular mechanics energy function; Calculating thermodynamic properties using force field; Transferability of force field parameters, treatment of delocalised pi system; Force field for metals and inorganic systems – Application of energy minimization.

[9]

MOLECULAR DYNAMICS SIMULATION METHODS

Molecular Dynamics using simple models; Molecular Dynamics with continuous potentials and at constant temperature and pressure; Time-dependent properties; Solvent effects in Molecular Dynamics and Monte Carlo Simulation.

[9]

MOLECULAR MODELING IN DRUG DESIGN

Membrane Proteins, Deriving and using 3D pharmacophore; Molecular Docking; Structure-based methods to identify lead compounds, de novo ligand design; Mechanism — drug and targets; Applications of 3D Database Searching and Docking, and Virtual Screening. [9]

STRUCTURE ACTIVITY RELATIONSHIP

QSARs and QSPRs, QSAR Methodology, QSAR Models, Descriptors used in QSARs: Electronic; Topology; Quantum Chemical based Descriptors and ADME Modeling. [9]

Total Hours = 45 hours

BOS - CHAIR

Text be	ook(s):													
1	Andrev	v R. Lead	ch "Mole	cular Mo	delling –	Principl	es and A	pplicatio	ns"; Sec	ond Edit	ion, Pea	rson Edu	cation L	td., UK,
	2010.													
2	Hans F	s Pieter Heltje and GerdFolkens, Molecular Modelling, VCH, 2001.												
Refere	nce(s):	e(s):												
1	Fenniri	nniri, H., "Combinatorial Chemistry – A practical approach", Oxford University Press, UK, 2000.												
2	Swatz,	vatz, M.E., "Analytical techniques in Combinatorial Chemistry", Marcel Dekker Publishers, New Delhi, India, 2000.												
3	Vinter,	Vinter, J.G. and Mark Gardner, "Molecular Modelling and Drug Design", Springer, Palgrave, London, 1994												
4	Anand	Solomor	n K., "Mo	lecular N	/lodelling	and Dru	ıg Desig	n", MJP	Publishe	rs, 2015.	ı			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	2	2	2		2	2	2	3	3	3
CO2	3	2	3	2	3		3	3		3	3	2	3	2
CO3	3	2	1	2	3	2	3	3	3		2	3	3	2
CO4	3	2	3	2	2	2	3			3		3	2	3
CO5	3	2	2	2	3	2	3			3		3	2	3

				of Technolog							
	50 BT 603 - Chemical Reaction Engineering										
	B. Tech. Biotechnology										
Semester		Hours / Weel	(Total Hrs	Credit		Maximum Mar	ks			
Semester	L	T	Р	Total nis	С	CA	ES	Total			
VI	3	1	0	60	4	50	50	100			
	To learn	chemical kine	etics for diffe	rent reactions.							
	• To impa	rt knowledge	on design of	single and mu	ltinle reactors						
	• 10 iiiipa	To impart knowledge on design of single and multiple reactors.									
Objective(s)	To acqu	ire knowledge	to analyze r	non-ideal react	ors.						
	To unde	rstand catalys	is and multir	hase reactor s	systems.						
		•			•						
	To apply	reaction eng	neering cond	cepts in variou	s biochemical	I reaction sys	tems.				
	At the end	of the cours	e, the stude	ents will be ab	le to						
			•			perature depe	endence of rate	9			
	equa	tion				·					
Course	CO2: Desi	CO2: Design single and multiple reactors and understand performance analysis of reactors									
Outcomes	CO3: Ident	tify the basics	aspects, mo	dels and perfo	rmance of no	n-ideal reacto	ors				
Guttomios				f catalytic reac							
	CO5: Apply various modes of fermentors in microbial and enzyme fermentation.										

SCOPE OF CHEMICAL KINETICS & CHEMICAL REACTION ENGINEERING

Broad outline of chemical kinetics; rate equation; concentration and temperature dependence of rate equation; development of rate equation for Irreversible unimolecular first- order reactions, Irreversible bi-molecular second -order reactions; Zero order reactions; autocatalytic reactions. [9]

IDEAL REACTORS

Design of ideal reactors - performance equation of batch reactor, semi batch reactor, mixed flow reactor, plug flow reactor, recycle reactor; Performance comparison of single reactors; Multiple-reactor systems. [10]

NON-IDEAL FLOW

Basic aspects of non-ideal flow, Residence time distribution; C, E and F curves; Reactor performance with non-ideal flow; Conversion in non-ideal flow reactors; Non- ideal flow models-Tank in series Model, Dispersion Model; Mean concentration and conversion in non-ideal reactors. Case studies.

HETEROGENEOUS CATALYSIS

Catalytic reactions-mechanism, surface reaction rate, film diffusion resistance, thiele modulus, effectiveness factor, pore diffusion resistance combined with surface kinetics, performance equation of porous catalytic reactors; experimental methods of finding rates, heat effects; Multiphase reactors: design of fluidized bed, slurry reactor and trickle bed reactor.

BIOCHEMICAL REACTION SYSTEMS

General reaction kinetics for biological systems; Enzyme fermentation- batch, plug flow and mixed flow fermentors; Microbial fermentation-batch, plug flow and mixed flow fermentors. Case studies.

[9]

[9]

Total Hours: 45 + 15 (Tutorial) = 60 hours

Text	Text book(s):													
1	Levens	venspiel, O., "Chemical Reaction Engineering", 3 rd Edition. John Wiley and Sons, 1999.												
2	Fogler,	gler, H.S., "Elements of Chemical Reaction Engineering", 4 th Edition, Prentice Hall Inc, 2005.												
Refer		ence(s):												
1		Gavhane, K.A., "Chemical Reaction Engineering", Vol I &Vol II, NiraliPrakashan, 2011.												
2	Hayes,	yes, R.E., Mmbaga, J.P., "Introduction to Chemical Reactor Analysis", 2 nd Edition, CRC Press, 2013.												
3		wande, S.D., "Principles of Reaction Engineering", 1 St Edition, Central Techno Publications, 2001.												
4		Martin Schmal, "Chemical Reaction Engineering: Essentials, Exercises and Examples", CRC Press, Taylor & Francis Group, 2014												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	3	2	2	2	3	2	3				2	3	3	3
CO2	3	2	3	2	3	2	3	3			2	3	3	2
CO3	3	2	3	2	3		3		3	3	3	3	3	2
CO4	3	2	3	2	2	2	3	2				3	2	3
CO5	3	2	3	2	3		2		2	2	3	3	2	3

	K.S. Rangasamy College of Technology – Autonomous R 2018 50 BT 6P1 - Bioinformatics and Molecular Modelling Laboratory									
B. Tech. Biotechnology										
Camaatan		Hours / Wee			Credit	Maximum Marks				
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total		
VI	0	0	4	60	2	60	40	100		
Objective(s)	online : To mal betteru To app forsynt To und data m To prol	sources. Ke students understanding Ily the modellichesizing newerstand the reining The the interaction in the reining The the interaction in the reining	nderstand the biological daing skills to ur potent drugs. etrieval of che tion of the pro	nderstand the	atures of the analogy and tion form PUE	interdisciplina structure base 3CHEM and L	ry field of scioned drug desig	ence for n concepts se susing		
Course Outcomes	bound with eachother. At the end of the course, the students will be able to CO1: Annotate the various biological data from different biological database and basic Linux commands CO2: Analyze the arrangement of sequences like Genome, DNA, RNA or protein and to probe the regions of similarity and identity among them CO3: Evaluate the evolutionary relationships among the organisms through phylogentic tools and Configure the structural conformations of proteins CO4: Elucidate the 3D structure of the target protein from its amino acid sequence and perform Molecular dynamic on the target protein using GROMACS. CO5: Read, analyze and visualize genomic, proteomic and microarray data using MATLAB®									

- 1. Basic Linux commands, Retrieval of biological sequences: Protein and Nucleotide from database and 3-D structure of Proteins- viewing and analysis
- 2. Data Base Searching Tools BLAST and FASTA
- 3. Sequence Alignment
 - a. Pairwise alignment Global and Local
 - b. Multiple Sequence Alignment ClustalX
 - c. Whole Genome Alignment
- 4. Phylogenetic Analysis Phy lip.
- 5. Structure Visualization Tool
- 6. Homology Modelling Modeller 9v7
- 7. 2D Structure Drawing Tools and Lead Optimization Studies
- 8. Molecular Dynamics Simulation of target protein using GROMACS
- 9. Molecular Docking Argus lab
- 10. MATLAB® Bioinformatics Tool box, Computational biology tool box
- 11. Perform PERL script to translate the given DNA sequence to protein sequence
- 12. Perform a PERL script to Retrieve a sequence file and search for a given pattern.
- 13. Gene Prediction using GENSCAN and RNA structure prediction using IPknot.
- 14. Primer Designing tools Primer3 4.0.
- 15. Microarray data import from GEO and Affymetrix and expression analysis and normalization using MATLAB®

Total Hours = 60 hours

Reference(s):

1

Shui Qing Ye. "Bioinformatics: A practical approach" Edited by Chapman and Hall/ CRC. 1St Edition, Tylor & Francis 2019

2	Bioinformatics: A practical guide to the analysis of genes & proteins, Edited by Baxevanis & Outlette, 3rdedition, John Wiley & Sons, inc. publication, 2004.
3	Molecular Modelling for Beginners, Alan Hinchliffe, 2nd Edition, John Wiley & Sons, inc. publication 2008.

	РО	РО	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO
CO1	3	2	2		3	2		2	2	2	3	2	3	2
CO2	2	2	3	2	3	2		2	2	3	2	3	3	2
CO3	3	3	3	2	3	2	3		3	3	3	2	3	2
CO4	3	2	2	2	3	2		2	2	3	2	3	3	2
CO5	3	2		2	2	2	3	2	2	2	2	3	3	2

	K.S. Rangasamy College of Technology – Autonomous R 2018												
			<u> </u>	cal Engineeri									
			B. Tech	. Biotechnolo	gy								
Semester		Hours / Wee	k	Total Hrs	Credit	Max	ximum Mark	เร					
Semester	L	Т	Р	TOTAL HIS	С	CA	ES	Total					
VI	0	0	4	60	2	60	40	100					
	To unde	rstand the kin	etic analysis	of various mo	de of reactors	3.							
Objective(s)	To analyze non-ideality in real reactors.												
Objective(s)	To study the principles of fluid flow and flow measuring devices												
	To learn the operation of size reduction equipment.												
	To know	the principle:	s of heat and	mass transfe	operations.								
	At the end	of the course	, the students	s will be able t	0								
	CO1: Dem	onstrate kinet	ic studies and	d performance	analysis of v	arious reacto	rs						
Course	CO2: interp	pret non- idea	al flow and res	sidence time o	listribution in	real reactors							
Outcomes	CO3: Oper	rate fluid flow	operations ar	nd flow measu	ıring devices.								
	CO4: Char	acterize mea	n particle size	by size redu	ction and size	separation of	perations.						
CO4: Characterize mean particle size by size reduction and size separation operations. CO5: Illustrate heat and mass transfer operations and estimation of heat and mass transfer efficients													

Any Ten experiments

- 1. Kinetic studies in batch reactor
- 2. Kinetic studies in semi batch reactor
- 3. Performance characteristics of flow reactors
- 4. Residence time distribution studies in flow reactors
- 5. Determination of co-efficient of discharge in Orifice meter and Venturi meter
- 6. Studies on Flow through Packed Column
- 7. Determination of minimum fluidization velocity
- 8. Friction factor studies in straight pipes
- 9. Size reduction and size separation by crushing and sieve analysis
- 10. Studies on filtration
- 11. Studies on diffusivity measurement
- 12. Analysis of Liquid-Liquid extraction
- 13. Studies on adsorption equilibrium
- 14. Simple distillation
- 15. Heat transfer studies.

Total Hours = 60 hours

Refer	Reference(s):													
1	Levens	spiel, O.,	"Chemic	cal Reac	tion Eng	ineering	", 3 rd Edi	tion. Joh	n Wiley	and Son	s, 1999.			
2	McCab 2005.	e, W.L.,	Smith J.	L., and I	Harriott,	P. "Unit (Operatio	ns of Ch	emical E	ngineer	ing", 7th	Edition,	McGraw	/ Hill,
3	Geank	oplis, C.	J. "Trans	port Pro	cesses a	and Unit	Operation	ons", Thi	rd editior	n, Prentic	ce Hall Ir	nc, 1993	•	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PS
CO1	3	2	2	2	2	2	2	2			3	3	3	2
CO2	3	2	2	2	2		2			3		3	2	3
CO3	3	2	2	2	3	2	2	2			2	3	2	3
CO4	3	2	2	2	3		2		3		_	3	3	2
CO5	3	2	2	2	3	2	2		2		3	3	3	3

K.S.Rangasamy College of Technology – Autonomous R 2018												
		50 TF		REER COMPETENCY		ENT IV						
			CO	MMON TO ALL BRAN	1	1						
Semester	Hours/\		T	Tatalillas	Credit		mum Marks					
	L	Т	Р	Total Hrs	С	CA	ES	Total				
VI	0	0	2	30	0	100	0	100				
Course Outcomes	contexts Course CO2: Predict and discriminate advanced verbal and logical reasoning ability to meet out the employability											
Unit-1	Written ar	nd Oral Co	mmunicati	on- Part2				Hrs				
Unit-1 Written and Oral Communication- Part2 Self-Introduction-GD-PersonalInterview Skills Practices on Reading Comprehension Level 2 - Paragraph Writing - Newspaper and Book Review Writing - SkimmingandScanning-InterpretationofPictorialRepresentations—SentenceCompletion-SentenceCorrection—JumbledSentences—Synonyms&Antonyms—UsingtheSameWordasDifferentPartsofSpeech—Editing. Materials:Instructor Manual ,Word power Made EasyBook,NewsPapers												
Unit-2	Verbal & I	Logical Re	asoning -F	Part2				8				
and Effect – – Analyticall Statement	Deriving C Reasoning- Conclusion	Conclusions - Classific ons.	from Pass ation–Crit	ngements – Syllogism sages – Series Comp ical Reasoning Pra g byR.S.Aggarwal	letion (Numb	ers, Alphab	ets & Figures	-				

Unit-3	Quantitative Aptitude- Part-5	6
Geometry-	StraightLine-Triangles-Quadrilaterals-Circles-Co-ordinateGeometry-Cube-Cone	
-Sphere. M	aterials: Instructor Manual, Aptitude book	
Unit-4	Data Interpretation and Analysis	6
DataInterpre	etationbasedonText-DataInterpretationbasedonGraphsandTables.GraphscanbeColumnGraphs,	
Bar Graphs	Line Charts, Pie Chart, Graphs representing Area, Venn Diagram & Flow Charts.	
Materials:	nstructor Manual, Aptitude Book	
Unit-5	Technical & Programming Skills-Part2	6
Core Subje	ct– 4,5,6 Practices: Questions from Gate Material.	
Materials:	Text Book ,Gate Material	
	Total	30

S.No	Particular	Test Portion		Mar ks
1	Evaluation1WrittenTest	15Questions eachfrom Unit1,2,3,4&5(ExternalEvaluation)		50
2	Evaluation2– OralCommunicati on	GDandHRInterview (ExternalEvaluationbyEnglish,MBADept.)		30
3	Evaluation 3 — TechnicalIntervie w	InternalEvaluationbytheDept3CoreSubjects		20
		•	Total	100

Reference Books

- Aggarwal, R.S. "AModernApproachtoVerbalandNon-verbalReasoning", RevisedEdition2008, Reprint2009, S. Chand& Co Ltd., New Delhi. rd
- 2. Abhijit Guha, "QuantitativeAptitude", TMH, 3 edition
- 3. Objective Instant Arithmetic by M.B. Lal & Goswami Upkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R.GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments(5Assignments/week)
- Instructor Manual has Classwork questions, Assignment questions and Rough Work pages
- Each Assignment has 20 questions from Unit 1,2,3,4,5 and 5 questions from Unit 1(OralCommunication)& Unit 5(Programs)
- Evaluation has to be conducted as like Lab Examination.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	1	1	1	1	1	2	1	1	2	3	2	3	1	1
CO2	2	1	2	2	1	2	1	1	2	3	3	3	2	2
CO3	2	1	2	2	1	1	1	1	2	3	2	3	2	2
CO4	2	2	2	2	2	1	1	1	2	3	3	3	2	2
CO5	2	2	2	2	2	2	2	2	2	3	2	3	3	3

				ny College of Teering Econo								
			<u> </u>	Common to			.					
0		Hours / Wo	eek	Total IIIna	Credit		Maximum M	arks				
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total				
VII	3	0	0	45	3	50	50	100				
	 TomaketheEngineeringstudenttoknowaboutthebasicofeconomics&howtoorganizea business To know the financial aspects related to business. 											
Objective(s)	•	To know abo	ut functions of	banks.								
	•			t methods of ap & capital techni		ects						
	At the end of the course, the students will be able to CO1: Know the suitable demand forecasting techniques and prevailing market structure.											
	Course CO2: Recognize the importance of forms of business and differentiate between proprietorship and par											

Outcomes

CO3: Apprehend the kinds of banks and illustrate the Balance sheet with suitable example CO4: Interpret fixed cost and variable cost and realize the process of technical feasibility and economicfeasibility.

CO5: Know about break even analysis and summarize & apply the managerial uses of breakeven analysis.

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Basic Economics

Definition of economics – nature and scope of economics – basic concepts of economics – factors of production – demandanalysis - definition of demand - Law of demand - Exception to law of demand - Factors affecting demand elasticity ofdemand - demand forecasting - definition of supply - factors affecting supply - elasticity of supply market structure -perfect competition - imperfect competition - monopoly - duopoly - oligopoly and bilateral monopoly.

Organization and Business Financing

Forms of business - proprietorship - partnership - joint stock company - cooperative organization - state Enterprise - mixed economy - Money and banking - kinds of banking - commercial banks - central banking functions - control of credit - monetary policy - credit instrument - Types of financing - Short term borrowing - Long term borrowing - Internal generation of funds -External commercial borrowings - Assistance from government budgeting support and international finance corporations. [9] **Financial Accounting and Capital Budgeting**

The balance Sheet and related concepts – The profit and loss statement and related concepts – Financial ratio analysis -Cash flow analysis - fund flow analysis - Capital budgeting- Average rate of return - Payback period - Net present valueand internal rate of return. [9]

Cost Analysis

Types of costing – traditional costing approach - activity based costing - Fixed Cost – variable cost – marginal cost – costoutput relationship in the short run and in long run - pricing practice - full cost pricing - marginal cost pricing going ratepricing – bid pricing – pricing for a rate of return – appraising project profitability - cost benefit analysis – feasibility reports -appraisal process - technical feasibility - economic feasibility - financial feasibility. [9]

Break Even Analysis

Basic assumptions – break even chart – managerial uses of breakeven analysis - applications of breakeven analysis inengineering projects.

Total Hours = 45 Text book(s): Khan, M Y, Jain, 'Basic Financial Management', 3rd Edition, McGraw Hill Education, 2017. Maheshwari K. L., Varshney R.L., 'Managerial economics', 2nd Edition, S Chand and Co., New Delhi, ,2014. Reference(s): Samuelson P.A, 'Economics - An Introductory', New Age Publications, New Delhi, 2009. 2 Barthwal R.R., 'Industrial Economics - An Introductory', New Age Publications, New Delhi, 2010. Bhattacharyya, S.K., John Deardon and Y.K.Koppikar, Accounting for Management Text and Cases. 3 Mote, Samuel V.L. and G.S. Gupta, 'Managerial Economics - Concepts and Cases', Tata McGraw Hill, 2011. 4 PO1 PO2 PO₃ PO4 PO₅ PO6 **PO7 PO8** PO9 PO10 PO11 PO12 **PSO PS**

Rev. No. 4

Chairman - BOS

[9]

												1	
CO1	3	3		3	3		3	2		2	3	2	3
CO2	3	2	3	3	2		2	3	2	3	3	2	3
CO3	2	3		3	3		2	3		2	3	2	3
CO4	3	3		3	3	2		3		2	3	3	3
CO5	2	3	2	3	3		2		3	2	3	3	3

		K.S.Ran	•	lege of Techn 0 BT701 - Imn		onomousR 2	018							
				B.Tech. Biotec										
Compoter		Hours / Weel	K	Total Ura	Credit		Maximum Marks							
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total						
VII	3	0	0	45	3	50	50	100						
	To lea	rn the basic c	oncepts of im	nmune respon	se towards va	arious antiger	s in mammalia	n host system						
Objective(s)	• To im	part the know	ledge of vario	ous cells invo	ved in immur	nity								
	 To impart the knowledge of various cells involved in immunity To study the mechanism and reactions of immunity towards infectious diseases 													
	To understand the interaction of immune cells during transplantation procedures													
	To emphasize their significance in developing therapeutic modalities for immunological disorders of													
		n beings.	J	, 5	•		J							
	Hulliai	i beiligs.												
				nts will be ab										
_							ature of antigen							
Course							antibody into							
Outcomes		ore various sta entation.	ages in devel	opment of T c	ells and biolo	gy of antigen	processing and							
	CO4: Ident	ify the immun	e response a	gainst infectio	us diseases	and immune o	deficiency disea	ses						
	CO5:Justi	fy the mechan	ism of transp	olant acceptan	ce, rejection a	and functions	of tumorantige	ns						
		_	•		•			required for eac						
topic based	on importand	ce and depth of	of coverage re	equired. The r	narks allotted	for questions	in the examina	ations shall not						

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

depend on the numbers hours indicated.

Immune System

An overview of the immunology- Classification of the immune response; clonal selection theory. Cells and tissues of the immune system. Haematopoiesis: Origin and differentiation of Lymphocytes and phagocytic cells. Primary and secondary lymphoid organs. Immunogens and antigens- haptens, adjuvants. [9]

Humoral Immunity

Development, maturation, activation and differentiation of B-lymphocytes; Antibody: structure, classes and subclasses; antibody diversity- Antigen and antibody interaction. Complement pathways — Classical and alternate complement pathway; Hybridoma technology for production of monoclonal antibody and applications. [9]

Cellular Immunity

Thymus derived (T) Lymphocytes: Classification and stages of development- T cell receptor - Major histocompatibility complex –structure, classification and genetic organization of MHC; mechanism of phagocytosis - the cell biology of antigen processing and presentation. [9]

Immunity To Infections and Hypersensivity Reactions

Injury and inflammation; immune responses to infections: immunity to viruses, bacteria, fungi and parasites; cytokines; immunosuppression, tolerance; allergy and hypersensitivity; AIDS and other Immuno deficiencies; Immunization; Vaccines. [9]

Transplantation, Autoimmunity and Immunology of Tumors

Transplantation: types, immunological mechanisms of graft rejection- immunological strategies to prevent graft rejection- roleof

Total Hours = 45

		Total Hours = 45
T	ext b	ook(s):
	1	Owen, J., Punt, J and Strandford, S. "Kuby Immunology", 7th Ed., W. H. Freeman Publication, New York, USA, 2012.
	2	Talwar, G. P. and Gupta, S. K. A., "Handbook of Practical and Immunology" CBS Publishers &
	2	Distributors, New Delhi, 2004.
R	Refere	ence(s):
	1	Abbas, K. A., Litchman, A. H. and Pober, J. S. "Cellular and Molecular Immunology", 4th Ed., W. B. Saunders Co.,
	I	Pennsylvania, USA, 2005.
	2	Roitt, I., Brostoff, J. and David, M. "Immunology", 6th Ed., Mosby publishers Ltd., New York, USA, 2001.
	3	Tizard, R.I. "Immunology", 4 th Ed., Saunders college publishing, Chennai Microprint Pvt. Ltd., Chennai, 2004.
	4	Ravi, M. And Paul, S.F.D., "A practical manual for basic immune techniques",

4	Saman	thiPublica	ations Pv	t. Ltd, Ch	nennai, 20	800			' '					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2	PS 0 1	PS O 2
CO1	3	3	3	2	2	2	3	2	3	2	2	2	3	3
CO2	3	2	3	2	2	2	2	2	3	2	3	2	3	3
CO3	2	2	2	2	2	3	3	2	2	3	2	2	3	3
CO4	3	2	3	3	2	2	2	2	2	2	3	2	3	3
CO5	2	2	3	2	2	3	2	2	2	2	3	2	3	3

K.S. Rangasamy College of Technology - Autonomous														
50 BT 702 – Downstream Processing														
B.Tech. Biotechnology														
0	Hours / Week Semester Total hrs Credit Maximum Marks													
Semester	L	L I P CA ES Total												
VII	3 1 0 60 4 50 50 100													
	• To lear	To learn various unit operations and their applications in downstream processing of bioproducts.												
Objective(s)	To emphasis the need for separation techniques in downstream processing													
	•To acq	uire knowle	dge in reco	very, purification	and formulatio	n of bioprod	ducts of comm	nercial interest.						
	• To prov	vide knowle	dge on dov	vnstream process	ing economics	3								
	 To intro 	oduce sequ	ential stage	es of downstream	processing									
	At the e	nd of the c	ourse, the	e students will k	e able to									
	CO1: Re	view cost cu	utting strate	egies and bioprod	uct release kin	etics								
	CO2: Inte	erpret the de	esign and p	orinciple of filtratio	n and centrifud	gation								
Course				ation for product r			n							
Outcomes				es and operation o										
				equirements of inc										
		•		•	•	•	•							

Introduction to downstream and intracellular product release

Introduction to downstream processing - characteristics of biomolecules - economics of downstream processing - cost cutting strategy

- physico chemical basis of bioseparation - location of products and product release kinetics - cell disruption methods: mechanical, chemical and enzymatic process; pretreatment and stabilization of bioproducts. [8]

Primary separation and isolation

Principle of batch filtration - pretreatment of fermentation broth, design of industrial filters: plate and frame filter press, leaf filter, continuous filtration: rotary drum filter - calculations in batch and continuous filtration - centrifugation: principle, design and types of industrial centrifuges - scale up of centrifugation — Calculations in settling velocity, sigma factor and number of discs in centrifugation.

[9]

Product recovery and concentration

Adsorption: Isotherms, batch, continuous operations- problems in adsorption isotherms and break point time in fixed bed adsorption - principle of cloud point, aqueous two phase and supercritical fluid extraction - membrane separation processes: microfiltration, ultrafiltration, reverse osmosis and dialysis, precipitation of proteins by different methods. [9]

Product purification by chromatography

Principle and practice, ion exchange, size exclusion, bioaffinity, hydrophobic interaction, reverse phase, pseudo affinity chromatography, high performance liquid chromatography, flash chromatography and gas chromatographic techniques.

[9]

Final product purification and polishing

Crystallization: nucleation, crystal growth, crystal size distribution, kinetics of crystallization, population density, industrial crystallizers, recrystallization; drying - drying terminologies, drying curve, industrial dryers, freeze drying principles and applications. Case studies.

Total Hours = 60

Text book(s):

- Belter P. A., Cussler E.L. and Wei-Houhu, "Bioseparations Downstream Processing For Biotechnology", Wiley Interscience Pub., New Delhi, 1988.
- 2 Sivasankar B., "Bioseparations Principles and Techniques", Prentice Hall of India Private Limited, New Delhi, 2006.

Reference(s):

Nooralabettu Krishna Prasad, "Downstream Process Technology - A New Horizon In Biotechnology", PHI Learning Private Limited, New Delhi, 2012.

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

2	Roger.G, Harrison, Paul Todd, Scott R.Rudge and Demetri P.Petrides, "Bioseperation Science and
	Engineering" Oxford
	University Press, Newyork, 2003.
3	R.O. Jenkins, (Ed.), Product Recovery in Bioprocess Technology – Biotechnology, Open Learning
	Series, Butterworth-Heinemann, 1992.
4	Harrison, R.G., Todd, P., Rudge, S.R., and Petrides, D.P. (2015). Bioseparations Science and Engineering. 2
4	nd Edition. Oxford University Press.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO 1	3	3	3		2	3			2		3	3	3	3
CO 2	3	3	3		2		3	2		2	2	3	3	3
CO 3	3	3	2	3	2			3			2	2	3	2
CO 4	3	3	2	2			2		3		2	3	2	3
CO 5	3	3	2	2	2	2			2	2		3	3	3

2.	Srivastava, T.N. and Rego, S., "Business Research Methodology", Tata McGrawHill Education Pvt. Ltd., Delhi,2019.													
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3	2				2	3	3			3
CO2	3	3	1	2	2		2		2	3	2	1		3
CO3	3	3	2	2			2		1	3		1	3	3
CO4	3	3	3	2		2	1	2		3	2	2	3	2
CO5	3	3	2	2		2	1		2	3	2	2	3	2

	50 AC 001 - Research Skill Development - I
	Common to all Branches
Semester	Hours / Week Total Credit Maximum Marks
Semester	L T P Hrs C CA ES Tota
VII	1 0 0 10 0 100 00 100
Objective(s)	□ To learn about the effective usage of power point □ To presentation prepare presentation with various effects □ To visualize the data in the presentation □ To acquire knowledge about data sources □ To investigate the research articles based on various applications At the end of the course, the students will be able to
Course Outcomes	CO1: Develop presentation with visual effects CO2: Prepare a presentation with supporting data CO3: Attain the importance of research and data collection CO4: Analyze the various sources of research articles CO5: Interpret the tools and methods in preparing manuscript

Note: Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Preparing a Presentation

Presenting data using Power Point- Power Point preparation and presentation, Design principles for creating effective Power Point slides with visuals displaying data. - Profile, - Problem, and a set of basic Excel charts, use to create

a presentation. [3]

Creating effective slides using PowerPoint

Create effective slides using PowerPoint. Tools within Power Point, structure story line, create story boards, identify primary elements of slide design, display data and finalize slide presentation. [2]

Research Designs and Data Sources

Overview of the topics: process of data collection and analysis. Starting with a research question - Review of

existing data sources- Survey data collection techniques- Importance of data collection- Basic features affect data analysis when dealing with sample data. Issues of data access and resources for access. **Measurements and Analysis Plan** Importance of well-specified research question and analysis plan: various data collection strategies - Variety of available modes for data collection – review of literature - Tools at hand for simple analysis and interpretation. Total Hours: 10 Text Book(s): Judy Jones Tisdale. Effective Business Presentations. Gulf Coast Books LLC. ISBN-13: 2. Frauke Kreuter. Framework for Data Collection and Analysis, 2018. https://www.coursera.org/learn/data-collection-framework Reference(s) Kothari, C.R. andGaurav Garg, "Research Methodology: Methods and Techniques", New 1. Srivastava, T.N. and Rego, S., "Business Research Methodology", Tata McGrawHill Education Pvt. Ltd., 2. Delhi, 2019. P01 PO2 PO3 PO4 PO5 PO6 P07 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 2 2 3 3 3 3 3 CO2 3 2 3 2 3 3 2 2 2 1 1 CO3 3 3 2 2 2 1 3 3 3 1 3 2 CO4 3 3 2 2 2 3 2 2 3 1 CO₅ 3 3 2 2 2 2 3 2 1 3 2 2

		K.\$	S.Rangasam	y College of	Technology -	- Autonomou	ıs R 2018					
	50 BT 7P1 –Immunology Laboratory											
	B. Tech. Biotechnology											
Samastar	Semester Hours / Week Total Hrs Credit Maximum Marks											
Semester		L	Т	Р	10tal HIS	С	CA	ES	Total			
VII		0	0	4	60	2	60	40	100			
	☐ To learn the basics of blood grouping antigens and its relation											
Objective(s)		To know the	components	present in of	blood and its	separation						
Objective(s)		To identify a	nd understan	d the concept	of various im	mune cells pr	esent in blood	d				
		To learn the	significance (of immune dif	fusion techniq	lue						
		To understar	nd the conce	ots of specific	antigen and a	antibody react	ion in identify	ing diseases				

At the end of the course, the student can able to

Course Outcomes

CO1: Examine different blood groups, cells in human beings.

CO2: Perform the different types of blood cells and know about their functions.

CO3: Elucidate the presence of antigen and antibody in sample and its related functions based on immune diffusion technique

CO4: Perform the identification methodology for typhoid and syphilis infections.

CO5: Elucidate the binding of antigen and antibodies and their interaction through ELISA technique.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

List of experiments

- 1. Immunology laboratory Safety and role of equipment's.
- 2. Blood collection, identification of blood grouping and Rh typing.
- 3. Separation of Serum and plasma from whole blood.
- 4. Preparation of blood smear and identification of blood cells.
- 5. Determination of haemoglobin.
- 6. Ouchterlony double immune diffusion (ODID) test.
- 7. Immunoelectrophoresis.
- 8. Radial immuno diffusion.
- 9. Rapid Plasma Reagin (RPR) test.
- 10. WIDAL slide and tube agglutination test.
- 11. ELISA Sandwich.
- 12. Separation of Peripheral Blood Mononuclear Cells and Trypan Blue Assay for Live Cell
- 13. Coombs test.
- 14. Identification of HCG hormone Pregnancy test.
- 15. Identification of T cells.

Total Hours = 60

	Total flours = 00														
Text b	ook(s):														
1	New De	lhi,200	4. ·			indbook				· ·					
2	Ravi, M. And Paul, S.F.D., "A practical manual for basic immune techniques", Samanthi Publications Pvt. Ltd, Chennai, 2008														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS O2														
CO1	2	3	3	3	3		2		2	2	2	3	2	3	
CO2	2	3		3	3	3		3			2	3	2	3	
CO3	2	3	3	3	3		2			2	2	3	2	3	
CO4	3		3	3	2		3	3		2	3	3	3	3	
CO5	2	3	3	3	3		2			3	2	3	3	3	

	K.S. Rangasamy College of Technology – Autonomous R 2018 50 RT 7P2 – Downstream Processing Laboratory												
	50 BT 7P2 – Downstream Processing Laboratory B. Tech. Biotechnology												
Competer	Semester Hours / Week Total Hrs Credit Maximum Marks												
Semester	L	T	Р	TOTAL TIS	С	CA	ES	Total					
VII	0 0 4 60 2 60 40 100												
		To acquire knowledge on purification strategies of bio products											
	To design separation processes for the recovery and purification of bio products.												
Objective(s)	To provide hands on knowledge on bio product concentration and recovery												
	To und	To understand the working principle of various unit operations involved in bio separation											
						ions for bio pr	oduct recovery	y					
	At the end	of the cours	e, the stude	nt can able to)								
	CO1: Dete	rmine cell dis	uption kinetic	s for intracell	ular release k	inetics by ultra	asonication an	d know					
	the p	rinciple of so	lid-liquid sepa	aration technic	ques.								
		•			•	nd leaching c	haracteristics.						
Course	CO3: Discu	uss the princip	ole of ammon	ium sulphate,	isoelectric ar	nd aqueous tw	o-phase						
Outcomes		ctionmethod		•									
	CO4: Analy	ze separatio	n of biomolec	ules by chrom	natographic te	chniques.							
	CO5: Dem	onstrate the c	perating proc	edure of freez	ze dryer and f	inal purification	on strategies						

List of experiments

Any Ten Experiments

- 1. Studies on cell disruption by ultrasonication
- 2. Design of thickener for batch sedimentation
- 3. Studies on filtration Plate and frame filter press/Leaf filter
- 4. Solid-Liquid separation by centrifugation
- 5. Product recovery by Cross current leaching
- 6. Biosorption studies Verification of Freundlich Isotherm
- 7. Liquid-liquid extraction Ternary liquid equilibrium
- 8. Aqueous two-phase extraction of biomolecules
- 9. Enzyme purification by isoelectric precipitation and acetone precipitation
- 10. Studies on ammonium sulphate precipitation
- 11. Studies on product purification by column chromatography
- 12. Studies on crystallization of product
- 13. Product polishing by freeze drying
- 14. Studies on drying characteristics
- 15. Analysis of bioactive compounds using HPLC

Total Hours = 60

Text book(s):

Roger.G . Harrison, Paul Todd, Scott R. Rudge and Demetri P.Petrides, "Bioseperation Science and Engineering", Oxford

University Press, New York, 2003.

Desai, M. Downstream Processing of Proteins: Methods and Protocols, Humana Press, 2000.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3		2				2	2	3	3	3	3
CO 2	3	3	3		2		3				2	3	3	3
CO 3	3	3	2	3	2	2		3		2	2	2	3	2
CO 4	3	3	2	2	2			3	2		2	3	2	3
CO 5	3	3	2	2		2		2		2		3	3	3

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

	K.S	S.Rangasa	my Colleg	je of Technology	y - Autonomo	us R2018		
			50 BT 7F	P3 -Project Work	c - Phase I			
			B.1	Tech. Biotechno	logy			
Semester	Н	lours / Wee	ek	Total hrs	Credit	Ma	aximum M	arks
Comocio	L	T	Р	- Total III o	С	CA	ES	Total
VII	0	0	4	60	2	100	-	100
Objective(s)	• To to	understand earn praction rain student	how projects al aspects ts in the ar	o adapt to the resects are executed sof research on the of data interpresenallyze the results	l in a research heir domain tation	laboratory		
Course Outcomes	CO1: Ide CO2: Co CO3: Cr CO4: Int CO5: De	entify the prompetence eate, analy terpret the	oblem and in researc se and crit obtained roles of project	students will be d select a topic of h design and plantically evaluate di esearch data and management, re	f the research nning ifferent technic d conclude the	e experimen	t	unication and

- Three reviews have to be conducted by the committee that constitutes minimum of three members oneof which should be guide.
- Research problem should be selected.
- Students have to collect and bound about 50 research papers related to their work.
- Objectives and title of the work has to be finalized at the end of the Project Work Phase I.
- Preliminary Implementation can be done if possible.
- Report has to be prepared as per the format and submitted by the students
- Internal evaluation has to be done for 100 marks

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3	3	2	3	3	2			3			3	3	3
CO2	3	3	3	3	3	2		2		2	2	3	3	3
CO3	3	3	2	3	3	2	3		2			3	3	3
CO4	3	3	2	3	2	2		3		2		3	3	3
CO5	2	3	2	3	2	2		3		3	3	3	3	3

	K.S			Technology -					
		50 TP		Competency		me	nt V		
		Hours/We		1	ncn Credi			Maximum Ma	orke
Semester		nours/we	ek	Total Hrs	t			naxiiiiuiii ivi	ai KS
	L	Т	Р		C		CA	ES	TOTA
									L
VII	0	0	2	30	0		100	0	100
Course Objective s	profes To he require To he recruite To he compa	ssional contexts Ip the learners ements of both Ip the learners tments and coll Ip the learners any basedrec Ip the learners	ts s to practice the competitive rs to practice ompetitive exists to practice fruitments and s to hone the	effectively the discompetitive of technical and	I logical rea ompanies he aptitud data interp exams programm	aso le r pre	ning ability to modules for o tation and an	meet out th company ba	e sed es for
Course Outcome s	CO1: Reinfo CO2: Discring requires CO3: Relates CO4: Comp based CO5: Formu	orce the writte minate and as ements of the e the aptitude are and illust recruitments	n and oral consess the vertice of the companies modules for the data and competitigrate the tech	nical and prog	skills in the I reasoning ed recruitm and analy	g al nen ⁄sis	ts and compe modules effo	out the empletitive exams	oyability effectively
Unit-1		d Oral Comr							Hrs
Self-Introduction and Competitive Materials: Instruction Unit-2	e Exams ructor Manua		-	ofileReview-P	racticeson	Co	mpanyBased	Questions	6
Practices on Co			and Compet	itive Exams					
Materials: Instru									
Unit–3 Q	uantitative A	Aptitude							
Practices on Co	ompany Bas ructor Manua	ed Questions al	and Compet	itive Exams					6
Unit-4 Da	ata Interpret	tation and Ar	nalysis						
Practices on Co	-		-	itive Exams					6
Materials :Instru			,						
Unit–5 Pi	rogramming	y &Technical	Skills-Part3	3					
Data Structure- TypeQuestions Materials :Instru	s.		<−Queues −T	ree–Graph. P	ractices or	n A	lgorithms and	Objective	6
								Total	30
Evaluation Cri	iteria								

1	Evaluation1 – Written Test	15Questions eachfromUnit1,2,3,4&5(External Evaluation)	60
2	Evaluation2- OralCommunicati on	GDand HR Interview (External Evaluation by English,MBADept.)	20
3	Evaluation3– TechnicalIntervie w	InternalEvaluationbytheDept3 Core Subjects	20
		Total	100

ReferenceBooks

- 1. Aggarwal ,R.S."A Modern Approach to Verbal and Non- verbal Reasoning", Revised Edition 2008, Reprint 2009,S.Chand & CoLtd.,NewDelhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B.Lal & Goswami Upkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R.GOYAL Publications

Note:

- Instructor can cover the syllabus by Classroom activities and Assignments (5Assignments/week)
- Instructor Manual has Classwork questions, Assignment questions and Rough work pages
- Each Assignment has 20questions forUnit 1,2,3,4 & 5and Unit 5and 5 questions from Unit5 (Algorithms)& Unit 1 (Oral Communication)

Evaluation has to be conducted as like Lab Examination.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO2
CO1	1	1	1	1	1	2	1	1	2	3	2	3	1	1
CO2	2	1	2	2	1	2	1	1	2	3	3	3	2	2
CO3	2	1	2	2	1	1	1	1	2	3	2	3	2	2
CO4	2	2	2	2	2	1	1	1	2	3	3	3	2	2
CO5	2	2	2	2	2	2	2	2	2	3	2	3	3	3

	ŀ	K.S. Rang	asamy Co	llege of Techn	ology – Aut	onomous R	2018							
	50 TP 0P6 – Internship													
	B.Tech. Biotechnology													
Compotor	Semester Hours / Week Total hrs Credit Maximum Marks													
Semester	L	Т	Р	Total nrs	С	CA	ES	Total						
VII	VII 0 0 0 45 1 100 - 100 • To expose the students to understand the processes at industry and R&D													
Objective(s)		To iden To solve To prep To sum	tify the exi e the prob are the re marize the	sting and evolvi lems at industry port of solved p e data in a prese	ing problems and environ roblems for for formation mode	at industry ment need urther action	ustry and R&L)						
Course Outcomes	CO1 CO2 CO3 CO4	: Identify t : Design to : Execute : Interpret	he root ca he experin and troubl the raw a	he students will uses and proble nent from literate shoot through and calculated dated documenti	em solving pr ure survey n pilot study ata to conclud	de the proble								

- 1. Students undergo internship during sixth semester summer vacation (minimum of two weeks)
- 2. Students should submit an internship / innovation project report along with observation note book in the beginning of seventh semester
- 3. The observation note book of the students after the training with their personal comments / suggestions and attestedby the trainer at industry or R&D
- 4. A technical presentation to be done by the students to the committee, immediately after submission of the report at the beginning of seventh semester

5. A committee constitute a senior faculty, HoD and along with industry person

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	2			3			3	3	3
CO2	3	3	3	3	3	2						3	3	3
CO3	3	3	2	3	3	2						3	3	2
CO4	3	3	2	3	2	2						3	3	2
CO5	2	3	2	3	2	2		3		3	3	3	3	2

K.S. Rangasamy College of Technology - Autonomous															
	51 BT 801 – Bioethics and Biosafety														
	B.Tech. Biotechnology														
Compostor	Hours / Week Total hrs Credit Maximum Marks C C CA FS Total														
Semester	L	L T P Iotal IIIS C CA ES Total 3 0 0 45 3 50 50 100													
VIII	3	0	0	45	3	50	50	100							
	To learn about Intellectual Property and related Rights														
Objective(s)															
	 To acquire knowledge on various conventions in protection of IP To provide knowledge on patent law and patent application process 														
	• T	o learn vari	ous databa	ase for the search	of patent										
	• T	o summariz	e the need	d for biosafety and	I their manage	ement									
	At the e	nd of the	course, th	ne students will	be able to										
	CO1: R	eview the ty	pes of IPF	R and their import	ance.										
	CO2: C	ritique the o	different the	eories related to I	PR.										
Course	CO3: Fo	ormulate a	patent acc	ording to the pate	nt law and pro	cedures for	filing a pater	nt							
Outcomes	CO4: Pi	ractice the	database f	or searching the p	atents		-								
	CO5: In	vestigate th	ne role of G	MOs and LMOs	and their risk a	assessment	and manage	ment							

Note:Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Introduction to Intellectual Property Rights

IPR: definition, role and importance - types of IPR: Patents, Trademarks, Trade secrets, Copyright and Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications - Protection of GMO's IPR in R&D.

Theories and Conventions

Indian theoy, Constitutional Protection of Property and IP - Western theory - Locke's Labour, Hegel's Personality and Marxian Theory - Berne Convention, Universal Copyright Convention, the Paris Convention, TRIPS, the WIPO and the UNESCO. [9]

Patent Filing

Patent Law - Rights under Patent Law and its Limitations - Patent Requirements - Ownership and Transfer - Patentable and Non patentable inventions - Patent Application Process and Granting of Patent - Patent Infringement and Litigation-International Patent Law - Double Patenting, Patent Searching - Patent Cooperation Treaty - New developments in Patent Law. [10]

IPR Database

Patent database - National, International, Country-wise patent searches (USPTO, EPO), PATENT Scope (WIPO, IPO) - commercial and free patent databases - search tools and functions - database for trademark and industrial design data security, confidentiality, privacy - International aspects of Computer and Online Crime. [9]

Biosafety

Introduction to Biological safety cabinets - primary containment for biohazards - biosafety levels - biosafety levels of specific microorganisms - biosafety guidelines - Government of India; definition of GMOs & LMOs - roles of Institutional Biosafety committee, GMO applications in food and agriculture - environmental release of GMOs - Risk analysis, risk assessment, risk management and communication. [8]

Total Hours = 45

Text book(s):

- Gopalakrishnan N.S. and Ajitha T.G, "Principles of Intellectual Property", 2nd edition, Eastern Book Company, 2014.
- 2 BAREACT, Indian Patent Act, 1970, Acts and Rules, Universal Law Publishing Co. Pvt. Ltd., New Delhi, 2007.

Reference(s):

Subbaram N.R. "Handbook of Indian Patent Law and Practice", S. Viswanathan Printers and Publishers Pvt.Ltd., 1998.

2	Tzotzos, G.T., "Genetically modified organisms - A guide to Biosafety", CAB International, Walling ford, U.K. 213p.1995													
3	R.O. Jenkins, (Ed.), Product Recovery in Bioprocess Technology — Biotechnology, Open Learning Series, Butterworth-Heinemann, 1992.													
4	Harrison, R.G., Todd, P., Rudge, S.R., and Petrides, D.P. (2015). Handbook of Biosafety Science and Engineering. 2 nd Edition. Oxford University Press.													
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 P01 PS0 PS0 0 1 2 1 2													
CO1	2	3	3	2		3	3	3			3		3	3
CO2	2	3	3	2		3	3	3			3		3	3
CO3	2	3	3	3		3	3	3			3		3	3
CO4	2 3 3 3 3 3 3 3 3 3 3													
CO5	2	3	3	3		3	3	3			3		3	3

	K.S	.Rangasamy	College of	Technology	Autonomo	us R2018		
		50 AC	002 - Rese	arch Skill D	evelopment l	l		
Compoter		Hours / Weel	<	Total	Credit	M	aximum Maı	ks
Semester	L	Т	Р	hrs	С	CA	ES	Total
VIII	1	0	0	15	0	100	0	100
	• To	identify the e	ethics in prep	paring resear	ch paper			
	• To	organize ma	nuscript for	submission				
Objective(s)	• To	attain knowle	edge for filin	g Patent				
	• To	apply for cop	oy right					
	• To	develop and	deploy Mob	ile App. in pl	ay store			
	At the end	of the cours	se, the stud	ents will be	able to			
	CO1: Prep	are a manus	cript for journ	nal publicatio	٦.			
Course	CO2: Appl	y the manusc	ript for publi	cation				
Outcomes	CO3: Inter	pret the proce	ess of obtain	ing copyright	and patent			
	CO4:Analy	ze the variou	s provisions	to share the	application			
	CO5: Crea	ite and publis	h the mobile	application i	n the digital st	tore		

Note:Hours notified against each unit in the syllabus are only indicative but are not decisive. Faculty may decide the number of hours for each unit depending upon the concepts and depth. Questions need not be asked based on the number of hours notified against each unit in the syllabus.

Preparation of Manuscript

Data necessary before writing a paper: the context in which the scientist is publishing. Learning and identification of research community - advantages of scientific journal publication and manuscript preparation - ethical values in publishing. [3]

Writing the paper

Writing research paper - structure of the paper - usage of bibliographical tools - abstract preparation and to do a peerreview for the abstract of the others, as in real academic life. Plagiarism of the prepared manuscript. [2]

Copyright Copyright

law in India-Meaning of copyright-Classes of works for copyright protection -Ownership of Copyright-Assignment of copyright-Intellectual Property Rights (IPR) of Computer Software-Copyright Infringements-Procedure for registration.

Patents

Patent System In India -Types of Patent Applications-patentable invention - Not patentable-Appropriate office for filing -Documents required Publication and Examination of Patent Applications -Grant of Patent-Infringement of Patents -E-filing of Patent applications. [3]

Deploying Mobile App. in play store

Introduction to Application Stores – Play Store, AppStore, Microsoft Store, Creating App – Android, iOS, UWP, DefiningManifest, Certifying App, Create Store Listing, Sharing Screenshots, Sharing App Credentials for Testing. [5]

												T	otal Ho	urs: 15
Text Bo	ook(s):													
1.			How to Voursera.c								Course).			
2.	Rajkun	nar S. A	dukia ,H	landboo	k On Int	tellectua	l Proper	ty Rights	In Indi	a,2007				
3	Dr. M.	Kantha	Babu ,"T	ext boo	k on In	tellectua	l Proper	ty Right	s",2019.					
Refere	nce(s)													
1.		i, C.R. a ners, 20	andGaur 13	av Garg	ı, "Rese	earch Me	ethodolo	gy: Meth	nods an	d Techr	niques",	New Ag	je Intern	ational
2.	Srivast 2019.	ava, T.N	N. and Re	ego, S.,	"Busine	ss Rese	arch Me	thodolo	gy", Tata	a McGra	wHill Ed	lucation	Pvt. Ltd.	, Delhi,
3.	https:	//suppo	rt.google	.com/gc	oglepla	y/androi	d-devel	per/ans	wer/985	59152				
4.	https:	//develo	per.appl	e.com/id	os/subm	nit/								
5.	https:	//docs.n	nicrosoft	.com/en	-us/wind	dows/uw	/p/publis	h/app-si	ubmissi	<u>ons</u>				
	PO1	РО	PO3	РО	РО	PO6	PO7	РО	РО	PO10	PO11	PO12	PSO1	PSO2

Rev. No. 4

		2		4	5		8	9					
CO1	3	3	3	3	3		3	3	2	3	3	3	3
CO2	3	3	3	3	3		3	3	2	3	3	3	3
CO3	3	3	3	3	3		3	3	2	3	3	3	3
CO4	3	3	3	3	3		3	3	2	3	3	3	3
CO5	3	3	3	3	3		3	3	2	3	3	3	3

K.S.Rangasamy College of Technology - Autonomous R 2018															
			50 BT 8F	P1 -Project Worl	c - Phase II										
			В.	Tech. Biotechno	ology										
Semester	Н	lours / We	ek	Total bre	Credit		Maximum	Marks							
Semester	L T P C CA ES Total VIII 0 0 16 240 8 40 60 100														
VIII															
Objective(s)															
	• T	o understa	and how pro	ojects are execut	ed in a resea	rch laborato	ory								
	 To understand how projects are executed in a research laboratory To learn practical aspects of research on their domain 														
	 To learn practical aspects of research on their domain To train students in the art of data interpretation 														
	• T	o practice th	ne students t	o analyze the resu	ılts and thesis	writing									
Course	At the en	d of the co	ourse, the	students will be	able to										
Outcomes	CO1: Ider	ntify the pro	blem and s	elect a topic of th	eir research										
				design and planr											
		•		ally evaluate diff	•	al solutions.									
				search data and											
		•		nanagement, rep		•		nication and							
	_	ornorconal	or project ii	ianagement, rep	or writing, pr	ODICITI SOIVII	ing, commu	ilication and							

- Three reviews have to be conducted by the committee that constitutes minimum of three members and oneamong them should be the guide.
- Each review has to be evaluated for 100 marks
- Attendance is compulsory for all reviews. If a student fails to attend the review with proper permission, onemore chances may be given.
- The student should publish the paper in the journals.
- Final review will be conducted by the committee that constitutes one external expert examiner (outside the college) along with an internal examiner.
- The report should be submitted as per the format by the students.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3		3	3	3	2	3	3	3	3
CO2	3	3	3	3	3		3	3	3	2	3	3	3	3
CO3	3	3	3	3	3		3	3	3	2	3	3	3	3
CO4	3	3	3	3	3		3	3	3	2	3	3	3	3
CO5	3	3	3	3	3		3	3	3	2	3	3	3	3

	K.S. Rangasamy College of Technology – Autonomous R 2018											
				50 TP 0P6 - Ir	nternship							
				B.Tech. Biote	chnology							
Semester		Hours / W	eek	Total hrs	Credit		Maximum N	/larks				
Semester	L	Т	Р	Totalnis	С	CA	ES	Total				
VII	0	0	0	45	1	100	-	100				
To expose the students to understand the processes at industry and R&D To identify the existing and evolving problems at industry To solve the problems at industry and environment need To prepare the report of solved problems for further action To summarize the data in a presentation mode												

- 1.Students undergo internship during sixth semester summer vacation (minimum of two weeks)
- 2.Students should submit an internship / innovation project report along with observation note book in the beginning ofseventh semester
- 3.The observation note book of the students after the training with their personal comments / suggestions and attested by the trainer at industry or R&D
- 4.A technical presentation to be done by the students to the committee, immediately after submission of the report atthe beginning of seventh semester
- 5.A committee constitute a senior faculty, HoD and along with industry person

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	2			3			3	3	3
CO2	3	3	3	3	3	2						3	3	3
CO3	3	3	2	3	3	2						3	3	2
CO4	3	3	2	3	2	2						3	3	2
CO5	2	3	2	3	2	2		3		3	3	3	3	2

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 BT E11- Environmental Biotechnology													
		50 I	BT E11- Envi	ronmental Bi	iotechnology	1								
			B. Tecl	h. Biotechnol	ogy									
Semester		Hours / Wee	k	Total Hrs	Credit	M	aximum Marl	ks						
Semester	L	Т	Р	TOTAL HIS	С	CA	ES	Total						
V	3	0	0	45	3	50	50	100						
	 To fam 	To familiarize the learners with the impacts of pollution on the environment and human health. To enable students to learn the basic concepts of interactions of radiation with environment.												
		To enable students to learn the basic concepts of interactions of radiation with environment.												
Objective(s)	 To enlighten the learners about waste management. To comprehend different forms of bioremediation and biodegradation available to treat waste. 													
				monitoring the		and its neces	sity for impler	mentation.						
				nts will be ab										
	CO1: Sum	marize the typ	es, sources of	of pollution and	d to analyze բ	pollution contr	ol measures.							
Course	CO2: Appr	aise the intera	actions of nuc	lear radiation	in the enviror	nment.								
Outcome	CO3: Rela	te the differen	t techniques i	involved in sol	lid waste mar	agement.								
S	CO4: Emp	loy the use of	microbes and	d plants in bior	remediation o	f oil spilled an	d salt affected	d soils along						
	with t	the usage of b	iofertilizers fo	or poor soil ma	anagement.	-								
				sticides and its		pathways.								

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

ENVIRONMENTAL POLLUTION

Types, sources and monitoring of air, water, noise and soil pollution, Pollutant categories: Metals, Organics and nuclear. Impact of pollution and pollutant on human health, environment and climate change; role of regulatory bodies in pollution control.

SOLID WASTE MANAGEMENT

Solid waste management: Introduction, management of municipal, agricultural, industrial, mining, hazardous (biomedical) waste- treatment methods (Incineration, pyrolysis) and Solid waste management methods (composting, vermiculture, methane production and landfill). [9]

IMPACT OF NUCLEAR RADIATION

Ionizing and Non-Ionizing Radiation- Types/sources of ionizing radiation (e.g. X- rays, gamma rays), Measurement of ionizing radiation, Health effects of ionizing radiation (burns, mutations, cancers), sources of environmental exposureto ionizing and non-ionizing radiation, Environmental hazards of disposal of ionizing wastes. Non-ionizing radiation and its impact on health (UV light, electromagnetic radiation, cell-phone radiation). [9]

BIOREMEDIATION TECHNOLOGIES

Bioventing-biosparging and bioslurping-Phytoremediation-Biosorption and Bioleaching of heavy metals (Cadmium, Lead, Mercury), Metal binding targets and organisms, Metal-microbial interaction, Biomethylation of elements (Methylation of mercury and arsenic), Commercial biosorbents. Remediation of degraded ecosystems, degradation of xenobiotics in environment, decay behavior & degradative plasmid, hydrocarbons, substituted hydrocarbons, oil pollution, surfactants, pesticides and heavy metals degradation pathways

TECHNOLOGIES FOR ENVIRONMENTAL MONITORING

Application of various technologies - Data bases, RDBMS, Management Information systems and decision support system - geographic information systems, Intranets and extranets - video teleconferencing and Remote sensing technology - contribution of remote sensing and GIS in management. Low cost sensor adoption for RT air, water and particulatedeposition due to emissions from industries, agricultural and municipal wastes. [9]

Total Hours = 45 hours

Text book(s):

1 Baird, C. and Cann, M. Environmental Chemistry. W.H. Freeman and Company 2008.

Botkin, Daniel B. and Keller, Edward A. Environmental Science: Earth as a Living Planet. 6th ed. John Wiley & Sons, USA. 2007

Reference(s):

Chairman - BOŞ

[9]

1	Environmental Biotechnology. Concepts and Applications. Edited by HJ. Jördening and J. Winter 2015 Friis, Robert H.Essentials of Environmental Health. Jones and Bartlett, Inc., Sudbury, MA 2014														
2	Friis	, Robert	H.Essen	tials of E	nvironme	ental Hea	ılth. Jone	s and Ba	rtlett, Inc	., Sudbu	ry, MA 20	014			
3	Theodore, L. & Dupont, R. R. Environmental Health and Hazard Risk Assessment. Environmental Health and Hazard Risk Assessment (2017).														
4		S. B. Utham Kumar, Fundamentals of Environmental Biotechnology, Lambert Academic Publishing, New Delhi, 2011													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO PS O														
													•	2	
CO1	2	2	0		0	2	2		-	0	0	2	'	2	
CO1	3	3	3		2	2	3		3	2	2	3	3	2	
CO1	•	3 2	3 2	3	2	2 3	3	3	3 2	2 2	2	3 2	3 3	2 3 3	
	3			3	2		3	3			2	•	3 3 3		

2

	ļ	K.S.Rangasan	ny College o	f Technology	/ – Auton	omous R 2018								
	50 BT E12- Biodiversity and its conservation B. Tech. Biotechnology													
			B. Tecl	n. Biotechnol	logy									
Compostor	ŀ	lours / Week		Total IIra	Credit	Max	ximum Marks							
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total						
V	3													
Objective(s)	To develop the knowledge the knowledge of students in Biodiversity and its management To widen the knowledge about the sustainable utilization of natural resources To understand the regulatory authorities and their role about Biodiversity and its conservation To recognize the threats to the Biodiversity. To distinguish the roles and responsibilities of the regulatory authorities in Biodiversity and its conservation.													
Course Outcomes	At the end of the course, the students will be able to CO1: Describes the concepts and types of Biodiversity and its management. CO2: Annotate the losses of biodiversity and conservation measures by agency. CO3: Learn the significance and aesthetic uses of Biodiversity. CO4: Exemplify the threats to the biodiversity through population exposure and other ways. CO5: Appraise the sustainable management and conservation of Biodiversity.													

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

INTRODUCTION TO BIODIVERSITY

2

3

3

Biodiversity - Definition-Types, Diversity of genes (genetic diversity), species (species diversity and ecosystems (ecosystem diversity); Goals and constraints of Biodiversity Science. Genetic Diversity - Nature and origin of Genetic Variation, Measuring Genetic Variation by Allozyme, Species Diversity — Measurement, Concepts of species richness, abundance, and turnover, species/area relationships, global distribution of species richness; Hot Spot analysis; A general account on Ecosystem diversity.[9]

LOSS OF BIODIVERSITY AND HUMAN INFLUENCE ON BIODIVERSITY

Species Extinction- Fundamentals causes, Deterministic and Stochastic processes, Current and Future Extinction rates; methods of estimating loss of biodiversity- Threatened species, The IUCN threat Categories (Extinct, Endangered, Vulnerable, Rare, Intermediate and Insufficiently known). [9]

Chairman - BOS

3

3

BIODIVERSITY AND HUMAN WELFARE

A very general account on uses of Bioresources- plant uses: food, timber, medicinal ornamental and other uses- animal uses: food animals (terrestrial and aquatic), nonfood uses of animals, Domestic livestock- uses of microbes. Valuing Biodiversity- Instrumental (Goods, Services, and Information and Psychospiritual values) and Inherent or Intrinsic values, ethical and aestheticvalues-An outline account on methods of valuing biodiversity. [9]

THREATS TO BIODIVERSITY

Habitat Destruction, Fragmentation, Transformation, Degradation and Loss: Causes, Patterns and consequences on the Biodiversity of Major Land and Aquatic Systems Invasive Species: their introduction pathways, biological impacts of invasive species on terrestrial and aquatic systems Pollution: Impacts of Pesticide pollution, Water pollution and Air Pollution on

biodiversity Overexploitation: Impacts of Exploitation on Target and Non-target Terrestrial and Aquatic species and Ecosystems.[9]

SUSTAINABLE MANAGEMENT AND CONSERVATION OF BIODIVERSITY AND BIORESOURCES

Sustainable management - National polices and Instruments relating the protection of the wild/ domesticated flora and fauna as well as habitats; International policies and Instruments - A general account on multilateral treaties- the role of NBAI, CBD, IUCN, GEF, IBPGR, NBPGR, WWF, FAO, UNESCO and CITES. Conservation *In situ* and *Ex situ* Conservation. [9]

Total Hours = 45 hours

Text book(s):

- Groombridge, B, "Global Biodiversity Status of the Earth's Living Resources", Groombridge, B (ed.). Chapman and Hall, London. 1992. 2. Virchow, D, "Conservation and Genetic Resources", Springer Verlag, Berlin. 1998
- 2 Krishnamurthy, K. V. Textbook of Biodiversity. Science Publication. 2003.

Reference(s):

- Groombridge, B, "Global Biodiversity Status of the Earth's Living Resources", Groombridge, B (ed.). Chapman and Hall, London. 1992. 2. Virchow, D, "Conservation and Genetic Resources", Springer Verlag, Berlin. 1998
- 2 Krishnamurthy, K. V. Textbook of Biodiversity. Science Publication. 2003.
- 3 Friis, Robert H.Essentials of Environmental Health. Jones and Bartlett, Inc., Sudbury, MA 2014
- Theodore, L. & Dupont, R. R. Environmental Health and Hazard Risk Assessment. Environmental Health and Hazard Risk Assessment (2017).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				2	3	2				3	2	2
CO2	3	3	3	2	3	2	3	1				3	3	3
CO3	3	3	3	2	3	2	3	1				3	3	3
CO4	3	3	3	2	3	2	3	1				3	3	3
CO5	3	3	3	2	3	2	3	1				3	3	3

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 BT E13-Environmental Hazards and Management												
	50 BT E13-Environmental Hazards and Management												
			B. Te	ch. Biotechn	ology								
Compoter		Hours / Wee	k	- Total Hrs	Credit	M	aximum Mar	ks					
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total					
V	3												
Objective(s)	 To understand the concepts of environmental hazards and the causative agents To differentiate the potential hazards and disaster To identify the suitable framework followed by a national and international agency to mitigate the hazards and disasters To comprehend the different aspects of technology for reducing and managing the risk To create awareness about hazards management. 												
Course Outcome s	At the end of the course, the students will be able to CO1: Recite the concepts of environmental hazards and its impacts CO2: Distinguish the potential role of elements causing health risk												

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

ENVIRONMENTAL HAZARDS

Concepts of environmental hazards, environmental disasters and environmental stress – hazard approaches in relation with human ecology – taxonomy of environmental hazards – Metals, Organics and nuclear – health and hazard risk. [6]

TYPES OF ENVIRONMENTAL HAZARDS AND DISASTERS

Natural hazards and disasters: planetary and extra planetary hazards – exogenous hazards and endogenous hazards. Man induced hazards: Nuclear accidents, Industrial accidents, environmental impacts of hazards and disasters. [10]

FRAME WORK AND MANAGEMENT (HAZARDS AND DISASTER)

Environmental Framework: Regulatory system- laws and regulation – role of state and central bodies. Hazard Management hazard risk identification, probability, consequences, characterization. Disaster Management: Effect to migrate natural disaster – international strategy for disaster reduction – concept of disaster management – national disaster management framework – financial arrangements – role of government and media – disaster response. [10]

TECHNOLOGY IN RISK REDUCTION

Application of various technologies – Data bases, RDBMS, Management Information systems and decision support system geographic information systems, Intranets and extranets – video teleconferencing and Remote sensing technology – contribution of remote sensing and GIS in management. Low cost sensor adoption for RT air, water and particulate deposition due to emissions from industries, agricultural and municipal wastes. [10]

AWARENESS TOWARDS RISK MANAGEMENT

Risk reduction by education – Network – risk management through public awareness – implication of development planning emergency response – case study on Tsunami, cyclone Thane, Sikkim earthquake, nuclear plant accident and nanopowder industry outbreak, Ghaziabad air pollution and Bhopal gas accident. [9]

Total Hours:= 45 hours

Text book(s):

Theodore, L. & Dupont, R. R. Environmental Health and Hazard Risk Assessment. Environmental Health and Hazard Risk Assessment (2017).

Reference(s):

Shroder, J. F. Hazards and Disasters Series Biological and Environmental Hazards, Risks, and

Rev. No. 4

Chairman - BOS BOS - CHAIRMAN Signature

	Dis	sasters.	(2016)).											
2	Ra	gazzi, N	1. Air C	Quality	Monitorir	ng, Meas	suring, a	and Mod	leling Er	vironme	ental Ha	zards. (2	2004).		
3	Bennett, G. Bioremediation of hazardous wastes. Journal of Hazardous Materials 34, 269–270 (1993).														
	PO1 PO2 PO3 PO PO PO PO PO PO PO PO10 PO11 PO12 PSO1 PSO2														
CO1	3	3	3	3	3			3	3	2	3	3	3	3	
CO2	3	3	3	3	3			3	3	2	3	3	3	3	
CO3	3	3	3	3	3			3	3	2	3	3	3	3	
CO4	3	3	3	3	3			3	3	2	3	3	3	3	
CO5	3 3 3 3 3 3 3 3 3 3 3 3														

	K	.S.Rangasar	ny College o	f Technology	/ – Autonom	ous R 2018							
			50 BT E14 –	Food Biote	chnology								
			B. Tech	n. Biotechnol	logy								
Semester		Hours / Wee	k	Total Hrs	Credit	Ma	aximum Mark	S					
Semester	L	Т	Р	TOTAL	С	CA	ES	Total					
V	3												
Objective(s)	equipn To inte To Rec To gain forindu To tak	 To Recognize and label the role of various agencies applied in food processing To gain knowledge in various aspects of Food processing and its importance forindustrial applications. 											
Course Outcomes	CO1: Illustr CO2: Appr CO3: Cate CO4: Unde CO5: Ident	rate the basic aise the types gorize vegeta erstand the di	concepts of a s of various for ables, fruits are ferent operations ry evaluation	food processi ood processin nd processing ions involved	ng technology ng techniques of meat. in food conv		•	n inspection					

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

Principles of Food Processing

Principles and methods of food preservation; thermal processing of food - 12D concept - blanching - pasteurisation - canning; freezing - evaporation - dehydration - radiation, pulse electric field - ultra high pressure - Modified atmosphere storage and packing, Food additives. [9]

Food Engineering Operations

Properties of foods and processing theory - liquid, solid and gases: density, specific gravity, viscosity, surface activity - rheology and texture, flavour. Storage and transport, Raw material preparative operation - theory and equipment's used: cleaning, grading, peeling. Food conversion operation - size reduction, mixing, emulsification, filtration, membrane separation, extraction, crystallization.

Application of Food Processing

Technology of milk and milk products - processing of market milk: Types of milk products: paneer, butter, Ice cream, Vegetables and Fruits processing technology - Jam, jelly, squash, sauce and fruit juice powders. Recent trends in meat processing - post-mortem changes - meat tenderization - poultry processing. Baking technology: Bread, Cake and Biscuit preparation.

Fermentation Technology

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

Chairman - BOS BOS - CHAIRMAN Signature Foodfermentation-generalprinciples-culturemaintenance.Productionprocessoffermentedfoods-Cheese, Yoghurt, sauerkraut, pickles; Industrial production of alcoholic beverages: beer and wine - non-alcoholic beverages - tea. Oriental fermented foods. Microorganisms as food: probiotics and prebiotics, single cell protein. Applications of enzymes in foodprocessing.

Food Quality and Management

Sensory evaluation of food quality: appearance, textural, flavour factors - Nine hedonic scale - Food safety - Organizations dealing with inspection, Certification and quality assurance, Food safety standards: WHO, FPO, MMPO, HACCP, GMP, FSSAI. [9]

Total Hours:= 45 hours

Text b	ook(s):														
1	WulfCru	uger and	Annelie	eseCrue	ger., "Bi	otechnol	ogy: A	Textbook	c of Indu	ustrial M	icrobiolo	gy", Par	ima Pu	blishing	
	Corpora	ation, Ne	w Delhi	. 2003.											
2	Pierre-\	ves Bo	uthyette,	"Ferme	ntation	Technol	ogies", 2	2 nd editio	n, Rai l	Jniversit	y, Ahme	dabad, 2	2005.		
Refere	ence(s):														
1	Pressco	ott, D. "lı	ndustrial	Microbi	ology", (CBS Pul	olishers,	New De	elhi. 199	9.					
2	Peter F. Stanbury, Allan Whitaker and Stephen J, Hall, "Principles of Fermentation Technology", Third edition,														
	Butterworth-Heinemann Publishers, 2017.														
3	Arindam Kuila and Vinay Sharma, "Principles and Applications of Fermentation Technology", Wiley Publications,														
	2019														
4	Modi, H	I.A., " Fe	rmentati	on Techi	nology",	Vol-2, P	ointer Pu	ublishers	, 2015						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	
													1	2	
CO1	3	3	3	2	3	3	2	1		2	3	3	2	3	
CO2	2	3	2	2	3	3	3			3	3	3	3	3	
CO3	2	3	2	3	3	3	3	1		2	3	3	3	2	
CO4	2	3	1	3	3	3	3	1		2	3	2	3	3	
CO5	3	3	3	3	2	2	2			2	3	3	3	2	

	K	.S.Rangasar	ny College o	f Technology	/ – Autonom	ous R 2018								
		50	BT E15 - Fe	rmentation	Technology									
			B. Tecl	n. Biotechno	logy									
Semester		Hours / Wee	k	Total Hrs	Credit	M	aximum Mark	s						
Semester	L	Т	Р	Total HIS	С	CA	ES	Total						
V	3	0	0	45	3	50	50	100						
		 To understand the important concepts and stages in fermentation engineering To learn the production of primary and secondary metabolites for various industrial applications. 												
	• To learn the production of primary and secondary metabolites for various industrial applications.													
Objective(s)	 To identify the various upstream and product recovery techniques of metabolites production To acquire knowledge on the kinetics and bioconversion studies 													
		To illustrate the production process of different fermented products and identify its industrial												
	application		nuraa tha at	ا النبر منصمات	blo 40									
				udents will b		-l:#*								
				ntation proce			-							
			cept of orgar	nic feed stock	production a	and various p	roduct recove	ry						
Course	techn	niques												
Outcomes	CO3: Narra	ate the strate	gies for secor	ndary metabol	lite productior	and process	optimization)						
	CO4: Inve	estigate the c	oncept of gro	owth kinetics,	the applicati	ons of biocor	nversion and							
	tran	sformation of	steroid and r	non- steroid c	ompounds									
	CO5: Illust	rate the cond	ept of produ	ction of micro	obial fungicide	es and pestic	ides, chemica	ls and						
	phari	maceuticals b	y fermentation	on technology	y									
Note: The hour	aivon agair	et each tonic	are of indica	tive The fact	ilty have the f	roodom to do	cide the hours	required						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

INTRODUCTION TO FERMENTATION TECHNOLOGY

Industrial Fermentation, Substrates used for Industrial Fermentation (Carbon and Nitrogen Sources), Methods of Fermentation: Batch, Fed Batch and Continuous, Different stages of fermentation process, Fermentation medium, Isolation and screening of industrially important microorganisms – primary and secondary screening; Maintenance of Strains; Strain improvement: Mutant selection and Recombinant DNA technology. [9]

PRODUCTION OF PRIMARY METABOLITES

Product Recovery: Centrifugation, Filtration, Chromatography, Sedimentation, Precipitation and Crystallization, Organic feed stocks produced by Fermentation — Ethanol, Acetone, Organic acids (Citric acid, Lactic acid), Amino acids — L-Glutamic acid and Tryptophan, Calculations for Product recovery and yield. [9]

PRODUCTION OF SECONDARY METABOLITES AND PROCESS OPTIMIZATION

Mechanism of secondary metabolite production, Examples-Antibiotics (Penicillin, Cephalosporin), Vitamins (Vitamin B12, Riboflavin), Ergot alkaloids, Nucleotides and Nucleosides. Antimicrobial agents. Role of metabolic engineeringin process improvement, Computers in fermentation processes.

GROWTH KINETICS AND MICROBIAL TRANSFORMATION

Growth kinetics in fermentation, Kinetics of batch, fed batch and continuous fermentation, Introduction to Microbial transformation, Types and applications of bioconversion, Procedures for biotransformation, Transformation of steroid and non-steroid compounds, SCP production from microbes and algae. [9]

MODERN FERMENTATION TECHNOLOGY

Microbial fungicides and Pesticides, Chemicals and Pharmaceuticals made by fermentation, Fermented food products – Beer, Wine, Genetically Modified Organisms, Biopolymers. Microbial leaching, Effluent treatment using microbes, Future of fermentation technology and its products.

tal Hours:= 45 hours

Text book(s):

WulfCruger and Anneliese Crueger., "Biotechnology: A Textbook of Industrial Microbiology", Panima Publishing Corporation, New Delhi. 2003.

Rev. No. 4

2	Pierre-Yves Bouthyette, "Fermentation Technologies", 2 nd edition, Rai University, Ahmedabad, 2005.													
Refe	rence(s):												
1	Press	scott, D.	"Industri	al Micro	biology",	CBS P	ublishers	s, New I	Delhi. 19	999.				
2	Peter	F. Stank	oury, Alla	ın Whital	ker and S	Stephen	J, Hall, '	'Principle	es of Fer	mentatio	n Techn	ology", T	Γhird	
	editio	n,Butterv	worth-He	inemanr	n Publish	ers, 201	7.							
3	Arindam Kuila and Vinay Sharma, "Principles and Applications of Fermentation Technology", Wiley Publications,													
	2019													
4	Modi, H.A., "Fermentation Technology", Vol-2, Pointer Publishers, 2015													
	РО	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	1													
CO1	3	3	3	2	3	3	2	2	3	2	3	3	3	3
CO2	2	3	2	2	3	3	3		2	3	3	3	3	3
CO3	2	3	2	3	3	3	3	2		2	3	3	3	3
CO4	2	2 3 1 3 3 3 2 2 2 3 3 3												
CO5	3	3	3	3	2	2	2		2	2	3	3	3	3

	K	.S.Rangasar	ny College o	f Technology	/ – Autonom	ous R 2018					
				Cancer Biote							
			B. Tecl	h. Biotechnol	logy						
Semester		Hours / Wee	k	Total Hrs	Credit	Ma	aximum Marl	KS			
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total			
VI	3	0	0	45	3	50	50	100			
Objective(s)	 To impart knowledge on fundamentals of cancer biology. To determine the root causes and identifications of various cancer. To understand various molecular tools for diagnosis and treatment of cancer. To evaluate the origin and metastatic colonization and angiogenesis of cancer. To describe the various diagnostic and treatment procedure for the cancer disease. At the end of the course, the students will be able to										
Course Outcomes	At the end CO1: Desc CO2: Inter CO3: Expli CO4: Expli color	d of the course oribe the cance pret the mechain the import ore the clinica nization	se, the stude er, modulatio anism of che ance of DNA Il significance		ole to and importar sical agents of cross link rep nd heterogen	nce of diets in causing carcin air and activa eity of metast	cancer nogenesis tion of kinase atic	s.			

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

FUNDAMENTALS OF CANCER BIOLOGY

Introduction to human cancers, Regulation of cell cycle- check points, mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes - P53, Rb, BRCA1 and BRCA1; Oncogenes/proto oncogene, modulation of cell cycle in cancer, different forms of cancers, diet and cancer. [9]

CARCINOGENESIS

Theory of carcinogenesis, Chemical carcinogenesis, metabolism of carcinogenesis, principles of physical carcinogenesis, Ultraviolet radiation, x-ray radiation-mechanisms of radiation carcinogenesis.

[9]

MOLECULAR CELL BIOLOGY OF CANCER

Tumor genetics: - DNA Damage and repair: damage during replication and crosslink repair, Signal targets and cancer, activation of kinases; Oncogenes, identification of oncogenes, retroviruses and oncogenes, detection of oncogenes. Molecular Mechanisms of Apoptosis, Cell Proliferation, Growth factors related to transformation, Telomerases

CANCER METASTASIS

Clinical significances of invasion, heterogeneity of metastatic phenotype, metastatic cascade, Metastatic colonization, Angiogenesis, basement membrane disruption, three step theory of invasion, proteinases and tumour cell invasion.

[9]

NEW MOLECULES FOR CANCER THERAPY (CANCER SCREENING, DIAGNOSIS AND THERAPY)

Advances in cancer detection - Biochemical assays, tumor markers, molecular tools for early diagnosis of cancer, Different forms of therapy- chemotherapy, radiation therapy, Use of signal targets towards therapy of cancer; Modern Therapy - Gene therapy, Drug therapy, Immunotherapy, Nano therapy.

Total Hours: 45 hours

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

Text	book(s):												
1	Robin	Hesketh	. Introdu	ction to	Cancer I	Biology C	Cambridg	ge, Unive	ersity Pre	ss 2013	ī			
2	Kewal	K. Jain,	"Applica	tions of	Biotechn	ology in	Oncolog	y", Sprin	ger, Nev	v York. 2	013.			
Refe	rence(s):													
1	Tannock I. and Hill. R.P. The basic science of oncology, 3rd ed. McGraw-Hill, 1998													
2	Stella	Pelenga	ris and N	Michael I	Khan. Th	e Molec	ular Biol	ogy of Ca	ancer, 2r	nd editio	ո. Wiley	–Blackw	ell, 2013	3
3	Stella Pelengaris and Michael Khan. The Molecular Biology of Cancer, 2nd edition. Wiley –Blackwell, 2013 Francesco Pezzella, MahvashTavassoli, and David Kerr, Oxford Textbook of Cancer Biology, Oxford University Press, 2019													
4	David J. Kerr, Francesco Pezzella, Mahvash Tavassoli, David Kerr, "Cancer Biology" Oxford University Press, 2019													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1		3	3	3	2			1				3	3	3
CO 2		3	3	3	2			1				2	3	3
CO 3	3 2 3 3 2 3 3													
CO 4	3 2 3 3													
CO 5		3	2	3	3						2	3	3	3

K.S.Rangasamy College of Technology – Autonomous R 2018 50 BT E22 Clinical Immunology											
		50 BT E22	Clinical Imm	unology							
		B.Tec	h. Biotechnol	ogy							
I	Hours / Week	(Total Hrs	Credit	Ma	aximum Marl	ks				
L	Т	Р		С	CA	ES	Total				
3	0	0	45	3	50	50	100				
To provi	ide a compreh	ensive und	erstanding of te	chniques inv	olved in clinic	al immunolog	y				
To provi	ide in depth kı	nowledge in	cellular and m	olecular mec	nanisms of im	mune regulat	ion.				
Objective(s • To learn the immunological aspects of autoimmunity, stem cell and gene therapy.											
To impart comprehensive knowledge on screening and laboratory testing's											
To acquire knowledge on immune mediated pathophysiological conditions.											
At the end	of the course	, the stude	nts will be abl	e to							
CO1: Analys	se the techniq	ues used fo	r diagnosis of i	mmunologica	l aspects of						
disea	ses.										
CO2: Valida	ite the tools a	nd techniqu	es involved in i	mmune regu	lation of vario	us					
diseases											
CO3: Outline the laboratory testing for transplantation and prevention of reject during transplantation											
CO4: Explore the outcomes of solid organ transplantations and prevention of allograft rejection											
CO5: Interp	ret the immun	ological asp	ects of organ s	specific disea	ses.						
	L 3 To provi To provi To learn To impa To acqu At the end CO1: Analys diseas CO2: Valida diseas CO3: Outlin CO4: Exploi	Hours / Week L T 3 0 To provide a compreh To provide in depth ki To learn the immunole To impart comprehen To acquire knowledge At the end of the course CO1: Analyse the techniq diseases. CO2: Validate the tools a diseases CO3: Outline the laborato CO4: Explore the outcom	B.Tec Hours / Week L T P 3 0 0 To provide a comprehensive under To provide in depth knowledge in To learn the immunological aspect To impart comprehensive knowled To acquire knowledge on immune At the end of the course, the stude CO1: Analyse the techniques used for diseases. CO2: Validate the tools and technique diseases CO3: Outline the laboratory testing for CO4: Explore the outcomes of solid of	B.Tech. Biotechnology Hours / Week Total Hrs L T P 3 0 0 45 To provide a comprehensive understanding of tee To provide in depth knowledge in cellular and meeting of the	B.Tech. Biotechnology Hours / Week Total Hrs C 3 0 0 45 3 To provide a comprehensive understanding of techniques inv To provide in depth knowledge in cellular and molecular med To learn the immunological aspects of autoimmunity, stem ce To impart comprehensive knowledge on screening and labora To acquire knowledge on immune mediated pathophysiologic At the end of the course, the students will be able to CO1: Analyse the techniques used for diagnosis of immunological diseases. CO2: Validate the tools and techniques involved in immune regulatiseases CO3: Outline the laboratory testing for transplantation and prevention code.	B.Tech. Biotechnology Hours / Week Total Hrs Credit Ma L T P C CA 3 0 0 45 3 50 • To provide a comprehensive understanding of techniques involved in clinic. • To provide in depth knowledge in cellular and molecular mechanisms of im • To learn the immunological aspects of autoimmunity, stem cell and gene th • To impart comprehensive knowledge on screening and laboratory testing's • To acquire knowledge on immune mediated pathophysiological conditions. At the end of the course, the students will be able to CO1: Analyse the techniques used for diagnosis of immunological aspects of diseases. CO2: Validate the tools and techniques involved in immune regulation of various diseases CO3: Outline the laboratory testing for transplantation and prevention of reject of the course	B.Tech. Biotechnology Hours / Week Total Hrs C CA ES 3 0 0 45 3 50 50 To provide a comprehensive understanding of techniques involved in clinical immunolog To provide in depth knowledge in cellular and molecular mechanisms of immune regulat To learn the immunological aspects of autoimmunity, stem cell and gene therapy. To impart comprehensive knowledge on screening and laboratory testing's To acquire knowledge on immune mediated pathophysiological conditions. At the end of the course, the students will be able to CO1: Analyse the techniques used for diagnosis of immunological aspects of diseases. CO2: Validate the tools and techniques involved in immune regulation of various diseases CO3: Outline the laboratory testing for transplantation and prevention of reject during transp CO4: Explore the outcomes of solid organ transplantations and prevention of allograft reject				

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023 **Note:** The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

IMMUNOLOGICAL TECHNIQUES

Introduction to clinical immunology, measurement of immunoglobulins- Radio immuno assay, ELISA, immunoblots. Complement assay, lymphocytic assay- Fluorescein-Activated Cell Sorter, Lymphocyte Proliferation assays, DNA Technology assays-PCR assays, major histocompatibility (MHC) assays, Microarray assays.

IMMUNE REGULATION

Immunosuppressionimmunosuppressive drugs. **Antibodies** and other immunosuppressive methods. Immunopotentiation, Cytokine therapy, Adoptive immunotherapy -cytokine immunomodulation, cellular vaccines and modulations- Dendritic Cell Vaccines. [9]

AUTOIMMUNITY

Autoimmunity versus autoimmune disease, T-cell versus B-cell-mediated autoimmune disease, Mechanisms of autoimmune tissue injury and examples- Type IIA Autoimmune reaction, Treatment of autoimmune disease- Anti T lymphocyte therapy, Anti B Lymphocyte therapy, Intravenous immunoglobulins, Autologous Hematopoietic Stem Cell Transplantation (HSCT), Future aspects- Gene therapy and stem cell therapy

IMMUNOLOGICAL ASPECTS OF TRANSPLANTATION

Laboratory testing for compatibility- HLA Typing, ABO Blood typing, Screening for performed antibodies-Cross matching, Types of solid organ allograft rejection- Hyper acute rejection, acute rejection and chronic rejection, Prevention of solid organ allograft rejection, solid organ transplantation outcomes.

IMMUNOLOGICAL ASPECTS OF DISEASES

Skin diseases- Alopecia areata, Antibody-induced bullous skin lesions -Pemphigus Vulgaris , cardiac diseases-

Rheu	matic fo	ver Ch	andas d	<u> </u>	immune	mediate	ad disea	ses of (GL tract	Glut	en-Sens	itive Ent T	eronath otal Hou	<u>/ Liver</u> irs = 45
Text	book(s)	:												
1	John B	. Zabrisk	kie, "Ess	ential cli	nical imn	nunology	y", 2 nd E	d., Cam	bridge U	Iniversity	Press, 2	2009.		
2	Vladim	ir V. Klin	nov, "Fro	m Basic	to Clinic	al Immu	nology",	Springe	r Interna	tional Pu	blishing	2019.		
Refe	rence(s)	:												
1		•	itchman ınia, US <i>l</i>	•	nd Pobei	r, J. S. "(Cellular a	and Mole	ecular Im	ımunolog	yy", 4th E	d., W. B	. Saund	ers
2	Roitt, I.	., Brosto	ff, J. and	l David, I	M. "Immւ	unology"	, 6th Ed.	, Mosby	publishe	ers Ltd., l	New Yor	k, USA,	2001.	
3	Tizard,	R.I. "Im	munolog	y", 4 th E	Ed., Saur	nders co	llege pul	blishing,	Chenna	i Micropr	int Pvt. l	₋td., Che	nnai, 20	04.
4	Mark P	eakman	, Diego \	Vergani,	"Basic a	nd Clinic	cal Immu	ınology",	Elsevie	r Science	e, 2009			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO 1		3		3	3						2	3	2	3
CO 2		3		3	3						2	3	2	3
CO 3		3		3	3						2	3	2	3
CO 4		3		3	3						2	3	3	3
CO		3		3	3						2	3	3	3

	K	.S.Rangasar	ny College o	f Technology	/ – Autonomo	ous R 2018							
			50 BT E23- \$	Stem Cell Ted	chnology								
			B. Tech	n. Biotechnol	logy								
Semester	Н	lours / Week		Total Hrs	Credit	Ma	aximum Mark	S					
Semester	L	Т	Р	TOTAL HIS	С	CA	ES	Total					
VI	3	0	0	45	3	50	50	100					
	 To familiarize the basic knowledge on embryology and developmental biology. To learn the different developmental phases of stem cells and establishment of stem cell banks. 												
	To learn the different developmental phases of stem cells and establishment of stem cell banks.												
Objective(s)	 To develop the skills in the area of stem cell research and its applications. To widen the knowledge about the isolation. 												
	 To develop the skills in the area of stem cell research and its applications. To widen the knowledge about the isolation. To develop the culturing procedure and applications of stem cells to treat diseases. 												
	 To widen the knowledge about the isolation. To develop the culturing procedure and applications of stem cells to treat diseases. 												
	 To develop the culturing procedure and applications of stem cells to treat diseases. At the end of the course, the students will be able to 												
	At the end of the course, the students will be able to CO1: Highlight the origin, types, sources, characterization and applications of stemcells.												
	CO2: Explain	the sources,	properties and	d challenges i	n establishing	g the human e	embryonic ster	n cell					
Course	banks.												
Outcome	CO3: Interpre			cells, prepara	tion of comple	ete neuro culti	ure and						
S		olabeling prod											
	CO4: Identify		n cell based (gene therapy	and genetical	ly engineered	stem cells in						
	animal o												
	CO5: Demons Transpla		tem cells in c	ellular assay,	drug discove	ry and haema	atopoletic stem	n cell					

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

INTRODUCTION TO STEM CELLS

Introduction to stem cells, embryogenesis, differentiation and types of stem cells, origin and characterization of human stem cells and its applications-plasticity of human somatic stem cells-sources of stem cells: cord blood and bone marrow-scientific and technical obstacles of novel human stem cell based therapy-stem cell marker. [9]

HUMAN EMBRYONIC STEM CELL

Sources for human embryonic stem cells (hESC)-growing of hESC in laboratory-animal stem cells-current advantages and limitations of hESC and human somatic cells-properties of embryonic stem cells-developments regarding establishment of human stem cell banks and registries-regulations in European member and Non-European countries regarding hESC research.

ISOLATION AND IDENTIFICATION OF STEM CELLS

Neural diseases-preparation of complete neuroculture, culturing and subculturing human neurospheres-differentiation of human neurospheres and neurons, astrocytes and oligodendrocytes-immuno-labelling procedure- mesenchymal stem cells-retinal stem cells-bone marrow. [9]

STEM CELL THERAPY

Novel stem cell based gene therapy, genetically engineered stem cells-stem cells and animal cloning-transgenic animals and stem cells-stem cell therapy vs cell protection-stem cell in cellular assays for screening-stem cell based drug discovery and toxicological studies-hematopoietic stem cell transplantation. [9]

APPLICATIONS OF STEM CELLS

Clinical applications of hematopoietic stem cells from cord blood, treatment of neural diseases such as Parkinson's Total Hours: 45 hours

Text book(s):

- Robert Lanza and Antony Atala "Essentials of stem cell biology" 3rd edition, Elesvier academic press, 2014.
- Jane E. Bottenstein. "Neural Stem Cells, Development and Transplantation", Springer India Pvt. Ltd.New Delhi, 2010.

Reference(s):

Gary S Stein et al., "Human stem cell Technology and Biology" a Research guide and Laboratory manualWiley-Blackwell (2011

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

Chairman - BOS

BOS - CHAIRMAN Signature

2	Thoma	s C.G. B	Bosch. "S	stem Cel	ls, from I	Hydra to	Man", S	pringer I	ndia Pvt	. Ltd., Ne	ew Delhi	, 2009.		
3		Raul Delgado-Morales, "Stem Cell Genetics for Biomedical Research: Past, Present and Future", Springer International Publishing, 2018.												
4	Aditya	Aditya Bharadwaj, "Global Perspectives on Stem Cell Technologies", Springer International Publishing, 2017.												
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2												
CO1	3 3 3 2 1 3 3 3													
CO2		3	3	3	2			2				2	3	3
CO3		3 2 3 3 2 2 3 3												
CO4	3 2 3 3 3 2 3 3 3													
CO5		3	2	3	3						2	3	3	3

K.S.Rangasamy College of Technology – Autonomous R 2018 50 BT E24 – Tissue Engineering B. Tech. Biotechnology												
B. Tech. Biotechnology Hours / Week Total Hrs Credit Maximum Marks												
Compoter		Hours / Wee	k	Total IIIa	Credit	Ma	aximum Mark	S				
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total				
VI	3	0	0	45	3	50	50	100				
	 To learn the basics of tissue structure and its organization in human and other animals. To widen the knowledge about the culturing of tissues. 											
Objective(s To develop the skills of the students in the area of tissue engineering. To import the knowledge on tissue transplantation.												
To impart the knowledge on tissue transplantation.												
To develop the skills related to molecular interactions in tissue engineering.												
	At the end of the course, the students will be able to											
	At the end of the course, the students will be able to CO1: Detail the basic concepts of tissue engineering such as its origin, triad and a cellular											
Course	pros	thesis.	-	_		_						
Outcomes		ore the conce	ot of vascular	risation and or	ganization of	cells into high	er ordered					
		onstrate the trations	ansport porp	erties and diff	usion of simp	le metabolites	through tissu	ues and its				
	CO4 :Describe the recent advancement of 3D cultures in tissue engineering and the applications of growth factors											
	CO5: High			ue engineering	g for renal fun	ction replacen	nent, bone reg	generatior				

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

INTRODUCTION TO TISSUE ENGINEERING

History and scope of tissue engineering - definition - scientific challenges, general scientific issues — tissue engineering in perspectives - origin, triad, a cellular prosthesis - stem cells: basic principles, cell culture techniques in tissue engineering.

[0]

STRUCTURE AND ORGANIZATION OF TISSUES

Vascularisation of *in vitro* and *in vivo* - organization of cells into higher ordered structures - EMT and MET transformation-composition and delivery of ECM - receptors for extracellular matrix molecules. [9]

TRANSPORT PROPERTIES OF TISSUES

Mass transfer in tissue, diffusion of simple metabolites, diffusion and reaction of proteins-carrier protein and channel-molecular and cell transport through tissues, cell-cell interaction and cell-matrix interaction — transport limits in 3D culture.

GENERAL ASPECTS OF CELLS IN CULTURE

Cell migration and control of cell migration - differential cell adhesion and tissue organization - growth factor delivery in tissue engineering - scaffolds and tissue engineering — synthesis, properties and fabrication - transplantation immunology - applications of growth factors: VEGF/angiogenesis.

APPLICATION OF TISSUE ENGINEERING

Liver organization and development, designing of bioreactors for liver tissue engineering, hepatic liver support system - tissue engineering approach to renal function replacement - bone regeneration by mesenchymal stem cells - skin tissue engineering and its replacement. [9]

Total Hours = 45

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

Text	book(s)	:												
1	Samue	el E., Lyn	ch L.L. a	and Be R	oberts J	. Geng, '	'Tissue I	Engineer	ing", Wil	ey Black	well, Si	ngapore,	, 2010.	
2	Ravi Bi	irla, "Intro	oduction	to Tissu	e Engine	eering: A	pplicatio	n and Cl	hallenge	s", Wiley	& Sons	, New Je	ersey, 20	14.
Refer	rence(s)	ence(s):												
1	Clemens A. van Blitterswijk and Jan de Boer, "Tissue Engineering" 2 nd Edition, Academic Press, UK, 2014													
2	Lanza L. and Langer P., "Principle and Applications of Tissue Engineering", Wiley Black well, Singapore, 2010.													
3	MasoudMozafari, FarshiSefat and Anthony Atala, "Hand book of Tissue Engineering scaffolds: Volume Two", Woodhead Publishing series in Biomaterials, Cambridge, US, 2019													
4		Lijie Grace Zhang, John P Fisher, Kam Leong, "3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine", Elsevier Science, 2015.												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3	2	2		2		2		3	3	3
CO2	3	3	3	3	2		2	2	3		3	2	3	3
CO3	3	3	2	3	3	2		2		3	2	2	3	3
CO4	3	3 2 3 3 2 3 2 3 3 3 3												
CO5	3	3	2	3	3		2		3	3	2	3	3	3

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 BT E25 - Biomedical Instrumentation												
		50	BT E25 - I	Biomedical Ins	trumentatio	n							
			B. T	ech. Biotechno	ology								
Semester	H	ours / Week		Total Hrs	Credit	ı	Maximum Mar	ks					
Semester	L	Т	Р	_ Iotaiiis	С	CA	ES	Total					
VI	3	0	0	45	3	50	50	100					
Objective(s)	 To learn about the instrumental analysis of human physiology and anatomy. To familiarize about the various electrical and non-electrical measurements aids To identify the applications of chemicals in the synthesis of implant materials. To understand the concepts of imaging in diagnosis and monitoring effectiveness of the treatments. To acquire knowledge on the existing life assisting and robotic devices. At the end of the course, the students will be able to												
Course Outcomes	CO 1. Reprodu charact CO 2. Quantify physiolo CO 3. Report t physiolo CO 4. Categor	teristics the electrical ogical signals a he role of non ogy	parameters nd transducture electrical p	and biomecha measurement	nical rhythm on the correlation surement in e	to the instrur	ments and the						

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

BASIC ELECTRO-PHYSIOLOGY AND BIOMECHANICS OF HUMAN SYSTEM

Electrical Potentials in the human body and the origin of Bio-mechanics. Neuromuscular system: neurons, synapses and muscles, electrical properties of nerves and muscles. Basic components of a biomedical system- Cardiovascular systems-Respiratory systems -Kidney and blood flow - Biomechanics of bone - Biomechanics of soft tissues - Basic mechanics of spinal column and limbs.

ELECTRICAL PARAMETER MEASUREMENTS

Bio-potential electrodes, biological amplifiers, ECG, EEG, EMG, ERG, lead systems and recording methods, typical waveforms and signal characteristics. Physiological signals and transducers - Transducers - selection criteria — Piezo electric, ultrasonictransducers - Temperature measurements - Fibre optic temperature sensors. [9]

NON-ELECTRICAL PARAMETER MEASUREMENTS

Measurement of blood pressure; Cardiac output, Heart rate and Heart sound. Pulmonary function measurement: spirometer, PhotoPlethysmography and Body Plethysmography — Blood Gas analysers: pH of blood: measurement of blood pCO2, pO2, finger-tip oxymeter - ESR, GSR measurements. [9]

BIOMATERIALS

Definition and classification of bio-materials, wound healing process, body response to implants, blood compatibility. Implant materials: Metallic implant materials. Polymeric implant materials: Polymerization, polyamides, Acrylic polymers, rubbers. Bio polymers: Collagen and Elastin. Medical Textiles: Silica, Chitosan, PLA composites, Sutures and wound dressings.[9]

DIAGNOSTIC IMAGING AND THERAPEUTIC DEVICES

lonizing radiation, Diagnostic x-ray equipment, use of Radio Isotope in diagnosis, medical image modalities: MRI, PET, SPECT and CT. Endoscopy: bronchoscope, gastro scope, colonoscope — Ultrasonography —Thermography — Different types of biotelemetry systems and patient monitoring system. Therapeutic Devices: Pacemakers, Defibrillators, Ventilators, Diathermy — Dialysers and Lithotripsy. Nano robots: surgery — 3D surgical techniques and orthopedic prostheses fixation.[9]

Total Hours= 45

Text book(s):

- 1 Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2014.
- 2 Anandanatarajan, R., "Biomedical Instrumentation and Measurements", PHI Learning, New Delhi, 2011.

Reference(s):

- Webster, J. G. Biomedical instrumentation. in Handbook of Research on Biomedical Engineering Education and Advanced
 - Bioengineering Learning: Interdisciplinary Concepts, 2012.
- 2 Cromwell, L., Weibell, F. J., Pfeiffer, E. A. &Usselman, L. B. Biomedical instrumentation and measurements. Biomed InstrumMeas, 1973.
- Marcus, R. T. Colorometry. Measurement, Instrumentation, and Sensors Handbook: Electromagnetic, Optical, Radiation,
 - Chemical, and Biomedical Measurement, 2014.
- 4 John G. Webster, John William Clark. "Medical Instrumentation: Application and Design", Wiley Publishers, 2010

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1					3						3	2	2	3
CO2	3	3	3	3	3						3	3	3	3
CO3	3	3	3	3	2						2	3	3	2
CO4	3	3	2	3	2						3	3	3	3
CO5	3	3	2								2	2	3	3

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023 Chairman - BOS

BOS - CHAIRMAN Signature

K.S.Rangasamy College of Technology – Autonomous R 2018

50 BT E31- Bioresource Technology

B. Tech. Biotechnology				
	B.	Tech	Riotec	hnology

					97			
Semester		Hours / Wee	k	Total Hrs	Credit	М	aximum Marks	8
Semester	L	Т	Р	Totaliis	С	CA	ES	Total
VI	3	0	0	45	3	50	50	100
	T	. (1 (. 1			I to see a see a see	1. 16	I. I	

- To make the students to understand about the bio resource and its sustainable utilization.
- To familiarize the bioenergy production methods though cost effective methods.
- **Objective(s)** To understand the role of microorganisms in bioenergy production
 - To equip the students to use the resource wisely through advanced technologies.
 - To facilitate the students to adopt the sophisticated technology for bio resource management.

At the end of the course, the students will be able to

CO1: Explore the different types of bioresources and the roles of bioprospecting, ecotourism and biodiversity policies.

- CO2: Design a bioreactor for efficient bio-energy production and scaling-up procedures.
- CO3: Analyze the cell growth and the kinetics of product formation and enzymatic conversions.
- CO4: Interpret and analyse the optimization yield, recycle and minimize the waste generation.
- CO5: Elucidate the concepts of activated sludge, digestion, biodegradation and bio filtration.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topicbased on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

INTRODUCTION TO BIORESOURCES

Bioresources and its types – availability of different organic wastes – characteristics of solid and liquid wastes – consumptive use: logging, fishing, quarrying and Non-consumptive use: bioprospecting, ecotourism, research – biodiversity policies: importance of natural resources economic development policies, environmental and natural resources policies. [9]

BIOENERGY

Course

Outcomes

Different bioenergy generation processes: biomethanation, biohydrogen, bioethanol, biodiesel – bioreactor design for bio-energy – comparative analysis on different bioenergy generation processes – scaling up problems – economic analysis of the process.

MICROBIAL RESOURCES

Cell growth and product formation kinetics, enzymatic conversion and treatment of cellulose and lignocelluloses – algal cultivation and harvesting for Microbial Fuel Cells – biocatalysis – biopolymers – biosurfactants. [9]

NATURAL RESOURCE MANAGEMENT AND CONSERVATION

Sustainable yield management – reduction and minimization of waste – recycling of solid, liquid and gaseous wastes – integrated development planning and integrated coastal zone management – environmental impact assessments – protected area systems – community based natural resource – Remote sensing and GIS. [9]

BIORESOURCE UTILISATION

Activated sludge – aerobic and anaerobic digestion – biodegradation of toxic compounds – biofiltration – biological nutrients removal – bioremediation – biosorption and bioleaching of heavy metals – constructed wetlands for industrial effluents – membrane technology. [9]

Total Hours = 45

Text book(s):

- 1 Ashok Pandey, "Concise Encyclopedia of Bioresource Technology", CRC Press, 2009.
- Goodbody, I. and Thomas-Hope, E. "Natural Resource Management for Sustainable Development of the Caribbean", Canoe Press, University of the West Indies, Mona, 2002.

Reference(s):

1 Cunningham W. and Saigo B., "Environmental Science, A Global Concern", McGraw Hill, New York, 2001.

2		Sangeetha, Jeyabalan, Thangadurai, D, "Industrial biotechnology: sustainable production and bioresourceutilization", Apple Academic Press, 2016.												
	biore	esource	utilization	ı", Apple	Acaden	nic Press	, 2016.							
3	Yora	am Kroz	er, Micha	ael Naro	doslaws	ky "Ecor	nomics o	f Biores	ources:	Concepts	s, Tools,	, Experie	ences" S	pringer
3	Inter	national	Publish	ing, 2019	9									
4	Ash	Ashok Pandey, Christian Larroche, Ram Sarup Singh, Reeta Rani Singhania, "Biomass, Biofuels, Biochemicals:												
4	Adv	dvances in Enzyme Technology", Elsevier Science Publishing, 2019.												
	Р													
	0										1			
	1										•			
CO1	3	3	3	2	2	2	2	1	1	2			3	3
CO2	3	3	3	2	2	3	2	2	2	3			3	2
CO3	3	3	3	2	2	2	1	2	1	1	2	2	2	1
CO4	3	2	2	2	2	-	-	1	1	1			1	
CO5	3	3	3	3	3	2	2	2	2	3			3	1
	1				l	l	l					L	L	L

	K.S.Rangasamy College of Technology – Autonomous R 2018													
	50 BT E32- Biophysics B. Tech. Biotechnology													
	B. Tech. Biotechnology													
Compoter		Hours / Wee	k	Total Hrs	Credit	M	aximum Mark	(S						
Semester VI Objective(s) Course Outcomes	L	T	Р	1 otal Hrs	С	CA	ES	Total						
VI	3	0	0	45	3	50	50	100						
	To impart fundamental knowledge about biomaterials and advanced materials.													
	To learn bioinstrumentation of ultrasound scan and radio isotope measuring instruments.													
Objective(s	Objective(s • To know the instrumentation of spectroscopic methods like UV-VIS, RAMAN, NMR, ESR and FTIR.													
)	 To know the institution of spectroscopic methods like 67-713, RAMAN, NMR, ESR and FTR. To correlate the theoretical principles with application oriented studies. To acquire knowledge on medical bioinstruments 													
		•												
	At the end	of the cours	e, the stude	ents will be ab	ole to									
	CO1: Reco	gnize the pro	perties of na	tural and synth	netic biomate	rials to fabrica	ate medical							
	devic	es/implants												
Course	CO2: apply	the propertie	s of metallic	glasses, Shap	e Memory Al	loys(SMA) ar	nd Microelectro	o						
Outcomes	Mech	anical Syster	ns(MEMS)											
	CO3: Unde	erstand the pr	inciples and	properties of u	Iltrasound in s	scanning and	outline							
	Phor	o Cardio Gra	m(PCG)to m	onitor human	body function	ns		ļ						
	CO4: Desc	ribe and appl	y the principl	les of UV- VIS les of RAMAN	IBLE spectros	scopy		ļ						
	LCO5: Desc	ribe and appl	y tne principi	ies of Kaivian	-inivik spectro	oscopy	Total	Hours = 45						
							i Otai	110ul 5 = 45						

Text book(s):

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic

based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on thenumbers hours indicated.

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

BIOMATERIALS

Introduction-Biocompatibility –Biofunctionality-Metals and Alloys in biomaterials- Ceramic biomaterials- Composite biomaterials- polymer biomaterials-biopolymers-tissue grafts-soft tissue applications-biomaterials in ophthalmology-Dental materials.

ADVANCED MATERIALS

Metallic glasses: preparation, properties and applications – Shape memory alloys (SMA):Characteristics, properties of NiTi alloy, application- MEMS – Nanomaterials: Properties- Top-down process: Ball Milling method – Bottom-up process: Vapour Phase Deposition method- Carbon Nano Tube(CNT): Properties, preparation by Electric arc method-Applications. [9]

BIO-INSTRUMENTATION

Ultrasound picture of human body-Block diagram of basic pulse echo system — A Scan, B Scan and M Scan-Psychological effect of ultrasound therapy-Phonocardiograph(PCG)-Source of radioactivity for nuclear medicine-Statistical aspects - Basic instrumentation (Geiger-Muller counter) - Photomultiplier tube and scintillation detector (Renogram) and its clinical applications (Thyroid and kidney function)-Nuclear medicine imaging devices-Gammacamera-Positron camera.

UV AND IR SPECTROSCOPY

Introduction-Electromagnetic radiation-UV-Visible Spectroscopy-Single beam spectrophotometer-Double beam spectrophotometer-Radiation sources-Detectors-Beer Lambert's law-Applications of UV spectroscopy-IR spectroscopy - IR spectroscopy. [9]

RAMAN, NMR, ESR AND FTIR SPECTROSCOPY

Raman Effect –Experimental study of Raman Effect-quantum theory of Raman effect-Applications-NMR spectrometer-Applications of NMR-ESR spectrometer-Applications-FTIR spectroscopy-Applications.

[9]

- 1 Palanisamy P.K., "Physics of Materials", Scitech Publications, Chennai-2012
- 2 Murugesan, R., "Modern Physics" S. Chand Publications, New Delhi, 2010.

Reference(s):

- Willard, B. and Merit, "Instrumental methods of Analysis", CBS Publishers and Distributors Pvt.Ltd., New Delhi, 1986.
 - 2 Sharma, B.K., "Spectroscopy", Goel Publishing House, Meerut, UP-2001
 - Jay L. Nadeau "Introduction to Experimental Biophysics, Second Edition: Biological Methods for Physical Scientists" CRC Press, 2018
 - Andrey B. Rubin "Fundamentals of Biophysics" Wiley-Scrivener, 2014

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	3	3						2	3	2	3
CO2	3	3	2	3	3						2	3	2	3
CO3	2		2	2	3						2	3	2	3
CO4	2		2	2	2						2	3	2	3
CO5	3		3					1				3	2	3

K.S.Rangasamy College of Technology – Autonomous R 2018													
	50 BT E33-Metabolic Engineering												
			B. Tec	h. Biotechno	logy								
Compoter		Hours / Wee	k	Total Hrs	Credit	Ma	aximum Marl	ks					
Semester	L	Т	Р	Total nrs	С	CA	ES	Total					
VI	3	0	0	45	3	50	50	100					
Objective(s)	 To learn basics about the metabolism and feedback regulation To make the student to understand synthesis of metabolites To explore the bioconversion reactions and their applications To impart the role of enzymes in metabolic pathway To apply the knowledge of bioinformatics in metabolic engineering At the end of the course, the students will be able to 												
Course Outcomes	CO1: Explain engir CO2: Ident regul CO3: Explain CO4: Eluci CO5: Crea	ain the conce neering. tify and valida llation. ore mixed or s idate the ferm	ots of feedba te the regula sequential bio entation and	ents will be all ck regulation, tion of second oconversions a modify metable pathway syn	importance, stary metabolit and application of pathways	e pathways a ons of bioconv ons for improved	nd catabolite versions. I yield.	ilic					

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

COMPONENTS OF METABOLIC ENGINEERING

Basic concepts of metabolic engineering - overview of cellular metabolism - different models for cellular reactions - Jacob Monod model - catabolite, camp deficiency - feedback regulation - regulation in branched pathways, concerted and cumulative feedback regulation — scope and future of metabolic engineering. [9]

SYNTHESIS OF PRIMARY METABOLITES AND SECONDARY METABOLITES

Alteration of feedback regulation - limiting accumulation of end products - resistant mutants - alteration of permeability - amino acid synthesis pathways and its regulation at enzyme and whole cell level - regulation of secondary metabolite pathways - precursor effects - prophophase, idiophase relationships, catabolite regulation by passing control of secondary metabolism.

BIOCONVERSIONS

2

CO4

CO₅

Advantages of bioconversions - specificity - yields - factors important to bioconversions - regulation of enzyme synthesis - mutation - permeability - co-metabolism - avoidance of product inhibition - mixed or sequential bioconversions - conversion of insoluble substances - applications of bioconversions.

REGULATION OF ENZYME PRODUCTION

Strain selection and its genetic improvement - gene dosage - metabolic pathway manipulations to improve the fermentation - optimization and control of the metabolic activities - improving fermentation - modification of the existing or the introduction of entirely new metabolic pathways.

ROLE OF COMPUTER MODELING IN METABOLIC ENGINEERING

Experimental determination method of flux distribution - metabolic flux analysis and its applications — metabolic engineering with bioinformatics - metabolic pathway modeling - analysis of metabolic control and the structure metabolic networks - metabolic pathway synthesis algorithms - modeling of individual metabolic pathway with computer network.[9]

Total Hours = 45

												10	otai Hou	rs = 45
Text	book(s):													
1			on M.A., l orld Scie			J.C. and	d Lloyd [)., "An in	troductio	on to met	abolic a	nd cellul	ar engine	ering",
2	George Stephanopoulos, Aristos A. Aristidou and Jens Nielsen, "Metabolic Engineering: Principles and Methodologies", Academic Press, 1998.													
Refer	ence(s)	:												
1		illadsen, ork, 201		elsen an	d Gunna	ır Lidenn	(Eds), "	Bioreact	ion Engi	neering I	Principle	s", 3rd e	dition, S	pringer
2	Christin	na Smoll	ке, "The	Metabol	ic Pathw	ay Engir	neering F	landboo	k: Funda	amentals	", CRC I	Press, 20	009	
3			n, Santos iomics ai							nts in Bio	technolo	ogy and	Bioengir	eering.
4			Vinay S Biomass				etabolic I	Engineeı	ring for I	mproved	d Biofuel	Produc	tion fron	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	3	3						2	3	2	3
CO2	3	3	2	3	3						2	3	2	3
CO3	2		2	2	3						2	3	2	3

	K	.S.Rangasaı	my College o	f Technology	– Autonom	ous R 2018							
			50 BT E34	- Bioreactor	Design								
			B. Tec	h. Biotechnol	ogy								
Semester Hours / Week Total Hrs Credit Maximum Marks													
	L	T	Р	lotal Hrs	С	CA	ES	Total					
VI	3	0	0	45	3	50	50	100					
Objective(s)	To desiTo ider	ign and analy ntify various k	se the bioche inetic models	s of bioreactor emical reactors and the mech	s and their pr nanical aspec	ocess stability ts of reactor o	/.						

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

2

Chairman - BOS

2

3

3

2

3

	 To make the students to undertake research / project work in designing of novel bioreactor for commercial aspects.
	At the end of the course, the students will be able to
	CO1: Elaborate the types of bioreactors such as aerobic, anaerobic, stirred tank and bubble column reactors.
Course Outcomes	CO2: Design and analytic dynamics of biochemical reactors ,membrane and hollow fiber reactors
	CO3: Develop bioreactor geometry, calculation and measurement of mass transfer coefficient.
	CO4: Demonstrate the importance of hydrodynamic regime ,mixing power dissipation and gas holdupin bioreactors.
	CO5: Intrepret and analyse the design consideration and process strategies for plant and animal bioreactors.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topicbased on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

TYPES OF BIOREACTORS

General types of bioreactors: aerobic and anaerobic - conventional stirred tank and bubble columns - airlift loop, fixed bed, fluidized bed, immobilized whole cell and immobilized enzyme bioreactors. [9]

BIOREACTOR ANALYSIS AND DESIGN

Analysis of bioreactor dynamics - design solutions of biochemical reactors: airlift and rotary bioreactors - membrane reactors for enzymatic processes - hollow-fiber bioreactors - process stability of microbial reactors - analysis of mixed microbial population - microbial reactors with and without cell recycle. [9]

DESIGN OF BIOREACTORS

Bioreactor geometry, constants and variables, dependence of parameters - process calculations, overall mass transfer coefficient, power per volume concept, kinetic models and their effects in correlation development - mechanical aspects of reactor design. [9]

HYDRODYNAMICS AND MASS TRANSFER IN BIOREACTORS

Hydrodynamic regime, mixing and back mixing, transitional zones - power dissipation and gas holdup in bioreactors mass transfer coefficient - significance and determination - isometric turbulence model in bioreactors - rheology of culture broths, modes and models for bioreactor operation.

CO3

CO4

CO5

3

3

3

2

NOVE	OVEL BIOREACTORS													
												Total H	ours = 4	5 hours
Text	book(s)	:												
1	Stanbu Delhi, 2		Whitake	r A and	Hall S G	6, "Princi	ples of I	-ermenta	ation Te	chnology	r", Aditya	a Books,	Pvt, Ltc	I., New
2	Bailey	J.A and	Ollis D.F	., "Funda	amentals	s of Bioc	hemical	Enginee	ring", Mo	Graw Hi	II - New	York, 19	86.	
Refer	ence(s)													
1	Karl Schrrugal, "Bioreaction Engineering", John Wiley, UK, 1983.													
2	Atkinson B and Mavitona F., "Biochemical Engineering - An Biotechnology Handbook, McGraw Hill, UK, 1991.													
3	Carl-Fr 2016	redrik Ma	andenius	s, "Biorea	actors : c	design, o	peration	and nov	el applio	cations",	Wiley-V	CH Verla	ag Gmbl	1 & Co,
4	Qin Ye, Jie Bao, Jian-Jiang Zhong (eds.) "Bioreactor Engineering Research and Industrial Applications I: Cell Factories", Springer-Verlag Berlin Heidelberg, 2017													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3	3	3	3	2		3	3	2	3	3
CO2	3	2	3	2	3	2	3	2		3	2	3	3	3

2

3

2

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

3

2

3

3

3

3

3

2

3

3

3

3

2

3

3

3

3

3

3

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 BT E35- Bioprocess Modelling and Simulation											
		50 BT E	•	ess Modellin h. Biotechnol	•	ation						
		Hours / Wee			Credit	M	S					
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total				
VI	3	0	0	45	3	50	50	100				
Objective(s)	To impose abidTo devTo derTo pro	To understand the basics of modeling principles for the implementation in the biochemical systems. To impart the knowledge of mathematical models and the numerical models for the modeling of abioreactor. To develop and apply the modeling approaches for the thermal death kinetics. To demonstrate and validate the aspects of modeling process and simulation of a bioreactor. To provide the better understanding about the modeling approaches and the application of MATLAB and SIMULINK.										
Course Outcomes	CO1: Revi CO2: Illus CO3: Solv CO4: Dem ster CO5: Exec	d of the cours iew energy eq trate the mode re the problem nonstrate therr illization. cute MATLAB s and batch re	uations, equi eling of the co s related to t nal death kin and SIMULII	librium states ontinuous and he numerical i etics models a	and chemical batch distillat integration. and stochastic	ion stem.	ermal ation of CSTR	in				

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topicbased on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

BASIC MODELING PRINCIPLES

Basic modeling principles - types of models - uses of mathematical modeling - classification of modeling techniques - fundamental laws - energy equations - continuity equation - equations of motion — transport equations - equations of state - equilibrium states and chemical kinetics - examples. [9]

MATHEMATICAL MODELS

Reactor modeling: batch reactor - continuous stirred tank reactors with cooling and heating jacket or coil — fed batch reactor - steam jacketed vessel - bubble column system - airlift reactor - boiling of single component liquid: open and closed vessel - continuous boiling system - batch distillation. [9]

NUMERICAL METHODS

Solution of linear algebraic equations by Gauss elimination, Gauss siedel iterative method - solution of nonalgebraic equations by Bisection method, Newton Raphson Method - Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Euler's method and RungaKutta method. [9]

MODELING APPROACHES

3

Growth kinetic models - structured and unstructured systems - compartment models - deterministic and stochastic approaches for modeling structured systems - thermal death kinetics models - stochastic model for thermal sterilization of medium. [9]

APPLICATION OF MATLAB AND SIMULINK

Basics - data analysis - curve fittings - input and output in MATLAB - application in bioprocess systems: solving problems

Total Hours = 45

Tex	kt book(s):
1	Jain, M. K., S. R. K. Iyengar, and R. K. Jain, "Numerical Methods", 6 th Edition, New Age International Publishers, New Delhi, 2012
2	Wayne Bequette, B. "Process Dynamics: Modeling, Analysis and Simulation", Prentice-Hall, 1998.
Re	ference(s):
1	Said S.E.H. Elnashaie and Parag Garhyan, "Conservation Equations and Modeling of Chemical and Biochemical Processes", Marcel Dekker, 2003.
2	Shuler, M.L. and Kargi, F., "Bioprocess Engineering - Basic concepts", 2nd Edition, Prentice Hall of India Pvt. Ltd., NewDelhi, 2005.
2	Bernhard Sonnleitner (auth.), Carl-Fredrik Mandenius, Nigel J Titchener-Hooker (eds.) "Measurement, Monitoring,

Modelling and Control of Bioprocesses" Springer-Verlag Berlin Heidelberg, 2013

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

4		Pablo A. López Pérez, Ricardo Aguilar López, Ricardo Femat "Control in Bioprocessing: Modeling, Estimation and the Use of Soft Sensors", Wiley, 2020												
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3	3	3	3	1		3	3	3	2	3
CO2	2	3	3	3	2	3	2			3	3	3	1	2
CO3	2	3	3	2	3	3	2		1		3	3	3	2
CO4	3	2	3	3		2	3			3	3	3	2	3
CO5	3	3	2	3	3	3		1	3	3	3	3	3	3

	K.S.Rangasamy College of Technology – Autonomous (R2018)												
	51 BT E41 – Nanobiotechnology												
	B.Tech. Biotechnology												
Semester	Но	urs / Wee	(Total hrs	Credit	ı	Maximum Ma	arks					
	L	Т	Р		С	CA	ES	Total					
VII	2	0	2	4 5	3	50	50	100					
Objective(s)	Todevelopthefundamentalunderstandingofbasicconceptsofnanoparticles. To learn the various methods to prepare different types of nano materials. To know the various techniques to characterize the nano materials.												
	• To widen	 To know the various techniques to characterize the nano materials. To widen the knowledge about the applications of nano particles in environment and pollution 											
	control sys		ما ماماسمهم	modical and foo	الماريمة المارية								
				medical and food tudents will be a									
				systems and syn		ferent types	of nano narti	clas					
				e preparation of									
Course				nd role of biomole			its character	ization.					
Outcomes				transducing elem			v and unders	stand the					
				ls as drug deliver			,,						
	CO5: Emplo		nology for	human health,		I remediation	, waste wate	er treatment					

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each

topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

Introduction to Nanobiotechnology and Synthesis

Introduction - types and properties of nanoparticles, Carbon nanotubes, Quantum dots, fullerenes, Nanopores, Nanoshells, Nanocomposites; synthesis of nanoscale materials - top down and bottom up approaches, physical method: ball milling - plasma arcing - laser ablation method, chemical method: sol gels — chemical vapour deposition, green synthesis of nanoparticles, nanoparticle synthesis by fungi, bacteria and actinomycetes. [9]

Nanomolecules in biosystems

Introduction-lipids as nanobricksandmortar -lipid structure-self organizing supramolecular structures, proteins-S Layer proteins, nanoscale motors - based on bacteriorhodopsin - ion channels as sensors, DNA - DNA based artificial nanostructures - DNA as nanowires - DNA as Molecular tweezers. [9]

Nano biotechnological detection systems

Types of transducing element and its applications in bio-nanotechnology — electrochemical transducer, optical transducer, nano biosensor, quantum dots, gold nanoparticels, DNA detection, small scale systems of drug delivery - Pills, stent, gels and magnets.[9]

Characterization of Nanomaterials

Types of characterization, optical probe - CLSM, SNOM, 2PFM, DLS, electron probe - SEM, TEM, HRTEM, AES, STEM, scanning probe - AFM, CFM, MFM, STM, APM, spectroscopy probe - UPS, UVVS, AAS, LSPR, ion-particle probe - XRD, EDX, NMR, thermodynamic - TGA, DSC, BET.

Synthesis, Characterization and application of nano particles

Green synthesis of nanoparticles, nanoparticle synthesis by fungi, bacteria and actinomycetes - characterization of nano

narti	cles –	- Annli	cations	of na	ano pa	ırticles.	Sof	t nano	technolo	ogy for	drug	delive	rv s	systems
[9]	CiCS	Дри	Jations	01 116	ито ра	ii tiolos.	001	t Hario	teermon	ogy ioi	arag	delive	iy c	зузістіз
												To	tal Hou	rs = 45
Text	book(s):												
1	Mick V	/ilson, K	amali Ka	annanga	ra, Geof	f Smith	and Mic	helle Sir	nmon so	ns, "Nai	notechno	logy Ba	sic scier	nce and
	emergi	ng techn	ologies",	, Overse	as Press	India P	rivate Lii	mited, N	ew Delh	i, India, 2	2005.			
2	Niemey	er C. M	l. and M	irkin C.	A., "Nan	obiotech	nology -	 Concep 	ots, appl	ications	and pers	spectives	s" Wiley	VCH
			v Delhi, I	India, 20	04.									
Refe	rence(s	s):												
1				3. Prinz a	and Lan	e R., "N	anoscale	e Techno	ology in	biologica	ıl system	s", Smit	hm CRC	Press,
		California, USA, 2005. Chad A Mirkin and Christof M. Niemeyer (Eds), "Nanobiotechnology - II more concepts and applications", Wiley												
2	Chad A	Mirkin a	and Chris	stof M. N	Niemeye	r (Eds),	"Nanobio	otechnol	ogy - II	more co	ncepts a	nd appli	cations",	Wiley
3	Arunava	Goswa	mi and S	Samrat I	Roy Cho	udhury,	"Nanobi	otechnol	ogy bas	ic and a	pplied a	spects",	Union E	Bridge
	Rooks 2		Fuente	\/_Cro	"Non	abiataak	an alamı	Inorgania	Manan	ortiolog '	Va Orga	nia Nan	nartiala	
4					zu, mar	iobioteci	inology	Inorganio	; тапор	articles	vs Orga	nic mand	oparticies	S ,
	Eisevie	r Scienc	e, 2012.	I	I	1	1	1	I	I	I		I	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
	3	3	3	3	3	2		2	3		2	3	3	3
CO2	3	2	3	3	3	2	2			2	2	3	3	3
CO3	2	2	3	3		2		2	2		3	3	3	3
CO4	3	2	2		2	2		2		2	2	2	3	3

	K.S.Rangasamy College of Technology - Autonomous											
	51 BT E42 - Bioinstrumentation											
	B.Tech. Biotechnology											
0	Ho	ours / Wee	k	Tatallan	Credit	I	Maximum Ma	arks				
Semester	L	Т	Р	Total hrs	С	CA	ES	Total				
VII	2	0	2	45	3	50	50	100				
Objective(s)	 To separa 	To know the basics of ions in buffer system and sedimentation of particles To separate the biomolecules using different techniques										
	 To partitio 			als using electropl spectroscopic te			ule separatio	n.				
	 To apply t 	he theoret	icăl knowle	edge to understan	d the practic	al's.						
	At the end	of the cou	rse, the s	tudents will be a	ble to							
	CO1: Recal	I the electr	ochemistry	and types of cer	trifugation te	echniques						
	CO2: Classi	CO2: Classify the chromatographic techniques for biomolecule separation										
Course	CO3: Interpret the electrophoretic banding pattern											
Outcomes	CO4: Recite the spectroscopic techniques in molecule separation											

2

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based

CO5: Learn the biomolecule separation techniques

on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Electrochemical and centrifugation techniques

Measurement of pH and its significance — Definition, Buffers and pH control weak acid and weak acid equilibrium. Principle, operation and Glass electrode and pH measurements; Determination of pH by using the pH meter Centrifugation- Basic principles centrifuge and its applications in biological science —Types of centrifugation - Preparative, analytical, ultra centrifuge and its application and sedimentation, coefficient.

Chromatographic techniques

Definition, principle, performance parameters, retention, resolution, types of chromatography principles and application of ff. Cym

Rev. No. 4

CO₅

2

Passed in BoS Meeting held on 12/05/2023

Approved in Academic Council Meeting held on 03/06/2023

Chairman - BOS **BOS - CHAIRMAN Signature**

3

3

Paper, Column, Affinity, Adsorption, Partition chromatography, TLC, ion exchange, GC and HPLC. Types of exchangers, DNA cellulose chromatography.

[9]

Electrophoresis

Physical basis of Electrophoresis, development, principles, types of moving boundary, gel starch, polyacrylamide, non-denaturing and denaturing, electro – blotting. 2D-SDS PAGE and isoelectric focusing. Agaraose gel – applications in DNA analysis, capillary electrophoresis, PFGE, electrophoresis of RNA. Radio Immuno Assay. [9]

Spectroscopic techniques

Measurement of transmittance and absorbance- Beer- Lambert's Law – nature of interaction of electromagestic radiationwith molecular of elements — Transitions in spectroscopy. Physical basis and applications of atomic and molecularspectroscopy: Absorption (UV, Visible, IR, NMR and ESR) and emission (Fluorescence, phosphorescence and chemi-luminance) spectroscopy, Mass spectroscopy, Turbidimetry and Nephelometry.

Biomolecules analysis

Extraction of biomolecules form plants, bacteria, fungi — cold extraction, hot extraction, extract drying — rota vapour, Lyophilizer, spectrophotometric analysis of biomolecules, Biomolecule separation - Paper, Column, Affinity, Adsorption, Partition chromatography, TLC

Total Hours = 45

Text book(s):

- Upadhyay, A., Upadhyay, K. and Nath, N., "Biophysical Chemistry: Principles and Techniques", 4th Edition, Himalaya Publishing House, New Delhi, 2007.
- Wilson, K. and Walker, J., "Practical Biochemistry", 5th Edition, Cambridge University Press, Cambridge, UK, 2003.

Reference(s):

- 1 Willard, H. H., Merritt, Jr. L., Dean, J. A. and Settle, Jr. F. A., "Instrumental Methods Analysis", 7th Edition, CBC Publishers and Distributors, New Delhi, 2007.
- 2 Ewing, G.W., "Instrumental Methods of Chemistry Analysis", McGraw Hill Publication, New Delhi, 1989.
- 3 Veerakumari L. "Bioinstrumentaion", MJP Publishers, Chennai, 2015
- 4 Prakash M. "Understanding BIOINSTRUMENTATION", Discovery Publishing House Pvt. Ltd., New Delhi, 2009.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3			1			2	3	3	3
CO2	3	3	3	3	3			1			2	3	3	3
CO3	3	3	3	3	3			1			2	3	3	3
CO4	3	3	3	3	3			1			2	3	3	3
CO5	3	3	3	3	3			1			2	3	3	3

	K.S.Rangasamy College of Technology - Autonomous												
	51 BT E43 - Toxicology												
	B.Tech. Biotechnology												
0 1	Hours / Week Credit Maximum Marks												
Semester	L	Т	Р	Total hrs	С	CA	ES	Total					
VII	2												
	To describ	To describe basic toxicological phenomena in the light of normal cellular and biochemical conditions											
Objective(s)	 To explain 	n the centra	I principles	regarding scientific	c communica	ation, philosop	ohy of science	e and bioethics					
•		and discus	ss strengths	s and limitations of	different me	thods to stud	y toxicologic	al effects,					
	and theira	and theirareas of application.											
	To analyse and critically review scientific articles in the field of toxicology.												
	To use the structure and language style appropriate for a scientific article.												

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

At the end of the course, the students will be able to

Course Outcomes

- CO1: Describe basic toxicological principles and describe how different chemicals are taken up by processed in and eliminated from the body
- CO2: Differentiate the importance of different organs for detoxification/ toxification of chemicals, anddescribe mechanisms for chemically induced neurotoxicity and endocrine toxicity
- CO3: Describe different behaviour tests and their importance to discover of different neurological and endocrinological disturbances
- CO4: Describe when different chemicals are most toxic, and mechanisms behind the effects.
- CO5: Apply different toxicological frameworks within the professional disciplines

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based

on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

General toxicological principles and overview of toxic substances

The part includes basic description how substances are absorbed by, distributed and eliminated from the body. The part contains awareness about toxicokinetic models and the processes of biotransformation.

[9]

Toxicity in specific target organs, effects and mechanisms:

Basic toxicological knowledge of the effect of chemicals on central organs that are of significance for the uptakes/elimination and detoxification/toxification. Basic knowledge about how the communication systems of the body, the nervous system and the endocrine system is influenced of chemicals.
[9]

Behaviour toxicology:

basic behaviour toxicological knowledge, how behavioural techniques can reveal chemicals that give functional disturbances [9]

Development toxicology:

basic knowledge of different developmental phases; embryonic and embryonic development, development during the neonatal period. Critical developmental phases then teratogenic injuries and functional disturbances are induced. [9]

Toxicology and its application

Preparation of drugs from plants, bacteria, fungus – drug concentration optimization through in vitro and in vivo studies and Animal Experiments.

[9]

Total Hours = 45

Text book(s):

- 1 Ernest Hodgson. "A Text book of Modern Toxicology", Wiley Publishing House, New Delhi, 2011.
- ² Vij Krishan. "Text book of Forensic Medicine and Toxicology- Principles and Practice", 4th Edition, Elsevier, Elsevier
 - India PVt. Ltd., India

Reference(s):

- 1 Casarett, Louis J.; Doull, John Casarett and Doull's "Toxicology: the basic science of poisons" Klaassen, Curtis D. 8th ed.: New York: McGraw-Hill, 2013.
- 2 Hayes, A. Wallace; Kruger, Claire L. Hayes' "Principles and methods of toxicology" 6. ed. 2015
- 3 Balram Pani. "Text book of Toxicology". I.K. International Publishing House Pvt. Ltd., New Delhi, 2010.
- 4 Wallace Hayes, A., Tao Wang, Darlene Dixon. "Essentials of Toxicology", 5th Edition, Academic Press, 2020

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	3	3			2			2	3	3	3
CO2		3	2	3	3			2			2	3	3	3
CO3		3	2	3	3			2			3	3	3	3
CO4		3	2	3	3			2			2	3	3	3
CO5		3	2	2	2			2			2	3	3	3

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

				ege of Technol		omous							
	51 BT E44 - Genomics and Proteomics B.Tech. Biotechnology												
Semester	Hours / V	Veek		Total hrs	Credit	N	Maximum M	<i>l</i> larks					
1	L	T	Р	1	С	CA	ES	Total					
VII	2	0	2	45	3	50	50	100					
	To know the	To know the overview of Genome and geneticanalysis.											
Objective(s	To learn the	implication of	f genome	sequencing by I	earning thete	chniques.							
)	To impart ide	To learn the implication of genome sequencing by learning thetechniques. To impart idea on tools available for proteomic and genomic approaches.											
	To have wide	e knowledge	on applica	ations of function	nal genomics	andproteon	nics.						
	To update the latest development in the field of genetics.												
	At the end of t	he course, t	he studer	nts will be able	to								
	CO1: Acquire kno	owledge on g	enome sec	uence and struc	ture through	genetic map	ping, analys	sis and its					
Course	expression												
Outcomes	CO2: Detail the p	orecise order	of nucleotic	des by sequencir	ng methods a	nd it leads to	ס predict mu	itations.					
	CO3: analyze the	e information	of gene e	expression and s	similarity amo	ng protein s	sequences :	and mine					
	data from d	different datab	ase										
	CO4: Handle the	functional ge	nomics in (disease diagnosi	s and probe the	he interactio	n among pr	oteins and					
	ligands.				-								
	CO5: Interpret ar		ne proteins	with reference	to 2D, IEF, N	MALDI-TOF	and protein	mass					
	Fingerprint	ting											

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Structural Genomics

Overview of genome - genome sequence acquisition and analysis - genetic elements that control gene expression: constitutive and inducible gene expression - genetic analysis: linkage mapping and analysis - high resolution chromosome maps - physical mapping: hybrid mapping strategies, sequence specific tags (SST), sequence-tagged sites (STS) and ISH.

[9]

DNA Sequencing

Variations in sequencing methods - ladder, fluorescent, shotgun, transposon-mediated, automated sequencing - finding genes and mutations, genome wide measurement of gene expression, parallel signature sequencing, implications of DNA and genomes sequencing. Parallel signature sequencing, implications of DNA and genomes sequencing.

[9]

Functional Genomics and its application

Comparative genomics of mitochondrial genome and eukaryotes, orthologs and paralogs, serial analysis of gene expression (SAGE), SAGE adaptation for downsized extracts (SADE), GEO dataset analysis - role of genomics in polygenic disorders, functional genomic analysis using forward and reverse genetics - pharmacogenomics.

[9]

Proteomics

Overview of analytical proteomics, analytical protein and peptide separations, protein digestion techniques, SALSA: An Algorithm for Mining Specific Features of Tandem MS Data - applications of proteomics - mining proteomes - protein expression profiling - identifying protein-protein interactions and protein complexes - protein modifications and mapping protein - new directions inproteomics.

[9]

Tools for Proteomics and Genomics

Isolation of DNA, RNA & Protein - Denaturing and Agarose gel electrophoresis - Western blotting - Southern blotting - Electroelution - Functional genomic tools, Structural proteomic tools. [9]

Total Hours = 45

Text book(s):

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

1	Sandor 2013.	r S., "Ge	S., "Genomics and Proteomics: Functional and Computational Aspects", 1 st edition, Springer,											
2	Primros	se S.B a	and Twy	man R.,	"Princip	les of G	enome i	Analysis	and Ge	nomics"	, Blackw	ell Publi	shers,	
	3 rd editio	on, 2007	7.											
Refere	ence(s):													
1	Sandor	r Suhai,	"Genom	ics and	Proteon	nics", Sp	ringer U	S, 2007						
2		wathy N, P Ramalingam, "Concepts and Techniques in Genomics and Proteomics", Elsevier ce, 2011.												
3	Devara	/arajan Thangadurai, Jeyabalan Sangeetha, "Genomics and Proteomics", Apple Academic Press, 2015												
4	Daniel	aniel C. Liebler and John R. Yates, "Introduction to Proteomics", Humana press, New Jersey, 2002.												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
														2
CO1	3	3	3	3	3			2		2	3	3	3	3
CO2	3	3	3	3	3	2	2	3	2		3	3	3	3
CO3	3	3	3	3	3	2		2	2	2	3	3	3	3
CO4	3	3	3	2	3		2	2			3	3	3	3
CO5	2	2	3	3	3		2	2	2	2	2	3	3	3

.K.S.Rangasamy College of Technology - Autonomous R 2018

		5	I BT E45 -	 Agricultural I 	Biotechnolog	ıy						
	Common to All branch											
Semester	Hour	s / Week		Total Hrs	Credit	Maximum Marks						
1/11	L	T	Р	TOTAL	С	CA	ES	Total				
VII	2	0	2	45	3	50	50	100				
Objective(s)	To discussTo understateTo facilitate	the impor and the po the know	tance of ag est-harvest ledge for I	ne current pract gricultural struct t procedures for Post-harvest ted came agro prur	tures and irrig the improven chnology deve	ation method: nent of marke						
Course Outcomes	At the end of the CO1. Determine tilth practic CO2. Outline the CO3. Elaborate created to CO4. Clarify the harvesting CO5. Design the	the princi ces. de design a the design channel v concept of and stora	ples of aging and construction and construction water. If designinage practic	ronomy for man action of farm shatruction of cana g, operation and ses.	aging the envoled, fences and als, pipeline sy	nd structures to stems to mod	for plant envirus derate depreses used in po	ronment. ssion st				

Principles of agronomy

Definition of agriculture and agronomy - Factors affecting crop growth - climate and weather parameters - Soil fertility and productivity-tillage and tilth - objective and principles -different kinds of tillage, Agricultue and climate Change

Basic Horticulture

Horticulture -Definition-scope and importance -Propagation -definition -propagation methods -seed propagationvegetative propagation -cutting, layering, grafting and budding methods -specialized plant parts for propagation micro propagation. [9]

Agricultural Structures

Site selection, design and construction of farmstead - farm house, cattle shed, dairy bam, poultry shed, hog housing, machinery and implement shed, storage structures for food grains, feed and forage. Design and construction of fences and farm roads. Structures for plant environment - green houses, poly houses and shade houses.

Irrigation and drainage

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

ff. Cym Chairman - BOS

BOS - CHAIRMAN Signature

Sources of water for irrigation - methods of irrigation - surface, sprinkler and drip, fertigation - Irrigation efficiencies and their estimation - design and construction of canals, field channels, underground pipelines system, Agriculture drainage, Darcy's law, design of surface and subsurface drainage, recycling of drainage water for irrigation.

[9]

Agriculture Biotechnology techniques

Plants raise through tissue culture techniques, Hardening, Green house construction, Field plantation, Irrigation, Production of Biofertilizer& Biocontrol agents, Azolla cultivation, Spirulina cultivation and Mushrrom cultivation, Agro entrepreneurship technologies.

												Tot	al hours	s = 45
Text boo	k(s):													
1	Sharma	a R.K.an	id Co., "l	Basics o	f Agricul	lture", Da	aya publ	ishers, N	New Dell	hi, 2014				
2	Jagdis	lagdishwar Sahay. "Elements of Agricultural Engineering", Standard Publishers Distributors, Delhi, 2006.												
Reference	ce(s):	s):												
1	George	eorge Acquaah, "Horticulture-principles and practices" Prentice-Half of India Pvt. Ltd., New Delhi, 2002.												
2	Michae	hael, A.M., "Irrigation -Theory and Practice" Vikas publishing house, New Delhi, 1990.												
3	Michae	ichael and Ojha. "Principles of Agricultural Engineering" Jain brothers, New Delhi, 2005.												
4		Harry L. Field, John M. Long, "Introduction to Agricultural Engineering Technology: A Problem Solving Approach", 4th Edition, Springer International Publishing AG, Switzerland, 2018												
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3			1			3	3	3	3
CO2	3	3	3	3	3			1			3	3	3	3
CO3	3	3 3 3 3 3 3 3												
CO4	3	3	3	3	3			1			3	3	3	3
CO5	2	2 2 3 2 3 1 1 2 3 3 3												

	K.S.Rangasamy College of Technology - Autonomous										
		5	0 BT E51	- Researc	h Design and A	Analysis					
			E	B.Tech. Bi	otechnology						
Samastar	Hours / Week Total hrs Credi Maximum Marks										
Semester			t t								
		L T P C CA ES Total									
VII		3	0	0	45	3	50	50	100		
	•	To understand th	e types of	research	and various me	thods of sai	mpling in 1	esearch	1		
Objective(s)	•	To learn the mea	surements	and scale	es in applied res	search.					
	•	To design the research work and methodology using literature review.									
	•	To impart the knowledge on the interpretation of results from raw data.									
	To enhance the knowledge on analysis of report and its compilation.										

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023

Approved in Academic Council Meeting held on 03/06/2023

Chairman - BOS

BOS - CHAIRMAN Signature

	At the end of the course the student would be able to learn
	CO1: Apply the research methodology and research process of theoretical knowledge in research design.
Course	CO2: Analyze the measurement of the collected samples and validate the research design.
Outcomes	CO3: Illustrate the various research design and single case research design.
	CO4: Identify the research problem from the survey research and design the solution. CO5: Interpret the research findings and conclude the research hypothesis with scientific report writing and presentations.

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required foreach topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall

not depend on the numbers hours indicated.

Research Methodology

Definition, types - exploratory, conclusive, modeling and algorithmic research - research process: steps -data collection methods: primary data - observation method, personal interview, telephonic interview, mail survey, questionnaire design and secondary data - internal and external sources. [9]

Measuring, sampling and validity

Measurement - scales of measurement, psychometric properties of good measurement - sampling: random, and nonrandom, random selection and random assignment, research validity - statistical conclusion, construct, internal and external validity. [9]

Methods of research

Steps in survey research, qualitative research: characteristics, research validity - descriptive, interpretive, theoretical, internal and external validity, methods - phenomenology, ethnography, case study research and grounded theory; mixed methods research. [9]

Experimental methods

Control techniques in experimental research - randomization, matching, counter balancing, control of participant and experimenter effects, experimental research design, quasi experimental designs - time-series and regression discontinuity, single-case designs and its methodological considerations. [9]

Analysis, interpretation and report

Introduction to discriminate analysis, factor analysis, cluster analysis, multidimensional scaling, conjoint analysis - report writing: types of report, guidelines to review report, typing instructions, poster and oral presentation.

Total Hours = 45

[9]

Text book (s):

- Larry B. Christensen, R. Burke Johnson and Lisa A. Turner, "Research Methods, Design and Analysis", 12th
 - edition, Pearson Education, Inc., New Jersey, 2014.
- 2 Leslie D. Rosenstein. "Research Design and Analysis", Wiley, 2019.

Reference(s):

- 1 Kothari C R, "Research Methodology Methods and techniques", New Age Publications, New Delhi, 2009.
- 2 Panneerselvam R, "Research Methodology", Prentice-Hall of India, New Delhi, 2004.
- 3 Kamden K. Strunk, Mwarumba Mwavita, "Design and Analysis in Educational Research", Taylor & Francis,

2020.

4 Larry B. Christensen, Burke Johnson, Lisa Anne Turner, "Research Methods, Design, and Analysis", Pearson Education Limited, 2014.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PS01	PSO2
CO1		2	3	2		2						2	3	3
CO2	3	2	2	3	3			2			2	3	3	3
CO3	3	2	3	3	3			2			2	3	3	3
CO4	3	3	3	3	3			2			2	3	3	3
CO5	2	3		2	3			2			3	3	3	3

		K.S.Rang	gasamy C	ollege of Technol	logy - Auton	omous								
				52 - Marine Bioted										
			B.1	Гесh. Biotechnol	ogy									
Semester	Hours	/ Week		Total hrs	Credi t	Ma	aximum Ma	rks						
	L	T	Р		С	CA	ES	Total						
VII	3	0	0	45	3	50	50	100						
	• To provide	the knowled	dge about t	the marine diversit	у									
Objective(s)	To know about the marine microbes and the aquatic animals To impart the biomedical importance of marine organisms.													
	 To impart t 	he biomedic	al importa	nce of marine orga	anisms.									
				from marine biodiv										
				impacts of the aq		nology.								
	At the end of	of the cours	e, the stu	dents will be able	to									
	CO1: Explain	the different	habitats o	of marine biodivers	ity and its nut	rient require	ements.							
	CO2: Describ	e the aquac	ulture relat	ted to artificial inse	mination, eye	e stalk ablat	ion, transge	nic fish						
Course	techno	logyand the	role of pro	biotic bacteria in a	aquaculture.		_							
Outcomes	CO3: Justify t	he use of bid	pactive cor	npounds from diffe	erent marine	organisms.								
	CO4: Identify	the marine s	ources tha	t produces the bio	oolymers, bio	materials, a	ntifouling co	mpounds						
	and Bio p	otential use	s of halopl	hilic bacteria.										
	CO5:Interpret	the bioreme	ediation us	ing microbes, envi	ronmental ris	ks and bene	efits.							
Note: The hou	ırs given again	st each topic	are of indi	cative. The faculty	has the freed	om to decide	the hours r	equired for						

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based

on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Introduction to Marine Biodiversity

Marine microbial diversity: symbiotic, free-living, biofilm, proximity to ocean surface or sediments: Euphotic,

Mesopelagic, Bathopelagic, Benthos - concentration of nutrients and growth substrates: Oligotrophic, Mesotrophic, Eutrophic, algal blooms -hydrothermal vents: vent biodiversity - applications of extremozymes. [9]

Marine aquaculture

Shellfish and crustacean culture: shrimps, edible mussels, pearl oyster, crabs, fish aquaculture: artificial insemination, eyestalk ablation-transgenic fishtechnology, transgenic fishes with growth hormone (GH) and antifreeze genes, development of healthy fish diets, probiotics bacteria and their importance in aquaculture, vaccines for aquaculture. [9]

Biomedical importance of marine organisms

Marine pharmacology: pharmaceutical and bioactive natural products - microalgae as a source of bioactive molecules - new antibiotics and medicines from marine organisms — unculturable bacteria, occurrence, characteristics and exploitation.

Biomaterials and Bioprocessing

Polymers and biomaterials: properties and production of agarose - agar - alginates - carrageenans - chitin - chitosan - carotene - heparin - marine flavourants - environmentally friendly antifouling compounds, biopotential uses of halophilic organisms.

Environmental impacts of Aquatic biotechnology

Control of oil spills and bioremediation-Genetically Engineered Marine Organisms- sea weeds for removal of heavy metal pollutants

- introduction of coral bleaching - biosphere reserve - Gulf of mannar, impact of invasive organisms, environmental and economicrisks and benefits, impact of climate in aquatic life system.

[9] Total Hours = 45

[9

I ext	book(s):
	Bright Singh I.S, Somnath Pai S., Rosamma Philip and Mohan Das A., "Aquaculture Medicine", 1 dedition,
1	Paico Printing
	Press, India, 2003.
2	Advances in Biochemical Engineering/Biotechnology- Marine Biotechnology I ⅈ Y. LeGal, R. Ulber, Springer
	Verlag BerlinHeidelberg, 2005.
Refe	rence(s):
1	Attaway, D. H., Zaborsky, O. R. (Ed.), "Marine Biotechnology: Volume I, Pharmaceuticals and Bioactive Natural
	Products",
	New York, USA, 1993.
2	Y.K. Lee and S. Salminen, "Handbook of probiotics and prebiotics", 2 nd edition, Wiley, A John Wiley and sons
	publication,
	2009.

3											ational F	Publishin	g, 2018	
4	Se-Kw	on Kim,	"Encyclo	pedia o	f Marine	Biotech	nology",	, Wiley p	ublisher	, 2020				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	3		2	2			3		2			3	3	3
CO2		2		3		2	2		2	2	3		3	3
CO3	3	2		3	2	2		2					3	3
CO4	2	3	3	3	3	2	2	2	3	2		3	3	3
CO5	3	3	2	3			2		2		3	3	3	3

		K.S.Ran	gasamy Col	lege of Technological	ogy - Autono	mous		
		51	BT E53 - Hun	nan Physiology	and Anatom	у		
			B.Te	ch. Biotechnolo	gy			
0	Hours	s / Week		Totallana	Credit	N	laximum Ma	arks
Semester	Total hrs C CA ES Total VII 3 0 0 45 3 50 50 100 • To know the basic structural organization of human body • To understand the parts involved to support and movement of human. • To impart the knowledge of essential integration and control system.							
VII	3	0	0	45	3	50	50	100
Objective(s)	To underTo impartTo learn tTo impart	rstand the t the know the system t the conce	parts involved ledge of esse involved for th pt of reproduc	d to support and rential integration and regulation	movement of hand control sysmaintenance coment.	stem.	dy.	
Course Outcomes	CO1: Des CO2: Ider CO3: Rre	cribe the b ntify the hu call the str	asic structura man parts inv ructural and fu	al organization of rolved in anatomy unctional organization	the human bo and physiolo ation of nervo	ogy us and spec		1
Nada Tha ha a	CO5: Outl	line the dis	ease and its	classifications.	and the first			

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each

topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Organization of the Human Body

The Human Organism: structural and functional organization of the human body- homeostasis — Cell Biology: functions of the cell- plasma membrane- membrane lipids and proteins- movement through the plasma membrane- cytoplasm– Tissues: types, tissue membranes, damage and its repair.

Support and Movement

Integumentary System: physiology and functions - Skeletal System: functions of the skeletal system, Bone anatomy, development, growth, remodeling and repair - Joints and Movement: classes of joints and types of movement — Muscular System: functions of the muscular system, skeletal muscle structure and its general properties.

Integration and Control Systems

Nervous Tissue: Function and Organization – Integration of Nervous System Functions: control of skeletal muscles, higher brain functions — The Special Senses: olfaction, taste, visual system, hearing and balance — Endocrine Glands: organization and its function.

[9]

Regulation, Reproduction and Development

Cardiovascular System: Blood, Vessels and Circulation – Functional organization: Respiratory System, Digestive Systemand Urinary System, Reproduction system: anatomy and physiology of male and female — Development,

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

Chairman - BOS

BOS - CHAIRMAN Signature

Growth, Aging and Genetics: prenatal development, parturition and the newborn [9]

Diseases and its classification

Introduction to Disease, Types of diseases – infectious, non - infectious diseases, degenerative disease, allergies deficiency diseases, blood diseases. Disease causing agent. [9]

Total Hours = 45

Text book(s):

- 1 Vanputte C., Regan J.,, Russo A. "Anatomy & Physiology" 10th Edition, Mc Graw Hill Publisher, 2015
- 2 BhiseS. B., "Anatomy Physiology And Health Education", Nirali Prakashan Publisher, 2008.

Refe	Reference(s): 1 Rizzo D, "Fundamentals of Anatomy & Physiology", 3 rd edition, Clifton Park, NY: Thomson Delmar.													
			damenta -3869-4		natomy	& Physi	iology",	3 ^{ra} edit	ion, Clif	ton Par	k, NY: T	homsoi	n Delma	ar.
	EssentialsWork tex"t, Saunders Publications, UK, 2002.													
3 E	3 Eldra Pearl Solomon, "Introduction to Human Anatomy and Physiology", Saunders/Elsevier, 2009													
i E	J. Gordon Betts, Peter Desaix, Edward W. Johnson, Jody E. Johnson, Oksana Korol, Dean Kruse, Brandon Poe, OpenStax College, James Wise, Mark D. Womble, Kelly A. Young, "Anatomy & Physiology" OpenStax College, RiceUniversity publisher, 2013													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3	3			1			2	3	2	3
CO2		3		3	3			1			2	3	2	3
CO3		3		3	3			1			2	3	2	3
CO4		3		3	3			1			2	3	2	3

		K.S.R	anga	asamy College of Autonomous	Technology	-							
		5		E54 - Biofuel Ted									
			E	3.Tech. Biotechno	logy								
Semester	Hours / Week	<u> </u>		Total hrs	Credit		aximum Ma						
	L	T	Р		С	CA	ES	Total					
VII	3	0	0	45	3	50	50	100					
	To impart the fund	damenta	als ar	nd concepts of biof	uels and its u	sage.							
Objective(s)	• To learn the technology and advancements in the production of biofuel												
	To know the difference among the production of biodiesel, bioethanol and biohydrogen.												
	To enlighten the important and essential need of biofuel.												
	Toprovidethebette	erunders	stand	lingaboutthedesign	andrecenttre	ndsofmicrobi	alfuelcells.						
	At the end of the c CO1: Understand to production.	-				types offeed	stocks for	biofuel					
Course Outcomes	CO2: Comprehend the sources, production process and quality assessment of biodiesel. CO3: Illustrate the sources, bioconversion and applications of biogas CO4: Know the sources, various technologies that are implemented in biohydrogen production and its quantification. CO5: Outline the biochemical basis and fuel cell design of Microbial Fuel Cells.												

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

CO₅

Overview of biofuels

Biofuels: energy use and efficiency - biofuel production - I and II generation biofuels - alternative energies - biochemical pathways review for organoheterotrophic, lithotrophic and phototrophic metabolism - biofuel feeds tocks: starch, sugar, lingocellulosic, agro and industrial byproducts - biomass production for fuel - yeast and algal cultures - biomass conversion to heatand power. [9]

Production technology of Biodiesel and Bioethanol

Biodiesel: algae, edible and non edible oils as sources - production technologies: conventional and lipase mediated process

- quality control aspects - ASTM (D-6751) and Indian standards (IS15607) - environmental and economic aspects of B100and B20. Bioethanol: sugar, starch, lingo cellulosic substrates and byproducts of biodiesel industry as sources - productionprocess - purification - uses of bioethanol - advances in bioethanol production.

Biogas Production

Biogas: cow dung, agricultural and municipal waste as substrate - types of digesters and their suitability - aerobic andanaerobic bioconversion processes - factors affecting the biogas generation process - gas storage systems - application ofbiogas in domestic, industry and vehicles - advantages and disadvantages. [9]

Biohydrogen Production

Biohydrogen: Carbon sources and culture parameters - enzymes involved in the production process - productiontechnologies: biophotolysis, photo fermentation and batch fermentation - reactors design - factors affecting the productionprocess - detection and quantification - advances in biohydrogen production technology. [9]

Microbial Fuel Cells

Biochemical basis - fuel cell design: anode & cathode compartment - microbial cultures - redox mediators - exchange

membrane - power density - MFC performance methods: substrate and biomass measurements - basic power calculations -wastewater treatment effectiveness - advances in MFC. [9]

Total Hours = 45

Text book(s):

- 1 Jonathan R.M, "Biofuels Methods and Protocols (Methods in Molecular Biology Series)", Humana Press, New York, 2009.
- 2 Caye M. Drapcho, N.P. Nhuan and T. H. Walker, "Biofuels Engineering Process Technology", Mc Graw Hill Publishers, New York, 2008.

Reference(s):

- 1 Lisbeth Olsson (Ed.), "Biofuels (Advances in Biochemical Engineering/Biotechnology Series)", Springer-Publishers, Berlin, 2007.
- Glazer and Nikaido, "Microbial Biotechnology Fundamentals of Applied Microbiology", 2nd, Ed Cambridge UniversityPress, 2007.
- Vijai Kumar Gupta, Maria G. Tuohy, "Biofuel TechnologiesRecent Developments", Springer Berlin Heidelberg, 2013
- 4 Hwai Chyuan Ong, Keat Teong Lee, Wei-Hsin Chen, "Biofuel and Bioenergy Technology", MDPI AG Publisher, 2019.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO 1				3	2			1			2	3	2	3
CO 2				3	2			1			2	3	2	3
CO 3				3	2			1			2	3	2	3
CO 4		2		3	2			1			2	3	2	3
CO 5				3	2			1			2	3	2	3

		К.	•	my College of Te Autonomous 55 - Systems Bio	•										
				ch. Biotechnolog											
0	Semeste Hours / Week Total hrs Credit Maximum Marks														
r	L	T	Р	l otal nrs	С	CA	ES	Total							
VII	3	3 0 0 45 3 50 50 100													
Objective(s	To learnTo know	the interaction	ns between e and quant	ture as well as ne protein and ligand itative dynamics of system ystem.	d		•	ted modeling							

At the end of the course, the students will be able to

CO1: Know the overview of the gene regulations, gene expression.

Course Outcomes

CO2: Identify the kinetics, identical and independent binding sites, interacting and non-interacting binding sites.

CO3: Distinguish the genetic switches and amplifiers for gene expression.

CO4: Define the principle of quorum sensing and Drosophila development.

CO5: Recite the basic concepts in gene expression networks and relate the aspects of multistability inGene networks.

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Fundamentals of Systems Biology

Overview of gene control - working of genetic switches - introductory systems biology the biochemical paradigm, genetic paradigm and the systems paradigm. [9]

Protein-ligand Interactions

Equilibrium binding and co-operativity - Michaelis-Menten Kinetics - identical and independent binding sites- Identical and interacting binding sites, non interacting bindingsites. [9]

Gene Expression

Genetic switch in Lambda phage - Noise-based switches and amplifiers for gene expression - synthetic genetic switches

- *E.coli* chemotaxis - biological oscillators - genetic oscillators - the origin and consequences of noise in biochemical systems. [9]

Developmental Systems Biology

Building an organism starting from a single cell - quorum sensing - programmed population control by cell-cell communication and regulated killing - Drosophila development - establishment of the developmental precision and proportions in the early Drosophila embryo. [9]

Gene expression networks

Generegulationatasinglecelllevel-transcriptionnetworks-basicconcepts- coherent Feed Forward Loop (FFL) and delay gate - the incoherent FFL - temporal order, signaling networks and neuron circuits - aspects of multi-stability in the gene networks.

Total Hours = 45

Text book(s):

- 1 Uri Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits", 2nd edition, CRC Press, 2006.
- Edda Klipp, Wolfram Liebermeister, Christoph Wierling and Axel Kowald, "Systems Biology: A Textbook", 2nd Edition.
 - Wiley-Blackwell, 2016.

Reference(s):

- 1 Kitano et al., "Systems Biology: A Brief Overview, Science", Vol.295, pp.1662-1664, 2002.
- John Ross et al., "Complex Systems: From Chemistry to Systems Biology", PNAS, Vol.106, pp.6433- 6434, 2009.
- 3 Job Dekker, Marc Vidal, Marian Walhout, "Handbook of Systems Biology", Elsevier Science, 2012
- 4 Uri Alon, "An Introduction to Systems Biology", Taylor & Francis, 2007

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3			2							2	2	2
CO2	3	3	3	3	3							3	2	2
CO3		3	3	3	3							3	3	3
CO4		3	3	3	3							3	3	3
CO5		2										2	2	2

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

	l	K.S.Ranga	samy Coll	ege of Technol	ogy - Autono	mous R 2018		
			50 BT L0	1 - Agricultura	Engineering			
			Con	nmon to All De	partment			
Semester	Н	ours / Wee	k	Total Hrs	Credit	М	aximum Mar	ks
Semester	L	T	Р	10tal nis	С	CA	ES	Total
V/VII	3	0	0	45	3	50	50	100
Objective(s) Course	To urTo faTo erAt the endCO1. Dete	nderstand the light cilitate the light product the control of the control of the practice tilth practice.	ne post-han knowledge students t urse, the s principles c es.	of agricultural st rvest procedures for Post-harves o became agro students will be of agronomy for r	s for the impro t technology d oruners. able to managing the	vement of ma evelopment environmental	rketing strate	

PRINCIPLES OF AGRONOMY

Definition of agriculture and agronomy- Branches and scope of Agriculture - Factors affecting crop growth -Soil fertility and productivity - tillage and tilth - different kinds of tillage: Earth moving equipment - their construction and working principles viz Bulldozer, Trencher, Excavators etc. [9]

AGRICULTURAL STRUCTURES

Site selection, design and construction of farmstead - farm house, cattle shed, poultry shed, hog housing, machinery and implement shed, Design and construction of fences and farm roads. Structures for plant environment - green houses, poly houses and shade houses, Storage structures of food grains and feeds.

[9]

IRRIGATION AND DRAINAGE

Sources of water for irrigation - methods of irrigation - surface, sprinkler and drip, fertigation - Irrigation efficiencies and their estimation - design and construction of canals, field channels, underground pipelines system, Agriculture drainage, Darcy's law, design of surface and subsurface drainage, recycling of drainage water for irrigation. [9]

POST HARVEST AND STORAGE ENGINEERING

Harvest - Post harvest Threshing machines - design, principles, operations, maintenance and testing -winnovers, cleaners and graders & separators, design principles, operation, maintenance and testing - Dehuller, dehusker and packing unit - storage bins, long term storage container and cold storage design. [9]

PLANT INSTALLATION AND REPORT PREPARATION

Industrial layout planning and installation, power and power transmission, sanitation, cost analysis, detailed project report preparation, design and requirement of industrial production plant - Case studies for design of modern rice plant and layout - Bank statement and audited returns. [9]

Total hours = 45

Text book(s):

1 Sharma R.K.and Co., "Basics of Agriculture", Daya publishers, New Delhi, 2014.

2 Jagdishwar Sahay. "Elements of Agricultural Engineering", Standard Publishers Distributors, Delhi, 2006.

Reference(s):

1 George Acquaah, "Horticulture-principles and practices" Prentice-Half of India Pvt. Ltd., New Delhi, 2002.

2 Michael, A.M., "Irrigation -Theory and Practice" Vikas publishing house, New Delhi, 1990.

Rev. No. 4

4	Appro	ach", 4 th	1					ral Engir nd, 2018		echnolo	gy: A Pr	oblem S	olving	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2				2	3	2				3	2	2
CO 2	3	3	3	2	3	2	3	1				3	3	3
CO 3	3	3	3	2	3	2	3	1				3	3	3
CO 4	3	3	3	2	3	2	3	1				3	3	3
CO 5	3	3	3	2	3	2	3	1				3	3	3

Michael and Ojha. "Principles of Agricultural Engineering" Jain brothers, New Delhi, 2005.

				College of Techr								
		50	BT EL05	- Basics of Gen		ering						
Compostor	1	/ \\\	I-	Common to A		Т	NA: NA					
Semester	He	ours / Wee		Total hrs	Credit		Maximum Ma					
1/8/11	L	I	P		С	CA	ES	Total				
V/VII	3 0 0 45 3 50 50 100 • To discuss the methods, tools and techniques involved in genome analysis, expression of											
					volved in ge	enome analy	sis, expression	on of				
Objective(s)												
	 To unders 	stand the pi	oduction of	of recombinant pro	oteins, muta	tion analysis	and the					
	importance of PCR ingenome analysis. • The student would learn about various aspects of Genetic Engineering, its application and ethic											
	issues.											
	To determine the strategies involved in gene cloning with the help of genomic libraries, cDNA											
	libraries andother libraries.											
	To discuss the production of useful molecules like cytokines, vaccines and antibiotics and											
	define the safetyguidelines for recombinant.											
				udents will be a								
	CO1:Descri	ibe restriction	on and mo	dification system	and their rol	e in genetic	engineering a	and illustrate				
	the diff	ferent types	s of blotting	g techniques.								
Course	CO2: Chara	acterize the	cloning ve	ectors used in ma	nipulation of	genes like p	olasmids, pha	igemids,				
Outcome	cosmic	ls, artificial	chromosoi	mes, plant and an	imal vectors	S	•					
S	CO3: Deter	mine the st	rategies in	volved in gene clo	oning with th	ne help of DN	NA librarites a	ınd				
				ing of cloned gen								
				chniques involved								
				quencing techniq	-		3	3				
				ns of rDNA techno		escribe the re	ole of knock o	out and				
				in gene expression								
lote: The hou	rs given agair	st each top	ic are of in	dicative. The facul	ty has the fre	eedom to ded	cide the hours	required for				

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based

on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

BASICS OF RECOMBINANT DNA TECHNOLOGY

Nucleases: Exonucleases and Endonucleases, Restriction Enzymes, RNases, Methylases, Polymerases: DNA Pol I, Klenow Fragments, Reverse Transcriptase, Taq Polymerases. Ligases: T4 DNA Ligase, E.coli DNA Ligase, T4 RNA Ligase, Topoisomerases, End Modifying Enzymes: Terminal Transferase, T4 Polynucleotide Kinase, Alkaline Phosphatases

[9]

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

CREATION OF RECOMBINANT MOLECULES

Restriction mapping, design of linkers and adaptors. Characteristics of plasmid and phage vectors, cosmids, prokaryotic and eukaryotic expression vectors. Insect, Yeast and Mammalian vectors.

[9]

Gene Cloning Strategies and Sequencing of DNA

Construction of Genomic & cDNA Libraries -- Methods of nucleic acid sequencing: Sanger's method, Maxam and Gilbertmethod, Automated sequencing method and Next Generation sequencing method.

[9]

ADVANCED TECHNIQUES IN MOLECULAR BIOLOGY

Polymerase Chain Reaction -- Gel Electrophoresis: AGE & PAGE -- Blotting Techniques: Southern, Western & Northern.Methods of gene transfer in Plants and Animals: Chemical, Physical & Viral mediated DNA transfer.

APPLICATIONS OF RDNA TECHNOLOGY

Cloning in plants, Ti plasmid ,Antisense and RNA interference, terminator technology, and transgenic animals, Knockout transgenic mice,Gene and Stem cell therapy.

[9]

Total Hours = 45

Text book(s):

- 1 | Smita Rastogi and Neelam Pathak, "Genetic Engineering", Oxford Publication, 2010
- 2 Ragagopal K., "Recombinant DNA Technology and Genetic Engineering", Tata McGraw Hill Education Private Ltd., 2012.

Reference(s):

- 1 Primrose S.B. &Twyman R.M., "Principles of Gene Manipulation and Genomics", 7th Edition, Blackwell Publishing. 2006.
- 2 Richard J. Reece., "Analysis of Genes and Genomes", John Wiley and Sons Ltd., Singapore, 2004.
- 3 Gyana Ranjan Rout, K,V, Peter, "Genetic Engineering of Horticultural crops" Academic Press An imprint of Elsevier, 2018.
- 4 Desmond S.T. Nicholl, "An Introduction to Genetic Engineering", Third Edition Cambridge University Press NewYork. 2008.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3					2	1		3		2	3	3	3
CO2	1							2	2			3		2
CO3	3	2		3	3	2	1		3		2	3	2	3
CO4	3	2		3	3	2	1		3		2	3	3	3
CO5	3	3		2	3	2	1		3		2	3	3	3

				College of Tech									
		50	BT EL06-	Animal Studies i		earch							
				Common to a	all								
Semester	Semester Hours / Week Credit Maximum Marks												
	L	Т	Р	i otai nrs	С	CA	ES	Total					
VI	3	0	0	45	3	50	50	100					
	 Tounderst 	tand the fu	nctional foo	d concept as rela	ated to ingre	dient efficacy	and its nut	traceutical					
Objective(s)	properties	i.											
	• To widen	the knowle	edge on rol	e of food in disea	ise managen	nent.							
	To provide	e basic con	cepts on cli	nical trials.									
	• To Familia	arize the p	rinciples of	pharmacological	research.								
				on the regulation		research.							

Rev. No. 4

Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

	At the end of the course, the students will be able to
	CO1: describe the components of functional foods and nutraceuticals.
	CO2: assess the functions of food in preventing and managing diseases.
Course	CO3: interpret the understandings on toxicology and different animals used in preclinical testing.
Outcomes	CO4: analyze the pharmacological parameters and management of laboratory animals.
	CO5: Provide understanding on regulations for the usage of animals in research.

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Functional food and Nutraceutical

Introduction, classification and executive models for nutraceuticals; plant sources- Plant secondary metabolites; Alkaloids, phenols, Terpenoids. Animal source- Milk and products, meat, fish. Microbial source- prebiotics and probiotics, examples of bacteria used as probiotics, Synbiotics for maintaining good health. Algal source- omega - 3 PUFA. Relation of functional foods & Nutraceutical (FFN) to foods & drugs

Food in management of health and diseases

Food as a source of drug- nutraceuticals, Role of nutraceuticals in diabetes mellitus, circulatory problems, obesity and stress, nephrological disorders, liver disorders, cancer, osteoporosis, arthritis, psoriasis and ulcers. Examples of nutraceuticals as antioxidants in preventing diseases.

Preclinical testing and clinical trials:

Basic Toxicology, Acute Toxicity studies, Multiple exposure studies, Basic Pharmacology & pharmaceutical chemistry, use of animal models and pre-clinical and clinical trials. New drugs- Investigation (IND) application, NDA requirements. Toxicology - oral toxicity, sub-acute, acute toxicity and chronic toxicity. Toxic dose, LD50, dose-response relationships.

Pharmacological Research

Introduction, laboratory animals- physiological parameters and response, Handling and care of different animals; routes of administration- oral, intraperitonial, intramuscular and intravenous; advantages and disadvantages of animal experimentation, anaesthesia and chemical euthanasia used in laboratory.

Regulations for animal research

Animal ethics, regulations for conducting animal experimentation, 3 R's concept, alternatives to animal experimentations, Regulatory agencies, Pharmacovigilance, GCP Guidelines and GLP Guidelines, Research ethics and publication ethics.

[9]

[9]

[9]

[9]

Text book(s):

- Shayne C. Gad, Shayne C. Gad. "Animal models in Toxicology", 3rd edition, CRC Press. Taylor & Francis group,
- Robert , H., Weichbrod, Gail A., (Heidbrink) Thompson., John N. Norton," Management of Animal Care and Use Programs in Research, Education, and Testing" 2nd ed, CRC Press. Taylor & Francis group, 2017.

Reference(s):

- Israel Goldberg (Ed.) Functional foods, designer foods, pharma foods, Nutraceuticals, Aspen publishers Inc., USA,1999
- Gupta., S.K., "Drug discovery and clinical Research," Jaypee Brothers Medical Publishers, 2011
- Raj K. Keservani., Anil K. Sharma., Rajesh K. Kesharwani, "Nutraceuticals and Dietary Supplements Applications in Health Improvement and Disease Management", CRC Press. Taylor & Francis group,2021.
- Young, J. (1996) Functional Foods: Strategies for successful product development. FT Management Report Pearson Professional Publishers, London.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3					2	1		3		2	3	3	3
CO2	1							2	2			3		2
CO3	3	2		3	3	2	1		3		2	3	2	3
CO4		2		3	3	2	1		3		2	3	3	3
CO5	3	3		2	3	2	1		3		2	3	3	3

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

BOS - CHAIRMAN Signature

	K			of Technolog		ousR 2018				
		50	BT L07 - E	Basics of Bioi	nformatics					
			C	ommon to All						
Compoter		Hours / Week		Total Hrs	Credit	M	aximum Marl	ks		
Semester	L	Т	Р		С	CA	ES	Total		
V/VII	3	0	0	45	3	50	50	100		
Objective(s)	the biolog	 To develop inter disciplinary skills in the application of computers in biotechnology and learn about the biological data. To learn about the bioinformatics databases, databanks, data format of Biological databases. 								
				processing ar						

	To Analyze the optimal alignment using methods of sequence analysis
	To acquire the applications and scope of in-silico biology.
	At the end of the course, the students will be able to
	CO1: Get acquainted with biological data acquisition methods and file formats
Course	CO2: Recite various biological primary databases, secondary databases and different sequence file formats.
Outcomes	CO3: characterize the optimal alignment of sequences either by local or global algorithm.
	CO4: describe the methods involved in pairwise and Multiple sequence alignment and analysis the
	conserved regions CO5: know the major applications of Bioinformatics and scope.

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

BIOLOGICAL DATA ACQUISITION

The form of biological information. Retrieval methods for DNA sequence, protein sequence and protein structure information, Scope of Bioinformatics, Data file formats, Data life Cycle and Database Management System models. [9]

DATABASES

Biological Database and its Types Introduction to data types and Source. General Introduction of Biological Databases; Nucleic acid databases (NCBI, DDBJ, and EMBL). Protein databases (Primary, Composite, and Secondary). Specialized Genome databases: (SGD, TIGR, and ACeDB). Structure databases (CATH, SCOP, and PDBsum). [9]

DATA PROCESSING

Data – Access, Retrieval and Submission: Standard search engines; Data retrieval tools – Entrez, DBGET and SRS; Submission of (new and revised) data; Sequence Similarity Searches: Local versus global. Distance metrics. Similarity and homology. Scoring matrices.

METHODS OF ANALYSIS

Dynamic programming algorithms, Needleman-Wunsch and Smith-waterman. Heuristic Methods of sequence alignment, FASTA, and PSI BLAST. Multiple Sequence Alignment and software tools for pairwise and multiple sequence alignment. [9]

APPLICATIONS

Genome Annotation and Gene Prediction; ORF finding; Phylogenetic Analysis: Comparative genomics, orthologs, paralogs. Genome analysis – Genome annotation.

Total Hours = 45 hours

Text book(s):

- 1 Arthur K. Lesk, "Introduction to Bioinformatics" Oxford University Press. ,4thedition 2014
- Durbin R., Eddy S.,Krogh A., Mitchison G., "Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids" Cambridge University Press. 2013

Reference(s):

David W. Mount., "Bioinformatics Sequence and Genome Analysis", 2ndEdition, Cold Spring Harbor Laboratory Press, New York, US, 2004.

Rev. No. 4
Passed in BoS Meeting held on 12/05/2023
Approved in Academic Council Meeting held on 03/06/2023

2	Rastog India, 2		"Bioinfor	matics -	- Concep	ots, skills	and ap	plication	s", CBS	Publish	ers and	Distribut	ors, Nev	v Delhi,
3			n, Jarno ⁻ ach",CR			omervuo	, Mikael	Huss a	nd Garry	/ Wong,	'RNA-Se	eq Data	Analysis	: A
4	Xinkun	Wang,"I	Next Ger	neration	Sequen	cing Data	a Analys	is" CRC	Press, 2	016				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2	3						2	3	3	2
CO2	3	3		2	3	1	1				2	3	3	2
CO3	3	2	3	2	3		1				1	2	3	3
CO4	3	2	3	2	3		1			1	1	3	3	3
CO5	3	3	2	3	2		2			2	3	3	3	3

		K.S.Ranga	samy Colle	ge of Techno	ology - Auto	nomous		
50	BT L08 - Pr	oduction Te	chnology o	f Agriculture	and Food I	Processing I	Machinery	
				mmon to ALI	_			
Semester		Hours / Wee	ek	Total hrs	Credit		Maximum N	larks
	L	Т	Р	Totaliis	С	CA	ES	Total
VI	3	0	0	45	3	50	50	100
Objective(s)	To helpTo knowTo enh	the agriculto w the various ance the kno	ure farmers for some some some some some some some some		ne appropria importance i ery in fruits	te machinery n machinery and vegetabl		
	At the er CO1: Em	nd of the co	urse, the stu	idents will be	able to		ood processing	J
Course Outcomes	CO3: Inte	erpret the strance the kn	ategy of plan owledge of r	ery involved i ning of differe machinery invo y involved in	ent machiner olved in fruits	ry for bakery s s and vegeta		g

Note: The hours given against each topic are of indicative. The faculty has the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Production Technology of farming machinery

Welding and its types, CNC machine, lathe machine, Drilling equipment, Laser cutting machinery and its types, Simulation software, Earth moving Equipment — their construction & working principles viz Buldozer, trencher, Excavators etc., Sowing, planting and transplanting equipment. [9]

Post harvesting machinery

Agriculture crop processing machinery — winnowers, graders, aspirators, destoner, Dehuller, Sheller, Separators, Elevators, Colour sortex machine, Rice polisher machine.

[9]

Food Bakery machinery

Bakery machinery and equipment: Mixing- blenders, Horizontal and vertical planetary, Make up equipment, Divider, Rounder, Proofer, moulder. Baking equipment — Different types of oven, slicer. Cookies making machinery, cakes, buns and bread. [9]

Modern Fruits and Vegetable Processing machinery

Fruits sorter, Construction of Solar based cold storage and refrigerated vans, Freezer design and usage; Plate contact freezer, air blast freezer, cryogenic freezer, Irradiation technology and machinery, Design of various dryer; PHTC, RPEX, LSU and Drum dryer. Solar dryer.

Product packaging machinery

Benefit of Vacuum, gas and shrink packaging. Band sealing machine, Single head and multihead granules packaging machine, Wrapping machine, Thermal sealing machine, Liquid filling and pouch packing machinery. Powder packing machine and its variants. [9]

	Total Hours = 45
Text	book(s):
1	Zeki Berk, "Food Process Engineering and Technology", Academic Press, 2018
2	Bosoi, E. S., "Theory, construction and calculation of Agriculture machines" (Vol 1 and 2), Oconion Press pvt.Ltd., New Delhi, 1990
Refe	erence(s):
1	Mukhopadhyay S.N., "Food Engineering: Process And Technology", CRC Press, 2017
2.	Tadeusz Kudra, Arun S. Mujumdar, "Advanced Drying Technologies", 2 nd Edition, CRC Press, 2009
3.	Jagdishwar Sahay. "Elements of Agricultural Engineering", Standard Publishers Distributors, Delhi, 2006.
4.	Harry L. Field, John M. Long, "Introduction to Agricultural Engineering Technology: A Problem Solving Approach",
	4 th Edition, Springer International Publishing AG, Switzerland, 2018

Rev. No. 4 Passed in BoS Meeting held on 12/05/2023 Approved in Academic Council Meeting held on 03/06/2023

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				2	3	2				3	2	2
CO2	3	3	3	2	3	2	3	1				3	3	3
CO3	3	3	3	2	3	2	3	1				3	3	3
CO4	3	3	3	2	3	2	3	1				3	3	3
CO5	3	3	3	2	3	2	3	1				3	3	3

			50 B I	L09 -Pollution ar		nent					
				Common to All	Department						
Compoter	H	ours / We	ek	Total hrs	Credit		Maximum Ma	rks			
Semester	L	T	Р	Total hrs	С	CA	ES	Total			
VI	3 0 0 45 3 50 50										
	To learn the fundamental concepts in the field of pollution.										
Objective(s)	To study the depth of different pollution and its control.										
	To impart knowledge on hazardous waste management.										
	To develop methods for removal of pollutants.										
	To understand all the regulations and act proposed by the law.										
	At the end of the course, the students will be able to										
	CO1: Recall the basics about causes of pollution and its impact on environment										
Course	CO2: C	larify the c	difference	among different ty	pes of pollution	n and its conti	ol				
Outcomes	CO3: Ex	xplain haz	ardous w	aste and biomedic	al waste mana	gement					
	CO4: G	ain knowle	edge on r	emoval mechanisn	n of pollutants						
	CO5: Role of regulatory bodies in protecting the natural resources and prevention of pollution										

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the numbers hours indicated.

Introduction to Pollution

Concept of pollution, causes of environmental pollution, Environmental problems due to pollution, concept of Development, Major conflicts of Development and Environment, Mining and Environment. [9]

Air, Water, Soil Pollution and its control

Air Pollution: Definition, major air pollutants, Classification of air pollutants, their sources and impacts, acid rain, oil pollution, photochemical smog, effects on organisms and on materials. Methods of air pollution control. Noise Pollution and its methods of control. Water Pollution: Concept, classification, major sources and impacts, oil pollution, thermal pollution, oceanic pollution, eutrophication and water treatment processes. Soil Pollution: Soil pollution, causes of soil pollution, soil salinity, sources of soil pollutants, major impacts and remedial measures.

[9]

Hazardous waste and Biomedical waste management

Hazardous waste, characterization and site assessment waste minimization and resource recovery, chemical physical and biological, treatment; hazards of improper treatment and disposal method; accidental exposure of dangerous waste and emergency measures. Biomedical waste classification and its management methods. [9]

Removal of pollutants

Methods for removal of pollutants from gaseous effluents; particulate matter, waste water treatment Activated sludge process. Removal of Nitrogenous pollution, Removal of nitrogen; physico-chemical processes; biological method of pollution control. Analytical methods of small amount of the metal pollutants; removal and recovery techniques of heavy metals.

Regulatory Aspects and legislation

Industrial Emissions Liquids and gasses; pollution caused by various chemical industries and its overall effect on quality of human life and the environment, water quality management in India. MINAS for sugar industries, distilleries, pesticides industry and mercury from caustic soda industry, Good analytical practices for proper assessment of pollutants, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution)

Act, Wildlife Protection Act, Forest Conservation Act, National and International conventions and agreements on environment

												Tot	al hours	s = 45
Text book(s):														
1	Krishnan Khannan, "Fundamentals of Environmental Pollution" S. Chand and Company Ltd., 1994													
2	Rao C.S. "Environmental Pollution Control" Wiley Eastern Ltd.,1993													
Refer	Reference(s):													
1	Metcalf and Eddy, "Wastewater engineering, Treatment and Reuse", Tata Mc Graw Hill Publications, 2008.													
2	Yung- Tse Hung, Lawrence K Wang, Nazih K Shammas, "Hand Book of Environment and Waste Management: Air and Water Pollution Control", World Scientific Publishing Co. Pvt. Ltd., Singapore, 2012.													
3	Martina Zelenakova, "Water Management and the Environment: Case Studies", Springer International Publishing, Switzerland, 2018.													
4	De Nevers, "Air Pollution Control and Engineering" Mc Graw Hills, 1993													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1					2		3					3	2	3
CO2		3		3	3	3	3				3	3	2	3
CO3		3		3	3	3	3				3	3	3	2
CO4		3	3	3	3	3	3	3			3	3	3	2
CO5		3	2	2			3	3				3	2	3